MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m1expaddsub Structured version   Visualization version   GIF version

Theorem m1expaddsub 19155
Description: Addition and subtraction of parities are the same. (Contributed by Stefan O'Rear, 27-Aug-2015.)
Assertion
Ref Expression
m1expaddsub ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑(𝑋𝑌)) = (-1↑(𝑋 + 𝑌)))

Proof of Theorem m1expaddsub
StepHypRef Expression
1 m1expcl 13855 . . . . . 6 (𝑋 ∈ ℤ → (-1↑𝑋) ∈ ℤ)
21zcnd 12477 . . . . 5 (𝑋 ∈ ℤ → (-1↑𝑋) ∈ ℂ)
32adantr 482 . . . 4 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑𝑋) ∈ ℂ)
4 m1expcl 13855 . . . . . 6 (𝑌 ∈ ℤ → (-1↑𝑌) ∈ ℤ)
54zcnd 12477 . . . . 5 (𝑌 ∈ ℤ → (-1↑𝑌) ∈ ℂ)
65adantl 483 . . . 4 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑𝑌) ∈ ℂ)
7 neg1cn 12137 . . . . . 6 -1 ∈ ℂ
8 neg1ne0 12139 . . . . . 6 -1 ≠ 0
9 expne0i 13865 . . . . . 6 ((-1 ∈ ℂ ∧ -1 ≠ 0 ∧ 𝑌 ∈ ℤ) → (-1↑𝑌) ≠ 0)
107, 8, 9mp3an12 1451 . . . . 5 (𝑌 ∈ ℤ → (-1↑𝑌) ≠ 0)
1110adantl 483 . . . 4 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑𝑌) ≠ 0)
123, 6, 11divrecd 11804 . . 3 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ((-1↑𝑋) / (-1↑𝑌)) = ((-1↑𝑋) · (1 / (-1↑𝑌))))
13 m1expcl2 13854 . . . . . 6 (𝑌 ∈ ℤ → (-1↑𝑌) ∈ {-1, 1})
14 elpri 4587 . . . . . 6 ((-1↑𝑌) ∈ {-1, 1} → ((-1↑𝑌) = -1 ∨ (-1↑𝑌) = 1))
15 ax-1cn 10979 . . . . . . . . . 10 1 ∈ ℂ
16 ax-1ne0 10990 . . . . . . . . . 10 1 ≠ 0
17 divneg2 11749 . . . . . . . . . 10 ((1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0) → -(1 / 1) = (1 / -1))
1815, 15, 16, 17mp3an 1461 . . . . . . . . 9 -(1 / 1) = (1 / -1)
19 1div1e1 11715 . . . . . . . . . 10 (1 / 1) = 1
2019negeqi 11264 . . . . . . . . 9 -(1 / 1) = -1
2118, 20eqtr3i 2766 . . . . . . . 8 (1 / -1) = -1
22 oveq2 7315 . . . . . . . 8 ((-1↑𝑌) = -1 → (1 / (-1↑𝑌)) = (1 / -1))
23 id 22 . . . . . . . 8 ((-1↑𝑌) = -1 → (-1↑𝑌) = -1)
2421, 22, 233eqtr4a 2802 . . . . . . 7 ((-1↑𝑌) = -1 → (1 / (-1↑𝑌)) = (-1↑𝑌))
25 oveq2 7315 . . . . . . . 8 ((-1↑𝑌) = 1 → (1 / (-1↑𝑌)) = (1 / 1))
26 id 22 . . . . . . . 8 ((-1↑𝑌) = 1 → (-1↑𝑌) = 1)
2719, 25, 263eqtr4a 2802 . . . . . . 7 ((-1↑𝑌) = 1 → (1 / (-1↑𝑌)) = (-1↑𝑌))
2824, 27jaoi 855 . . . . . 6 (((-1↑𝑌) = -1 ∨ (-1↑𝑌) = 1) → (1 / (-1↑𝑌)) = (-1↑𝑌))
2913, 14, 283syl 18 . . . . 5 (𝑌 ∈ ℤ → (1 / (-1↑𝑌)) = (-1↑𝑌))
3029adantl 483 . . . 4 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (1 / (-1↑𝑌)) = (-1↑𝑌))
3130oveq2d 7323 . . 3 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ((-1↑𝑋) · (1 / (-1↑𝑌))) = ((-1↑𝑋) · (-1↑𝑌)))
3212, 31eqtrd 2776 . 2 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ((-1↑𝑋) / (-1↑𝑌)) = ((-1↑𝑋) · (-1↑𝑌)))
33 expsub 13881 . . 3 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (-1↑(𝑋𝑌)) = ((-1↑𝑋) / (-1↑𝑌)))
347, 8, 33mpanl12 700 . 2 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑(𝑋𝑌)) = ((-1↑𝑋) / (-1↑𝑌)))
35 expaddz 13877 . . 3 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (-1↑(𝑋 + 𝑌)) = ((-1↑𝑋) · (-1↑𝑌)))
367, 8, 35mpanl12 700 . 2 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑(𝑋 + 𝑌)) = ((-1↑𝑋) · (-1↑𝑌)))
3732, 34, 363eqtr4d 2786 1 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑(𝑋𝑌)) = (-1↑(𝑋 + 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wo 845   = wceq 1539  wcel 2104  wne 2941  {cpr 4567  (class class class)co 7307  cc 10919  0cc0 10921  1c1 10922   + caddc 10924   · cmul 10926  cmin 11255  -cneg 11256   / cdiv 11682  cz 12369  cexp 13832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10977  ax-resscn 10978  ax-1cn 10979  ax-icn 10980  ax-addcl 10981  ax-addrcl 10982  ax-mulcl 10983  ax-mulrcl 10984  ax-mulcom 10985  ax-addass 10986  ax-mulass 10987  ax-distr 10988  ax-i2m1 10989  ax-1ne0 10990  ax-1rid 10991  ax-rnegex 10992  ax-rrecex 10993  ax-cnre 10994  ax-pre-lttri 10995  ax-pre-lttrn 10996  ax-pre-ltadd 10997  ax-pre-mulgt0 10998
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3304  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-pnf 11061  df-mnf 11062  df-xr 11063  df-ltxr 11064  df-le 11065  df-sub 11257  df-neg 11258  df-div 11683  df-nn 12024  df-n0 12284  df-z 12370  df-uz 12633  df-seq 13772  df-exp 13833
This theorem is referenced by:  psgnuni  19156  41prothprmlem2  45314
  Copyright terms: Public domain W3C validator