MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  geo2sum2 Structured version   Visualization version   GIF version

Theorem geo2sum2 15893
Description: The value of the finite geometric series 1 + 2 + 4 + 8 +... + 2↑(𝑁 − 1). (Contributed by Mario Carneiro, 7-Sep-2016.)
Assertion
Ref Expression
geo2sum2 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (0..^𝑁)(2↑𝑘) = ((2↑𝑁) − 1))
Distinct variable group:   𝑘,𝑁

Proof of Theorem geo2sum2
StepHypRef Expression
1 nn0z 12622 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
2 fzoval 13683 . . . 4 (𝑁 ∈ ℤ → (0..^𝑁) = (0...(𝑁 − 1)))
31, 2syl 17 . . 3 (𝑁 ∈ ℕ0 → (0..^𝑁) = (0...(𝑁 − 1)))
43sumeq1d 15719 . 2 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (0..^𝑁)(2↑𝑘) = Σ𝑘 ∈ (0...(𝑁 − 1))(2↑𝑘))
5 2cn 12324 . . . 4 2 ∈ ℂ
65a1i 11 . . 3 (𝑁 ∈ ℕ0 → 2 ∈ ℂ)
7 1ne2 12457 . . . . 5 1 ≠ 2
87necomi 2985 . . . 4 2 ≠ 1
98a1i 11 . . 3 (𝑁 ∈ ℕ0 → 2 ≠ 1)
10 id 22 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
116, 9, 10geoser 15886 . 2 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (0...(𝑁 − 1))(2↑𝑘) = ((1 − (2↑𝑁)) / (1 − 2)))
126, 10expcld 14169 . . . . 5 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℂ)
13 ax-1cn 11196 . . . . . 6 1 ∈ ℂ
1413a1i 11 . . . . 5 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
1512, 14subcld 11603 . . . 4 (𝑁 ∈ ℕ0 → ((2↑𝑁) − 1) ∈ ℂ)
16 ax-1ne0 11207 . . . . 5 1 ≠ 0
1716a1i 11 . . . 4 (𝑁 ∈ ℕ0 → 1 ≠ 0)
1815, 14, 17div2negd 12041 . . 3 (𝑁 ∈ ℕ0 → (-((2↑𝑁) − 1) / -1) = (((2↑𝑁) − 1) / 1))
1912, 14negsubdi2d 11619 . . . 4 (𝑁 ∈ ℕ0 → -((2↑𝑁) − 1) = (1 − (2↑𝑁)))
20 2m1e1 12375 . . . . . . 7 (2 − 1) = 1
2120negeqi 11484 . . . . . 6 -(2 − 1) = -1
225, 13negsubdi2i 11578 . . . . . 6 -(2 − 1) = (1 − 2)
2321, 22eqtr3i 2759 . . . . 5 -1 = (1 − 2)
2423a1i 11 . . . 4 (𝑁 ∈ ℕ0 → -1 = (1 − 2))
2519, 24oveq12d 7432 . . 3 (𝑁 ∈ ℕ0 → (-((2↑𝑁) − 1) / -1) = ((1 − (2↑𝑁)) / (1 − 2)))
2615div1d 12018 . . 3 (𝑁 ∈ ℕ0 → (((2↑𝑁) − 1) / 1) = ((2↑𝑁) − 1))
2718, 25, 263eqtr3d 2777 . 2 (𝑁 ∈ ℕ0 → ((1 − (2↑𝑁)) / (1 − 2)) = ((2↑𝑁) − 1))
284, 11, 273eqtrd 2773 1 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (0..^𝑁)(2↑𝑘) = ((2↑𝑁) − 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  wne 2931  (class class class)co 7414  cc 11136  0cc0 11138  1c1 11139  cmin 11475  -cneg 11476   / cdiv 11903  2c2 12304  0cn0 12510  cz 12597  ...cfz 13530  ..^cfzo 13677  cexp 14085  Σcsu 15705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-inf2 9664  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-int 4929  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-se 5620  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-1st 7997  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-1o 8489  df-er 8728  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-sup 9465  df-oi 9533  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-div 11904  df-nn 12250  df-2 12312  df-3 12313  df-n0 12511  df-z 12598  df-uz 12862  df-rp 13018  df-fz 13531  df-fzo 13678  df-seq 14026  df-exp 14086  df-hash 14353  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-clim 15507  df-sum 15706
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator