MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m1expaddsub Structured version   Visualization version   GIF version

Theorem m1expaddsub 18618
Description: Addition and subtraction of parities are the same. (Contributed by Stefan O'Rear, 27-Aug-2015.)
Assertion
Ref Expression
m1expaddsub ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑(𝑋𝑌)) = (-1↑(𝑋 + 𝑌)))

Proof of Theorem m1expaddsub
StepHypRef Expression
1 m1expcl 13448 . . . . . 6 (𝑋 ∈ ℤ → (-1↑𝑋) ∈ ℤ)
21zcnd 12076 . . . . 5 (𝑋 ∈ ℤ → (-1↑𝑋) ∈ ℂ)
32adantr 484 . . . 4 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑𝑋) ∈ ℂ)
4 m1expcl 13448 . . . . . 6 (𝑌 ∈ ℤ → (-1↑𝑌) ∈ ℤ)
54zcnd 12076 . . . . 5 (𝑌 ∈ ℤ → (-1↑𝑌) ∈ ℂ)
65adantl 485 . . . 4 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑𝑌) ∈ ℂ)
7 neg1cn 11739 . . . . . 6 -1 ∈ ℂ
8 neg1ne0 11741 . . . . . 6 -1 ≠ 0
9 expne0i 13457 . . . . . 6 ((-1 ∈ ℂ ∧ -1 ≠ 0 ∧ 𝑌 ∈ ℤ) → (-1↑𝑌) ≠ 0)
107, 8, 9mp3an12 1448 . . . . 5 (𝑌 ∈ ℤ → (-1↑𝑌) ≠ 0)
1110adantl 485 . . . 4 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑𝑌) ≠ 0)
123, 6, 11divrecd 11408 . . 3 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ((-1↑𝑋) / (-1↑𝑌)) = ((-1↑𝑋) · (1 / (-1↑𝑌))))
13 m1expcl2 13447 . . . . . 6 (𝑌 ∈ ℤ → (-1↑𝑌) ∈ {-1, 1})
14 elpri 4547 . . . . . 6 ((-1↑𝑌) ∈ {-1, 1} → ((-1↑𝑌) = -1 ∨ (-1↑𝑌) = 1))
15 ax-1cn 10584 . . . . . . . . . 10 1 ∈ ℂ
16 ax-1ne0 10595 . . . . . . . . . 10 1 ≠ 0
17 divneg2 11353 . . . . . . . . . 10 ((1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0) → -(1 / 1) = (1 / -1))
1815, 15, 16, 17mp3an 1458 . . . . . . . . 9 -(1 / 1) = (1 / -1)
19 1div1e1 11319 . . . . . . . . . 10 (1 / 1) = 1
2019negeqi 10868 . . . . . . . . 9 -(1 / 1) = -1
2118, 20eqtr3i 2823 . . . . . . . 8 (1 / -1) = -1
22 oveq2 7143 . . . . . . . 8 ((-1↑𝑌) = -1 → (1 / (-1↑𝑌)) = (1 / -1))
23 id 22 . . . . . . . 8 ((-1↑𝑌) = -1 → (-1↑𝑌) = -1)
2421, 22, 233eqtr4a 2859 . . . . . . 7 ((-1↑𝑌) = -1 → (1 / (-1↑𝑌)) = (-1↑𝑌))
25 oveq2 7143 . . . . . . . 8 ((-1↑𝑌) = 1 → (1 / (-1↑𝑌)) = (1 / 1))
26 id 22 . . . . . . . 8 ((-1↑𝑌) = 1 → (-1↑𝑌) = 1)
2719, 25, 263eqtr4a 2859 . . . . . . 7 ((-1↑𝑌) = 1 → (1 / (-1↑𝑌)) = (-1↑𝑌))
2824, 27jaoi 854 . . . . . 6 (((-1↑𝑌) = -1 ∨ (-1↑𝑌) = 1) → (1 / (-1↑𝑌)) = (-1↑𝑌))
2913, 14, 283syl 18 . . . . 5 (𝑌 ∈ ℤ → (1 / (-1↑𝑌)) = (-1↑𝑌))
3029adantl 485 . . . 4 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (1 / (-1↑𝑌)) = (-1↑𝑌))
3130oveq2d 7151 . . 3 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ((-1↑𝑋) · (1 / (-1↑𝑌))) = ((-1↑𝑋) · (-1↑𝑌)))
3212, 31eqtrd 2833 . 2 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ((-1↑𝑋) / (-1↑𝑌)) = ((-1↑𝑋) · (-1↑𝑌)))
33 expsub 13473 . . 3 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (-1↑(𝑋𝑌)) = ((-1↑𝑋) / (-1↑𝑌)))
347, 8, 33mpanl12 701 . 2 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑(𝑋𝑌)) = ((-1↑𝑋) / (-1↑𝑌)))
35 expaddz 13469 . . 3 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (-1↑(𝑋 + 𝑌)) = ((-1↑𝑋) · (-1↑𝑌)))
367, 8, 35mpanl12 701 . 2 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑(𝑋 + 𝑌)) = ((-1↑𝑋) · (-1↑𝑌)))
3732, 34, 363eqtr4d 2843 1 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑(𝑋𝑌)) = (-1↑(𝑋 + 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 844   = wceq 1538  wcel 2111  wne 2987  {cpr 4527  (class class class)co 7135  cc 10524  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  cmin 10859  -cneg 10860   / cdiv 11286  cz 11969  cexp 13425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-seq 13365  df-exp 13426
This theorem is referenced by:  psgnuni  18619  41prothprmlem2  44136
  Copyright terms: Public domain W3C validator