MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  geo2sum2 Structured version   Visualization version   GIF version

Theorem geo2sum2 15840
Description: The value of the finite geometric series 1 + 2 + 4 + 8 +... + 2↑(𝑁 − 1). (Contributed by Mario Carneiro, 7-Sep-2016.)
Assertion
Ref Expression
geo2sum2 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (0..^𝑁)(2↑𝑘) = ((2↑𝑁) − 1))
Distinct variable group:   𝑘,𝑁

Proof of Theorem geo2sum2
StepHypRef Expression
1 nn0z 12554 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
2 fzoval 13621 . . . 4 (𝑁 ∈ ℤ → (0..^𝑁) = (0...(𝑁 − 1)))
31, 2syl 17 . . 3 (𝑁 ∈ ℕ0 → (0..^𝑁) = (0...(𝑁 − 1)))
43sumeq1d 15666 . 2 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (0..^𝑁)(2↑𝑘) = Σ𝑘 ∈ (0...(𝑁 − 1))(2↑𝑘))
5 2cn 12261 . . . 4 2 ∈ ℂ
65a1i 11 . . 3 (𝑁 ∈ ℕ0 → 2 ∈ ℂ)
7 1ne2 12389 . . . . 5 1 ≠ 2
87necomi 2979 . . . 4 2 ≠ 1
98a1i 11 . . 3 (𝑁 ∈ ℕ0 → 2 ≠ 1)
10 id 22 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
116, 9, 10geoser 15833 . 2 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (0...(𝑁 − 1))(2↑𝑘) = ((1 − (2↑𝑁)) / (1 − 2)))
126, 10expcld 14111 . . . . 5 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℂ)
13 ax-1cn 11126 . . . . . 6 1 ∈ ℂ
1413a1i 11 . . . . 5 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
1512, 14subcld 11533 . . . 4 (𝑁 ∈ ℕ0 → ((2↑𝑁) − 1) ∈ ℂ)
16 ax-1ne0 11137 . . . . 5 1 ≠ 0
1716a1i 11 . . . 4 (𝑁 ∈ ℕ0 → 1 ≠ 0)
1815, 14, 17div2negd 11973 . . 3 (𝑁 ∈ ℕ0 → (-((2↑𝑁) − 1) / -1) = (((2↑𝑁) − 1) / 1))
1912, 14negsubdi2d 11549 . . . 4 (𝑁 ∈ ℕ0 → -((2↑𝑁) − 1) = (1 − (2↑𝑁)))
20 2m1e1 12307 . . . . . . 7 (2 − 1) = 1
2120negeqi 11414 . . . . . 6 -(2 − 1) = -1
225, 13negsubdi2i 11508 . . . . . 6 -(2 − 1) = (1 − 2)
2321, 22eqtr3i 2754 . . . . 5 -1 = (1 − 2)
2423a1i 11 . . . 4 (𝑁 ∈ ℕ0 → -1 = (1 − 2))
2519, 24oveq12d 7405 . . 3 (𝑁 ∈ ℕ0 → (-((2↑𝑁) − 1) / -1) = ((1 − (2↑𝑁)) / (1 − 2)))
2615div1d 11950 . . 3 (𝑁 ∈ ℕ0 → (((2↑𝑁) − 1) / 1) = ((2↑𝑁) − 1))
2718, 25, 263eqtr3d 2772 . 2 (𝑁 ∈ ℕ0 → ((1 − (2↑𝑁)) / (1 − 2)) = ((2↑𝑁) − 1))
284, 11, 273eqtrd 2768 1 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (0..^𝑁)(2↑𝑘) = ((2↑𝑁) − 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2925  (class class class)co 7387  cc 11066  0cc0 11068  1c1 11069  cmin 11405  -cneg 11406   / cdiv 11835  2c2 12241  0cn0 12442  cz 12529  ...cfz 13468  ..^cfzo 13615  cexp 14026  Σcsu 15652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator