| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > geo2sum2 | Structured version Visualization version GIF version | ||
| Description: The value of the finite geometric series 1 + 2 + 4 + 8 +... + 2↑(𝑁 − 1). (Contributed by Mario Carneiro, 7-Sep-2016.) |
| Ref | Expression |
|---|---|
| geo2sum2 | ⊢ (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (0..^𝑁)(2↑𝑘) = ((2↑𝑁) − 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0z 12554 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
| 2 | fzoval 13621 | . . . 4 ⊢ (𝑁 ∈ ℤ → (0..^𝑁) = (0...(𝑁 − 1))) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (0..^𝑁) = (0...(𝑁 − 1))) |
| 4 | 3 | sumeq1d 15666 | . 2 ⊢ (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (0..^𝑁)(2↑𝑘) = Σ𝑘 ∈ (0...(𝑁 − 1))(2↑𝑘)) |
| 5 | 2cn 12261 | . . . 4 ⊢ 2 ∈ ℂ | |
| 6 | 5 | a1i 11 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 2 ∈ ℂ) |
| 7 | 1ne2 12389 | . . . . 5 ⊢ 1 ≠ 2 | |
| 8 | 7 | necomi 2979 | . . . 4 ⊢ 2 ≠ 1 |
| 9 | 8 | a1i 11 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 2 ≠ 1) |
| 10 | id 22 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℕ0) | |
| 11 | 6, 9, 10 | geoser 15833 | . 2 ⊢ (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (0...(𝑁 − 1))(2↑𝑘) = ((1 − (2↑𝑁)) / (1 − 2))) |
| 12 | 6, 10 | expcld 14111 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℂ) |
| 13 | ax-1cn 11126 | . . . . . 6 ⊢ 1 ∈ ℂ | |
| 14 | 13 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 1 ∈ ℂ) |
| 15 | 12, 14 | subcld 11533 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ((2↑𝑁) − 1) ∈ ℂ) |
| 16 | ax-1ne0 11137 | . . . . 5 ⊢ 1 ≠ 0 | |
| 17 | 16 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 1 ≠ 0) |
| 18 | 15, 14, 17 | div2negd 11973 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (-((2↑𝑁) − 1) / -1) = (((2↑𝑁) − 1) / 1)) |
| 19 | 12, 14 | negsubdi2d 11549 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → -((2↑𝑁) − 1) = (1 − (2↑𝑁))) |
| 20 | 2m1e1 12307 | . . . . . . 7 ⊢ (2 − 1) = 1 | |
| 21 | 20 | negeqi 11414 | . . . . . 6 ⊢ -(2 − 1) = -1 |
| 22 | 5, 13 | negsubdi2i 11508 | . . . . . 6 ⊢ -(2 − 1) = (1 − 2) |
| 23 | 21, 22 | eqtr3i 2754 | . . . . 5 ⊢ -1 = (1 − 2) |
| 24 | 23 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → -1 = (1 − 2)) |
| 25 | 19, 24 | oveq12d 7405 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (-((2↑𝑁) − 1) / -1) = ((1 − (2↑𝑁)) / (1 − 2))) |
| 26 | 15 | div1d 11950 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (((2↑𝑁) − 1) / 1) = ((2↑𝑁) − 1)) |
| 27 | 18, 25, 26 | 3eqtr3d 2772 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((1 − (2↑𝑁)) / (1 − 2)) = ((2↑𝑁) − 1)) |
| 28 | 4, 11, 27 | 3eqtrd 2768 | 1 ⊢ (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (0..^𝑁)(2↑𝑘) = ((2↑𝑁) − 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 (class class class)co 7387 ℂcc 11066 0cc0 11068 1c1 11069 − cmin 11405 -cneg 11406 / cdiv 11835 2c2 12241 ℕ0cn0 12442 ℤcz 12529 ...cfz 13468 ..^cfzo 13615 ↑cexp 14026 Σcsu 15652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-fz 13469 df-fzo 13616 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-sum 15653 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |