MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  geo2sum2 Structured version   Visualization version   GIF version

Theorem geo2sum2 15766
Description: The value of the finite geometric series 1 + 2 + 4 + 8 +... + 2↑(𝑁 − 1). (Contributed by Mario Carneiro, 7-Sep-2016.)
Assertion
Ref Expression
geo2sum2 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (0..^𝑁)(2↑𝑘) = ((2↑𝑁) − 1))
Distinct variable group:   𝑘,𝑁

Proof of Theorem geo2sum2
StepHypRef Expression
1 nn0z 12531 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
2 fzoval 13580 . . . 4 (𝑁 ∈ ℤ → (0..^𝑁) = (0...(𝑁 − 1)))
31, 2syl 17 . . 3 (𝑁 ∈ ℕ0 → (0..^𝑁) = (0...(𝑁 − 1)))
43sumeq1d 15593 . 2 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (0..^𝑁)(2↑𝑘) = Σ𝑘 ∈ (0...(𝑁 − 1))(2↑𝑘))
5 2cn 12235 . . . 4 2 ∈ ℂ
65a1i 11 . . 3 (𝑁 ∈ ℕ0 → 2 ∈ ℂ)
7 1ne2 12368 . . . . 5 1 ≠ 2
87necomi 2999 . . . 4 2 ≠ 1
98a1i 11 . . 3 (𝑁 ∈ ℕ0 → 2 ≠ 1)
10 id 22 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
116, 9, 10geoser 15759 . 2 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (0...(𝑁 − 1))(2↑𝑘) = ((1 − (2↑𝑁)) / (1 − 2)))
126, 10expcld 14058 . . . . 5 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℂ)
13 ax-1cn 11116 . . . . . 6 1 ∈ ℂ
1413a1i 11 . . . . 5 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
1512, 14subcld 11519 . . . 4 (𝑁 ∈ ℕ0 → ((2↑𝑁) − 1) ∈ ℂ)
16 ax-1ne0 11127 . . . . 5 1 ≠ 0
1716a1i 11 . . . 4 (𝑁 ∈ ℕ0 → 1 ≠ 0)
1815, 14, 17div2negd 11953 . . 3 (𝑁 ∈ ℕ0 → (-((2↑𝑁) − 1) / -1) = (((2↑𝑁) − 1) / 1))
1912, 14negsubdi2d 11535 . . . 4 (𝑁 ∈ ℕ0 → -((2↑𝑁) − 1) = (1 − (2↑𝑁)))
20 2m1e1 12286 . . . . . . 7 (2 − 1) = 1
2120negeqi 11401 . . . . . 6 -(2 − 1) = -1
225, 13negsubdi2i 11494 . . . . . 6 -(2 − 1) = (1 − 2)
2321, 22eqtr3i 2767 . . . . 5 -1 = (1 − 2)
2423a1i 11 . . . 4 (𝑁 ∈ ℕ0 → -1 = (1 − 2))
2519, 24oveq12d 7380 . . 3 (𝑁 ∈ ℕ0 → (-((2↑𝑁) − 1) / -1) = ((1 − (2↑𝑁)) / (1 − 2)))
2615div1d 11930 . . 3 (𝑁 ∈ ℕ0 → (((2↑𝑁) − 1) / 1) = ((2↑𝑁) − 1))
2718, 25, 263eqtr3d 2785 . 2 (𝑁 ∈ ℕ0 → ((1 − (2↑𝑁)) / (1 − 2)) = ((2↑𝑁) − 1))
284, 11, 273eqtrd 2781 1 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (0..^𝑁)(2↑𝑘) = ((2↑𝑁) − 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  wne 2944  (class class class)co 7362  cc 11056  0cc0 11058  1c1 11059  cmin 11392  -cneg 11393   / cdiv 11819  2c2 12215  0cn0 12420  cz 12506  ...cfz 13431  ..^cfzo 13574  cexp 13974  Σcsu 15577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9584  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135  ax-pre-sup 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-sup 9385  df-oi 9453  df-card 9882  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-div 11820  df-nn 12161  df-2 12223  df-3 12224  df-n0 12421  df-z 12507  df-uz 12771  df-rp 12923  df-fz 13432  df-fzo 13575  df-seq 13914  df-exp 13975  df-hash 14238  df-cj 14991  df-re 14992  df-im 14993  df-sqrt 15127  df-abs 15128  df-clim 15377  df-sum 15578
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator