|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > m1expaddsub | Structured version Visualization version GIF version | ||
| Description: Addition and subtraction of parities are the same. (Contributed by Stefan O'Rear, 27-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| m1expaddsub | ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑(𝑋 − 𝑌)) = (-1↑(𝑋 + 𝑌))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | m1expcl 14128 | . . . . . 6 ⊢ (𝑋 ∈ ℤ → (-1↑𝑋) ∈ ℤ) | |
| 2 | 1 | zcnd 12725 | . . . . 5 ⊢ (𝑋 ∈ ℤ → (-1↑𝑋) ∈ ℂ) | 
| 3 | 2 | adantr 480 | . . . 4 ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑𝑋) ∈ ℂ) | 
| 4 | m1expcl 14128 | . . . . . 6 ⊢ (𝑌 ∈ ℤ → (-1↑𝑌) ∈ ℤ) | |
| 5 | 4 | zcnd 12725 | . . . . 5 ⊢ (𝑌 ∈ ℤ → (-1↑𝑌) ∈ ℂ) | 
| 6 | 5 | adantl 481 | . . . 4 ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑𝑌) ∈ ℂ) | 
| 7 | neg1cn 12381 | . . . . . 6 ⊢ -1 ∈ ℂ | |
| 8 | neg1ne0 12383 | . . . . . 6 ⊢ -1 ≠ 0 | |
| 9 | expne0i 14136 | . . . . . 6 ⊢ ((-1 ∈ ℂ ∧ -1 ≠ 0 ∧ 𝑌 ∈ ℤ) → (-1↑𝑌) ≠ 0) | |
| 10 | 7, 8, 9 | mp3an12 1452 | . . . . 5 ⊢ (𝑌 ∈ ℤ → (-1↑𝑌) ≠ 0) | 
| 11 | 10 | adantl 481 | . . . 4 ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑𝑌) ≠ 0) | 
| 12 | 3, 6, 11 | divrecd 12047 | . . 3 ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ((-1↑𝑋) / (-1↑𝑌)) = ((-1↑𝑋) · (1 / (-1↑𝑌)))) | 
| 13 | m1expcl2 14127 | . . . . . 6 ⊢ (𝑌 ∈ ℤ → (-1↑𝑌) ∈ {-1, 1}) | |
| 14 | elpri 4648 | . . . . . 6 ⊢ ((-1↑𝑌) ∈ {-1, 1} → ((-1↑𝑌) = -1 ∨ (-1↑𝑌) = 1)) | |
| 15 | ax-1cn 11214 | . . . . . . . . . 10 ⊢ 1 ∈ ℂ | |
| 16 | ax-1ne0 11225 | . . . . . . . . . 10 ⊢ 1 ≠ 0 | |
| 17 | divneg2 11992 | . . . . . . . . . 10 ⊢ ((1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0) → -(1 / 1) = (1 / -1)) | |
| 18 | 15, 15, 16, 17 | mp3an 1462 | . . . . . . . . 9 ⊢ -(1 / 1) = (1 / -1) | 
| 19 | 1div1e1 11959 | . . . . . . . . . 10 ⊢ (1 / 1) = 1 | |
| 20 | 19 | negeqi 11502 | . . . . . . . . 9 ⊢ -(1 / 1) = -1 | 
| 21 | 18, 20 | eqtr3i 2766 | . . . . . . . 8 ⊢ (1 / -1) = -1 | 
| 22 | oveq2 7440 | . . . . . . . 8 ⊢ ((-1↑𝑌) = -1 → (1 / (-1↑𝑌)) = (1 / -1)) | |
| 23 | id 22 | . . . . . . . 8 ⊢ ((-1↑𝑌) = -1 → (-1↑𝑌) = -1) | |
| 24 | 21, 22, 23 | 3eqtr4a 2802 | . . . . . . 7 ⊢ ((-1↑𝑌) = -1 → (1 / (-1↑𝑌)) = (-1↑𝑌)) | 
| 25 | oveq2 7440 | . . . . . . . 8 ⊢ ((-1↑𝑌) = 1 → (1 / (-1↑𝑌)) = (1 / 1)) | |
| 26 | id 22 | . . . . . . . 8 ⊢ ((-1↑𝑌) = 1 → (-1↑𝑌) = 1) | |
| 27 | 19, 25, 26 | 3eqtr4a 2802 | . . . . . . 7 ⊢ ((-1↑𝑌) = 1 → (1 / (-1↑𝑌)) = (-1↑𝑌)) | 
| 28 | 24, 27 | jaoi 857 | . . . . . 6 ⊢ (((-1↑𝑌) = -1 ∨ (-1↑𝑌) = 1) → (1 / (-1↑𝑌)) = (-1↑𝑌)) | 
| 29 | 13, 14, 28 | 3syl 18 | . . . . 5 ⊢ (𝑌 ∈ ℤ → (1 / (-1↑𝑌)) = (-1↑𝑌)) | 
| 30 | 29 | adantl 481 | . . . 4 ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (1 / (-1↑𝑌)) = (-1↑𝑌)) | 
| 31 | 30 | oveq2d 7448 | . . 3 ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ((-1↑𝑋) · (1 / (-1↑𝑌))) = ((-1↑𝑋) · (-1↑𝑌))) | 
| 32 | 12, 31 | eqtrd 2776 | . 2 ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ((-1↑𝑋) / (-1↑𝑌)) = ((-1↑𝑋) · (-1↑𝑌))) | 
| 33 | expsub 14152 | . . 3 ⊢ (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (-1↑(𝑋 − 𝑌)) = ((-1↑𝑋) / (-1↑𝑌))) | |
| 34 | 7, 8, 33 | mpanl12 702 | . 2 ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑(𝑋 − 𝑌)) = ((-1↑𝑋) / (-1↑𝑌))) | 
| 35 | expaddz 14148 | . . 3 ⊢ (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (-1↑(𝑋 + 𝑌)) = ((-1↑𝑋) · (-1↑𝑌))) | |
| 36 | 7, 8, 35 | mpanl12 702 | . 2 ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑(𝑋 + 𝑌)) = ((-1↑𝑋) · (-1↑𝑌))) | 
| 37 | 32, 34, 36 | 3eqtr4d 2786 | 1 ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑(𝑋 − 𝑌)) = (-1↑(𝑋 + 𝑌))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 {cpr 4627 (class class class)co 7432 ℂcc 11154 0cc0 11156 1c1 11157 + caddc 11159 · cmul 11161 − cmin 11493 -cneg 11494 / cdiv 11921 ℤcz 12615 ↑cexp 14103 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-n0 12529 df-z 12616 df-uz 12880 df-seq 14044 df-exp 14104 | 
| This theorem is referenced by: psgnuni 19518 41prothprmlem2 47610 | 
| Copyright terms: Public domain | W3C validator |