Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > m1expaddsub | Structured version Visualization version GIF version |
Description: Addition and subtraction of parities are the same. (Contributed by Stefan O'Rear, 27-Aug-2015.) |
Ref | Expression |
---|---|
m1expaddsub | ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑(𝑋 − 𝑌)) = (-1↑(𝑋 + 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | m1expcl 13786 | . . . . . 6 ⊢ (𝑋 ∈ ℤ → (-1↑𝑋) ∈ ℤ) | |
2 | 1 | zcnd 12409 | . . . . 5 ⊢ (𝑋 ∈ ℤ → (-1↑𝑋) ∈ ℂ) |
3 | 2 | adantr 480 | . . . 4 ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑𝑋) ∈ ℂ) |
4 | m1expcl 13786 | . . . . . 6 ⊢ (𝑌 ∈ ℤ → (-1↑𝑌) ∈ ℤ) | |
5 | 4 | zcnd 12409 | . . . . 5 ⊢ (𝑌 ∈ ℤ → (-1↑𝑌) ∈ ℂ) |
6 | 5 | adantl 481 | . . . 4 ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑𝑌) ∈ ℂ) |
7 | neg1cn 12070 | . . . . . 6 ⊢ -1 ∈ ℂ | |
8 | neg1ne0 12072 | . . . . . 6 ⊢ -1 ≠ 0 | |
9 | expne0i 13796 | . . . . . 6 ⊢ ((-1 ∈ ℂ ∧ -1 ≠ 0 ∧ 𝑌 ∈ ℤ) → (-1↑𝑌) ≠ 0) | |
10 | 7, 8, 9 | mp3an12 1449 | . . . . 5 ⊢ (𝑌 ∈ ℤ → (-1↑𝑌) ≠ 0) |
11 | 10 | adantl 481 | . . . 4 ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑𝑌) ≠ 0) |
12 | 3, 6, 11 | divrecd 11737 | . . 3 ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ((-1↑𝑋) / (-1↑𝑌)) = ((-1↑𝑋) · (1 / (-1↑𝑌)))) |
13 | m1expcl2 13785 | . . . . . 6 ⊢ (𝑌 ∈ ℤ → (-1↑𝑌) ∈ {-1, 1}) | |
14 | elpri 4588 | . . . . . 6 ⊢ ((-1↑𝑌) ∈ {-1, 1} → ((-1↑𝑌) = -1 ∨ (-1↑𝑌) = 1)) | |
15 | ax-1cn 10913 | . . . . . . . . . 10 ⊢ 1 ∈ ℂ | |
16 | ax-1ne0 10924 | . . . . . . . . . 10 ⊢ 1 ≠ 0 | |
17 | divneg2 11682 | . . . . . . . . . 10 ⊢ ((1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0) → -(1 / 1) = (1 / -1)) | |
18 | 15, 15, 16, 17 | mp3an 1459 | . . . . . . . . 9 ⊢ -(1 / 1) = (1 / -1) |
19 | 1div1e1 11648 | . . . . . . . . . 10 ⊢ (1 / 1) = 1 | |
20 | 19 | negeqi 11197 | . . . . . . . . 9 ⊢ -(1 / 1) = -1 |
21 | 18, 20 | eqtr3i 2769 | . . . . . . . 8 ⊢ (1 / -1) = -1 |
22 | oveq2 7276 | . . . . . . . 8 ⊢ ((-1↑𝑌) = -1 → (1 / (-1↑𝑌)) = (1 / -1)) | |
23 | id 22 | . . . . . . . 8 ⊢ ((-1↑𝑌) = -1 → (-1↑𝑌) = -1) | |
24 | 21, 22, 23 | 3eqtr4a 2805 | . . . . . . 7 ⊢ ((-1↑𝑌) = -1 → (1 / (-1↑𝑌)) = (-1↑𝑌)) |
25 | oveq2 7276 | . . . . . . . 8 ⊢ ((-1↑𝑌) = 1 → (1 / (-1↑𝑌)) = (1 / 1)) | |
26 | id 22 | . . . . . . . 8 ⊢ ((-1↑𝑌) = 1 → (-1↑𝑌) = 1) | |
27 | 19, 25, 26 | 3eqtr4a 2805 | . . . . . . 7 ⊢ ((-1↑𝑌) = 1 → (1 / (-1↑𝑌)) = (-1↑𝑌)) |
28 | 24, 27 | jaoi 853 | . . . . . 6 ⊢ (((-1↑𝑌) = -1 ∨ (-1↑𝑌) = 1) → (1 / (-1↑𝑌)) = (-1↑𝑌)) |
29 | 13, 14, 28 | 3syl 18 | . . . . 5 ⊢ (𝑌 ∈ ℤ → (1 / (-1↑𝑌)) = (-1↑𝑌)) |
30 | 29 | adantl 481 | . . . 4 ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (1 / (-1↑𝑌)) = (-1↑𝑌)) |
31 | 30 | oveq2d 7284 | . . 3 ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ((-1↑𝑋) · (1 / (-1↑𝑌))) = ((-1↑𝑋) · (-1↑𝑌))) |
32 | 12, 31 | eqtrd 2779 | . 2 ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ((-1↑𝑋) / (-1↑𝑌)) = ((-1↑𝑋) · (-1↑𝑌))) |
33 | expsub 13812 | . . 3 ⊢ (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (-1↑(𝑋 − 𝑌)) = ((-1↑𝑋) / (-1↑𝑌))) | |
34 | 7, 8, 33 | mpanl12 698 | . 2 ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑(𝑋 − 𝑌)) = ((-1↑𝑋) / (-1↑𝑌))) |
35 | expaddz 13808 | . . 3 ⊢ (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (-1↑(𝑋 + 𝑌)) = ((-1↑𝑋) · (-1↑𝑌))) | |
36 | 7, 8, 35 | mpanl12 698 | . 2 ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑(𝑋 + 𝑌)) = ((-1↑𝑋) · (-1↑𝑌))) |
37 | 32, 34, 36 | 3eqtr4d 2789 | 1 ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑(𝑋 − 𝑌)) = (-1↑(𝑋 + 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 843 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 {cpr 4568 (class class class)co 7268 ℂcc 10853 0cc0 10855 1c1 10856 + caddc 10858 · cmul 10860 − cmin 11188 -cneg 11189 / cdiv 11615 ℤcz 12302 ↑cexp 13763 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-n0 12217 df-z 12303 df-uz 12565 df-seq 13703 df-exp 13764 |
This theorem is referenced by: psgnuni 19088 41prothprmlem2 45022 |
Copyright terms: Public domain | W3C validator |