MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m1expaddsub Structured version   Visualization version   GIF version

Theorem m1expaddsub 19412
Description: Addition and subtraction of parities are the same. (Contributed by Stefan O'Rear, 27-Aug-2015.)
Assertion
Ref Expression
m1expaddsub ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑(𝑋𝑌)) = (-1↑(𝑋 + 𝑌)))

Proof of Theorem m1expaddsub
StepHypRef Expression
1 m1expcl 14027 . . . . . 6 (𝑋 ∈ ℤ → (-1↑𝑋) ∈ ℤ)
21zcnd 12615 . . . . 5 (𝑋 ∈ ℤ → (-1↑𝑋) ∈ ℂ)
32adantr 480 . . . 4 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑𝑋) ∈ ℂ)
4 m1expcl 14027 . . . . . 6 (𝑌 ∈ ℤ → (-1↑𝑌) ∈ ℤ)
54zcnd 12615 . . . . 5 (𝑌 ∈ ℤ → (-1↑𝑌) ∈ ℂ)
65adantl 481 . . . 4 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑𝑌) ∈ ℂ)
7 neg1cn 12147 . . . . . 6 -1 ∈ ℂ
8 neg1ne0 12149 . . . . . 6 -1 ≠ 0
9 expne0i 14035 . . . . . 6 ((-1 ∈ ℂ ∧ -1 ≠ 0 ∧ 𝑌 ∈ ℤ) → (-1↑𝑌) ≠ 0)
107, 8, 9mp3an12 1453 . . . . 5 (𝑌 ∈ ℤ → (-1↑𝑌) ≠ 0)
1110adantl 481 . . . 4 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑𝑌) ≠ 0)
123, 6, 11divrecd 11937 . . 3 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ((-1↑𝑋) / (-1↑𝑌)) = ((-1↑𝑋) · (1 / (-1↑𝑌))))
13 m1expcl2 14026 . . . . . 6 (𝑌 ∈ ℤ → (-1↑𝑌) ∈ {-1, 1})
14 elpri 4609 . . . . . 6 ((-1↑𝑌) ∈ {-1, 1} → ((-1↑𝑌) = -1 ∨ (-1↑𝑌) = 1))
15 ax-1cn 11102 . . . . . . . . . 10 1 ∈ ℂ
16 ax-1ne0 11113 . . . . . . . . . 10 1 ≠ 0
17 divneg2 11882 . . . . . . . . . 10 ((1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0) → -(1 / 1) = (1 / -1))
1815, 15, 16, 17mp3an 1463 . . . . . . . . 9 -(1 / 1) = (1 / -1)
19 1div1e1 11849 . . . . . . . . . 10 (1 / 1) = 1
2019negeqi 11390 . . . . . . . . 9 -(1 / 1) = -1
2118, 20eqtr3i 2754 . . . . . . . 8 (1 / -1) = -1
22 oveq2 7377 . . . . . . . 8 ((-1↑𝑌) = -1 → (1 / (-1↑𝑌)) = (1 / -1))
23 id 22 . . . . . . . 8 ((-1↑𝑌) = -1 → (-1↑𝑌) = -1)
2421, 22, 233eqtr4a 2790 . . . . . . 7 ((-1↑𝑌) = -1 → (1 / (-1↑𝑌)) = (-1↑𝑌))
25 oveq2 7377 . . . . . . . 8 ((-1↑𝑌) = 1 → (1 / (-1↑𝑌)) = (1 / 1))
26 id 22 . . . . . . . 8 ((-1↑𝑌) = 1 → (-1↑𝑌) = 1)
2719, 25, 263eqtr4a 2790 . . . . . . 7 ((-1↑𝑌) = 1 → (1 / (-1↑𝑌)) = (-1↑𝑌))
2824, 27jaoi 857 . . . . . 6 (((-1↑𝑌) = -1 ∨ (-1↑𝑌) = 1) → (1 / (-1↑𝑌)) = (-1↑𝑌))
2913, 14, 283syl 18 . . . . 5 (𝑌 ∈ ℤ → (1 / (-1↑𝑌)) = (-1↑𝑌))
3029adantl 481 . . . 4 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (1 / (-1↑𝑌)) = (-1↑𝑌))
3130oveq2d 7385 . . 3 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ((-1↑𝑋) · (1 / (-1↑𝑌))) = ((-1↑𝑋) · (-1↑𝑌)))
3212, 31eqtrd 2764 . 2 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ((-1↑𝑋) / (-1↑𝑌)) = ((-1↑𝑋) · (-1↑𝑌)))
33 expsub 14051 . . 3 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (-1↑(𝑋𝑌)) = ((-1↑𝑋) / (-1↑𝑌)))
347, 8, 33mpanl12 702 . 2 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑(𝑋𝑌)) = ((-1↑𝑋) / (-1↑𝑌)))
35 expaddz 14047 . . 3 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (-1↑(𝑋 + 𝑌)) = ((-1↑𝑋) · (-1↑𝑌)))
367, 8, 35mpanl12 702 . 2 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑(𝑋 + 𝑌)) = ((-1↑𝑋) · (-1↑𝑌)))
3732, 34, 363eqtr4d 2774 1 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑(𝑋𝑌)) = (-1↑(𝑋 + 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  {cpr 4587  (class class class)co 7369  cc 11042  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  cmin 11381  -cneg 11382   / cdiv 11811  cz 12505  cexp 14002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-seq 13943  df-exp 14003
This theorem is referenced by:  psgnuni  19413  41prothprmlem2  47612
  Copyright terms: Public domain W3C validator