![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > geo2sum2 | Structured version Visualization version GIF version |
Description: The value of the finite geometric series 1 + 2 + 4 + 8 +... + 2↑(𝑁 − 1). (Contributed by Mario Carneiro, 7-Sep-2016.) |
Ref | Expression |
---|---|
geo2sum2 | ⊢ (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (0..^𝑁)(2↑𝑘) = ((2↑𝑁) − 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0z 12579 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
2 | fzoval 13629 | . . . 4 ⊢ (𝑁 ∈ ℤ → (0..^𝑁) = (0...(𝑁 − 1))) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (0..^𝑁) = (0...(𝑁 − 1))) |
4 | 3 | sumeq1d 15643 | . 2 ⊢ (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (0..^𝑁)(2↑𝑘) = Σ𝑘 ∈ (0...(𝑁 − 1))(2↑𝑘)) |
5 | 2cn 12283 | . . . 4 ⊢ 2 ∈ ℂ | |
6 | 5 | a1i 11 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 2 ∈ ℂ) |
7 | 1ne2 12416 | . . . . 5 ⊢ 1 ≠ 2 | |
8 | 7 | necomi 2995 | . . . 4 ⊢ 2 ≠ 1 |
9 | 8 | a1i 11 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 2 ≠ 1) |
10 | id 22 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℕ0) | |
11 | 6, 9, 10 | geoser 15809 | . 2 ⊢ (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (0...(𝑁 − 1))(2↑𝑘) = ((1 − (2↑𝑁)) / (1 − 2))) |
12 | 6, 10 | expcld 14107 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℂ) |
13 | ax-1cn 11164 | . . . . . 6 ⊢ 1 ∈ ℂ | |
14 | 13 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 1 ∈ ℂ) |
15 | 12, 14 | subcld 11567 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ((2↑𝑁) − 1) ∈ ℂ) |
16 | ax-1ne0 11175 | . . . . 5 ⊢ 1 ≠ 0 | |
17 | 16 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 1 ≠ 0) |
18 | 15, 14, 17 | div2negd 12001 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (-((2↑𝑁) − 1) / -1) = (((2↑𝑁) − 1) / 1)) |
19 | 12, 14 | negsubdi2d 11583 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → -((2↑𝑁) − 1) = (1 − (2↑𝑁))) |
20 | 2m1e1 12334 | . . . . . . 7 ⊢ (2 − 1) = 1 | |
21 | 20 | negeqi 11449 | . . . . . 6 ⊢ -(2 − 1) = -1 |
22 | 5, 13 | negsubdi2i 11542 | . . . . . 6 ⊢ -(2 − 1) = (1 − 2) |
23 | 21, 22 | eqtr3i 2762 | . . . . 5 ⊢ -1 = (1 − 2) |
24 | 23 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → -1 = (1 − 2)) |
25 | 19, 24 | oveq12d 7423 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (-((2↑𝑁) − 1) / -1) = ((1 − (2↑𝑁)) / (1 − 2))) |
26 | 15 | div1d 11978 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (((2↑𝑁) − 1) / 1) = ((2↑𝑁) − 1)) |
27 | 18, 25, 26 | 3eqtr3d 2780 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((1 − (2↑𝑁)) / (1 − 2)) = ((2↑𝑁) − 1)) |
28 | 4, 11, 27 | 3eqtrd 2776 | 1 ⊢ (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (0..^𝑁)(2↑𝑘) = ((2↑𝑁) − 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 (class class class)co 7405 ℂcc 11104 0cc0 11106 1c1 11107 − cmin 11440 -cneg 11441 / cdiv 11867 2c2 12263 ℕ0cn0 12468 ℤcz 12554 ...cfz 13480 ..^cfzo 13623 ↑cexp 14023 Σcsu 15628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-z 12555 df-uz 12819 df-rp 12971 df-fz 13481 df-fzo 13624 df-seq 13963 df-exp 14024 df-hash 14287 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-clim 15428 df-sum 15629 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |