Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > m1expaddsub | Structured version Visualization version GIF version |
Description: Addition and subtraction of parities are the same. (Contributed by Stefan O'Rear, 27-Aug-2015.) |
Ref | Expression |
---|---|
m1expaddsub | ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑(𝑋 − 𝑌)) = (-1↑(𝑋 + 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | m1expcl 13855 | . . . . . 6 ⊢ (𝑋 ∈ ℤ → (-1↑𝑋) ∈ ℤ) | |
2 | 1 | zcnd 12477 | . . . . 5 ⊢ (𝑋 ∈ ℤ → (-1↑𝑋) ∈ ℂ) |
3 | 2 | adantr 482 | . . . 4 ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑𝑋) ∈ ℂ) |
4 | m1expcl 13855 | . . . . . 6 ⊢ (𝑌 ∈ ℤ → (-1↑𝑌) ∈ ℤ) | |
5 | 4 | zcnd 12477 | . . . . 5 ⊢ (𝑌 ∈ ℤ → (-1↑𝑌) ∈ ℂ) |
6 | 5 | adantl 483 | . . . 4 ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑𝑌) ∈ ℂ) |
7 | neg1cn 12137 | . . . . . 6 ⊢ -1 ∈ ℂ | |
8 | neg1ne0 12139 | . . . . . 6 ⊢ -1 ≠ 0 | |
9 | expne0i 13865 | . . . . . 6 ⊢ ((-1 ∈ ℂ ∧ -1 ≠ 0 ∧ 𝑌 ∈ ℤ) → (-1↑𝑌) ≠ 0) | |
10 | 7, 8, 9 | mp3an12 1451 | . . . . 5 ⊢ (𝑌 ∈ ℤ → (-1↑𝑌) ≠ 0) |
11 | 10 | adantl 483 | . . . 4 ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑𝑌) ≠ 0) |
12 | 3, 6, 11 | divrecd 11804 | . . 3 ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ((-1↑𝑋) / (-1↑𝑌)) = ((-1↑𝑋) · (1 / (-1↑𝑌)))) |
13 | m1expcl2 13854 | . . . . . 6 ⊢ (𝑌 ∈ ℤ → (-1↑𝑌) ∈ {-1, 1}) | |
14 | elpri 4587 | . . . . . 6 ⊢ ((-1↑𝑌) ∈ {-1, 1} → ((-1↑𝑌) = -1 ∨ (-1↑𝑌) = 1)) | |
15 | ax-1cn 10979 | . . . . . . . . . 10 ⊢ 1 ∈ ℂ | |
16 | ax-1ne0 10990 | . . . . . . . . . 10 ⊢ 1 ≠ 0 | |
17 | divneg2 11749 | . . . . . . . . . 10 ⊢ ((1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0) → -(1 / 1) = (1 / -1)) | |
18 | 15, 15, 16, 17 | mp3an 1461 | . . . . . . . . 9 ⊢ -(1 / 1) = (1 / -1) |
19 | 1div1e1 11715 | . . . . . . . . . 10 ⊢ (1 / 1) = 1 | |
20 | 19 | negeqi 11264 | . . . . . . . . 9 ⊢ -(1 / 1) = -1 |
21 | 18, 20 | eqtr3i 2766 | . . . . . . . 8 ⊢ (1 / -1) = -1 |
22 | oveq2 7315 | . . . . . . . 8 ⊢ ((-1↑𝑌) = -1 → (1 / (-1↑𝑌)) = (1 / -1)) | |
23 | id 22 | . . . . . . . 8 ⊢ ((-1↑𝑌) = -1 → (-1↑𝑌) = -1) | |
24 | 21, 22, 23 | 3eqtr4a 2802 | . . . . . . 7 ⊢ ((-1↑𝑌) = -1 → (1 / (-1↑𝑌)) = (-1↑𝑌)) |
25 | oveq2 7315 | . . . . . . . 8 ⊢ ((-1↑𝑌) = 1 → (1 / (-1↑𝑌)) = (1 / 1)) | |
26 | id 22 | . . . . . . . 8 ⊢ ((-1↑𝑌) = 1 → (-1↑𝑌) = 1) | |
27 | 19, 25, 26 | 3eqtr4a 2802 | . . . . . . 7 ⊢ ((-1↑𝑌) = 1 → (1 / (-1↑𝑌)) = (-1↑𝑌)) |
28 | 24, 27 | jaoi 855 | . . . . . 6 ⊢ (((-1↑𝑌) = -1 ∨ (-1↑𝑌) = 1) → (1 / (-1↑𝑌)) = (-1↑𝑌)) |
29 | 13, 14, 28 | 3syl 18 | . . . . 5 ⊢ (𝑌 ∈ ℤ → (1 / (-1↑𝑌)) = (-1↑𝑌)) |
30 | 29 | adantl 483 | . . . 4 ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (1 / (-1↑𝑌)) = (-1↑𝑌)) |
31 | 30 | oveq2d 7323 | . . 3 ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ((-1↑𝑋) · (1 / (-1↑𝑌))) = ((-1↑𝑋) · (-1↑𝑌))) |
32 | 12, 31 | eqtrd 2776 | . 2 ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ((-1↑𝑋) / (-1↑𝑌)) = ((-1↑𝑋) · (-1↑𝑌))) |
33 | expsub 13881 | . . 3 ⊢ (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (-1↑(𝑋 − 𝑌)) = ((-1↑𝑋) / (-1↑𝑌))) | |
34 | 7, 8, 33 | mpanl12 700 | . 2 ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑(𝑋 − 𝑌)) = ((-1↑𝑋) / (-1↑𝑌))) |
35 | expaddz 13877 | . . 3 ⊢ (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (-1↑(𝑋 + 𝑌)) = ((-1↑𝑋) · (-1↑𝑌))) | |
36 | 7, 8, 35 | mpanl12 700 | . 2 ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑(𝑋 + 𝑌)) = ((-1↑𝑋) · (-1↑𝑌))) |
37 | 32, 34, 36 | 3eqtr4d 2786 | 1 ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑(𝑋 − 𝑌)) = (-1↑(𝑋 + 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∨ wo 845 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 {cpr 4567 (class class class)co 7307 ℂcc 10919 0cc0 10921 1c1 10922 + caddc 10924 · cmul 10926 − cmin 11255 -cneg 11256 / cdiv 11682 ℤcz 12369 ↑cexp 13832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3304 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-div 11683 df-nn 12024 df-n0 12284 df-z 12370 df-uz 12633 df-seq 13772 df-exp 13833 |
This theorem is referenced by: psgnuni 19156 41prothprmlem2 45314 |
Copyright terms: Public domain | W3C validator |