MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m1expaddsub Structured version   Visualization version   GIF version

Theorem m1expaddsub 18629
Description: Addition and subtraction of parities are the same. (Contributed by Stefan O'Rear, 27-Aug-2015.)
Assertion
Ref Expression
m1expaddsub ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑(𝑋𝑌)) = (-1↑(𝑋 + 𝑌)))

Proof of Theorem m1expaddsub
StepHypRef Expression
1 m1expcl 13455 . . . . . 6 (𝑋 ∈ ℤ → (-1↑𝑋) ∈ ℤ)
21zcnd 12091 . . . . 5 (𝑋 ∈ ℤ → (-1↑𝑋) ∈ ℂ)
32adantr 483 . . . 4 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑𝑋) ∈ ℂ)
4 m1expcl 13455 . . . . . 6 (𝑌 ∈ ℤ → (-1↑𝑌) ∈ ℤ)
54zcnd 12091 . . . . 5 (𝑌 ∈ ℤ → (-1↑𝑌) ∈ ℂ)
65adantl 484 . . . 4 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑𝑌) ∈ ℂ)
7 neg1cn 11754 . . . . . 6 -1 ∈ ℂ
8 neg1ne0 11756 . . . . . 6 -1 ≠ 0
9 expne0i 13464 . . . . . 6 ((-1 ∈ ℂ ∧ -1 ≠ 0 ∧ 𝑌 ∈ ℤ) → (-1↑𝑌) ≠ 0)
107, 8, 9mp3an12 1447 . . . . 5 (𝑌 ∈ ℤ → (-1↑𝑌) ≠ 0)
1110adantl 484 . . . 4 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑𝑌) ≠ 0)
123, 6, 11divrecd 11422 . . 3 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ((-1↑𝑋) / (-1↑𝑌)) = ((-1↑𝑋) · (1 / (-1↑𝑌))))
13 m1expcl2 13454 . . . . . 6 (𝑌 ∈ ℤ → (-1↑𝑌) ∈ {-1, 1})
14 elpri 4592 . . . . . 6 ((-1↑𝑌) ∈ {-1, 1} → ((-1↑𝑌) = -1 ∨ (-1↑𝑌) = 1))
15 ax-1cn 10598 . . . . . . . . . 10 1 ∈ ℂ
16 ax-1ne0 10609 . . . . . . . . . 10 1 ≠ 0
17 divneg2 11367 . . . . . . . . . 10 ((1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0) → -(1 / 1) = (1 / -1))
1815, 15, 16, 17mp3an 1457 . . . . . . . . 9 -(1 / 1) = (1 / -1)
19 1div1e1 11333 . . . . . . . . . 10 (1 / 1) = 1
2019negeqi 10882 . . . . . . . . 9 -(1 / 1) = -1
2118, 20eqtr3i 2849 . . . . . . . 8 (1 / -1) = -1
22 oveq2 7167 . . . . . . . 8 ((-1↑𝑌) = -1 → (1 / (-1↑𝑌)) = (1 / -1))
23 id 22 . . . . . . . 8 ((-1↑𝑌) = -1 → (-1↑𝑌) = -1)
2421, 22, 233eqtr4a 2885 . . . . . . 7 ((-1↑𝑌) = -1 → (1 / (-1↑𝑌)) = (-1↑𝑌))
25 oveq2 7167 . . . . . . . 8 ((-1↑𝑌) = 1 → (1 / (-1↑𝑌)) = (1 / 1))
26 id 22 . . . . . . . 8 ((-1↑𝑌) = 1 → (-1↑𝑌) = 1)
2719, 25, 263eqtr4a 2885 . . . . . . 7 ((-1↑𝑌) = 1 → (1 / (-1↑𝑌)) = (-1↑𝑌))
2824, 27jaoi 853 . . . . . 6 (((-1↑𝑌) = -1 ∨ (-1↑𝑌) = 1) → (1 / (-1↑𝑌)) = (-1↑𝑌))
2913, 14, 283syl 18 . . . . 5 (𝑌 ∈ ℤ → (1 / (-1↑𝑌)) = (-1↑𝑌))
3029adantl 484 . . . 4 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (1 / (-1↑𝑌)) = (-1↑𝑌))
3130oveq2d 7175 . . 3 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ((-1↑𝑋) · (1 / (-1↑𝑌))) = ((-1↑𝑋) · (-1↑𝑌)))
3212, 31eqtrd 2859 . 2 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ((-1↑𝑋) / (-1↑𝑌)) = ((-1↑𝑋) · (-1↑𝑌)))
33 expsub 13480 . . 3 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (-1↑(𝑋𝑌)) = ((-1↑𝑋) / (-1↑𝑌)))
347, 8, 33mpanl12 700 . 2 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑(𝑋𝑌)) = ((-1↑𝑋) / (-1↑𝑌)))
35 expaddz 13476 . . 3 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (-1↑(𝑋 + 𝑌)) = ((-1↑𝑋) · (-1↑𝑌)))
367, 8, 35mpanl12 700 . 2 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑(𝑋 + 𝑌)) = ((-1↑𝑋) · (-1↑𝑌)))
3732, 34, 363eqtr4d 2869 1 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑(𝑋𝑌)) = (-1↑(𝑋 + 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843   = wceq 1536  wcel 2113  wne 3019  {cpr 4572  (class class class)co 7159  cc 10538  0cc0 10540  1c1 10541   + caddc 10543   · cmul 10545  cmin 10873  -cneg 10874   / cdiv 11300  cz 11984  cexp 13432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-n0 11901  df-z 11985  df-uz 12247  df-seq 13373  df-exp 13433
This theorem is referenced by:  psgnuni  18630  41prothprmlem2  43790
  Copyright terms: Public domain W3C validator