Proof of Theorem dcubic2
Step | Hyp | Ref
| Expression |
1 | | dcubic2.u |
. . . . 5
⊢ (𝜑 → 𝑈 ∈ ℂ) |
2 | | dcubic.t |
. . . . 5
⊢ (𝜑 → 𝑇 ∈ ℂ) |
3 | | dcubic.0 |
. . . . 5
⊢ (𝜑 → 𝑇 ≠ 0) |
4 | 1, 2, 3 | divcld 11751 |
. . . 4
⊢ (𝜑 → (𝑈 / 𝑇) ∈ ℂ) |
5 | 4 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ (𝑈↑3) = (𝐺 − 𝑁)) → (𝑈 / 𝑇) ∈ ℂ) |
6 | | 3nn0 12251 |
. . . . . . 7
⊢ 3 ∈
ℕ0 |
7 | 6 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 3 ∈
ℕ0) |
8 | 1, 2, 3, 7 | expdivd 13878 |
. . . . 5
⊢ (𝜑 → ((𝑈 / 𝑇)↑3) = ((𝑈↑3) / (𝑇↑3))) |
9 | 8 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑈↑3) = (𝐺 − 𝑁)) → ((𝑈 / 𝑇)↑3) = ((𝑈↑3) / (𝑇↑3))) |
10 | | oveq1 7282 |
. . . . 5
⊢ ((𝑈↑3) = (𝐺 − 𝑁) → ((𝑈↑3) / (𝑇↑3)) = ((𝐺 − 𝑁) / (𝑇↑3))) |
11 | | dcubic.3 |
. . . . . . 7
⊢ (𝜑 → (𝑇↑3) = (𝐺 − 𝑁)) |
12 | 11 | oveq1d 7290 |
. . . . . 6
⊢ (𝜑 → ((𝑇↑3) / (𝑇↑3)) = ((𝐺 − 𝑁) / (𝑇↑3))) |
13 | | expcl 13800 |
. . . . . . . 8
⊢ ((𝑇 ∈ ℂ ∧ 3 ∈
ℕ0) → (𝑇↑3) ∈ ℂ) |
14 | 2, 6, 13 | sylancl 586 |
. . . . . . 7
⊢ (𝜑 → (𝑇↑3) ∈ ℂ) |
15 | | 3z 12353 |
. . . . . . . . 9
⊢ 3 ∈
ℤ |
16 | 15 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 3 ∈
ℤ) |
17 | 2, 3, 16 | expne0d 13870 |
. . . . . . 7
⊢ (𝜑 → (𝑇↑3) ≠ 0) |
18 | 14, 17 | dividd 11749 |
. . . . . 6
⊢ (𝜑 → ((𝑇↑3) / (𝑇↑3)) = 1) |
19 | 12, 18 | eqtr3d 2780 |
. . . . 5
⊢ (𝜑 → ((𝐺 − 𝑁) / (𝑇↑3)) = 1) |
20 | 10, 19 | sylan9eqr 2800 |
. . . 4
⊢ ((𝜑 ∧ (𝑈↑3) = (𝐺 − 𝑁)) → ((𝑈↑3) / (𝑇↑3)) = 1) |
21 | 9, 20 | eqtrd 2778 |
. . 3
⊢ ((𝜑 ∧ (𝑈↑3) = (𝐺 − 𝑁)) → ((𝑈 / 𝑇)↑3) = 1) |
22 | | dcubic2.2 |
. . . . 5
⊢ (𝜑 → 𝑋 = (𝑈 − (𝑀 / 𝑈))) |
23 | 1, 2, 3 | divcan1d 11752 |
. . . . . 6
⊢ (𝜑 → ((𝑈 / 𝑇) · 𝑇) = 𝑈) |
24 | 23 | oveq2d 7291 |
. . . . . 6
⊢ (𝜑 → (𝑀 / ((𝑈 / 𝑇) · 𝑇)) = (𝑀 / 𝑈)) |
25 | 23, 24 | oveq12d 7293 |
. . . . 5
⊢ (𝜑 → (((𝑈 / 𝑇) · 𝑇) − (𝑀 / ((𝑈 / 𝑇) · 𝑇))) = (𝑈 − (𝑀 / 𝑈))) |
26 | 22, 25 | eqtr4d 2781 |
. . . 4
⊢ (𝜑 → 𝑋 = (((𝑈 / 𝑇) · 𝑇) − (𝑀 / ((𝑈 / 𝑇) · 𝑇)))) |
27 | 26 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ (𝑈↑3) = (𝐺 − 𝑁)) → 𝑋 = (((𝑈 / 𝑇) · 𝑇) − (𝑀 / ((𝑈 / 𝑇) · 𝑇)))) |
28 | | oveq1 7282 |
. . . . . 6
⊢ (𝑟 = (𝑈 / 𝑇) → (𝑟↑3) = ((𝑈 / 𝑇)↑3)) |
29 | 28 | eqeq1d 2740 |
. . . . 5
⊢ (𝑟 = (𝑈 / 𝑇) → ((𝑟↑3) = 1 ↔ ((𝑈 / 𝑇)↑3) = 1)) |
30 | | oveq1 7282 |
. . . . . . 7
⊢ (𝑟 = (𝑈 / 𝑇) → (𝑟 · 𝑇) = ((𝑈 / 𝑇) · 𝑇)) |
31 | 30 | oveq2d 7291 |
. . . . . . 7
⊢ (𝑟 = (𝑈 / 𝑇) → (𝑀 / (𝑟 · 𝑇)) = (𝑀 / ((𝑈 / 𝑇) · 𝑇))) |
32 | 30, 31 | oveq12d 7293 |
. . . . . 6
⊢ (𝑟 = (𝑈 / 𝑇) → ((𝑟 · 𝑇) − (𝑀 / (𝑟 · 𝑇))) = (((𝑈 / 𝑇) · 𝑇) − (𝑀 / ((𝑈 / 𝑇) · 𝑇)))) |
33 | 32 | eqeq2d 2749 |
. . . . 5
⊢ (𝑟 = (𝑈 / 𝑇) → (𝑋 = ((𝑟 · 𝑇) − (𝑀 / (𝑟 · 𝑇))) ↔ 𝑋 = (((𝑈 / 𝑇) · 𝑇) − (𝑀 / ((𝑈 / 𝑇) · 𝑇))))) |
34 | 29, 33 | anbi12d 631 |
. . . 4
⊢ (𝑟 = (𝑈 / 𝑇) → (((𝑟↑3) = 1 ∧ 𝑋 = ((𝑟 · 𝑇) − (𝑀 / (𝑟 · 𝑇)))) ↔ (((𝑈 / 𝑇)↑3) = 1 ∧ 𝑋 = (((𝑈 / 𝑇) · 𝑇) − (𝑀 / ((𝑈 / 𝑇) · 𝑇)))))) |
35 | 34 | rspcev 3561 |
. . 3
⊢ (((𝑈 / 𝑇) ∈ ℂ ∧ (((𝑈 / 𝑇)↑3) = 1 ∧ 𝑋 = (((𝑈 / 𝑇) · 𝑇) − (𝑀 / ((𝑈 / 𝑇) · 𝑇))))) → ∃𝑟 ∈ ℂ ((𝑟↑3) = 1 ∧ 𝑋 = ((𝑟 · 𝑇) − (𝑀 / (𝑟 · 𝑇))))) |
36 | 5, 21, 27, 35 | syl12anc 834 |
. 2
⊢ ((𝜑 ∧ (𝑈↑3) = (𝐺 − 𝑁)) → ∃𝑟 ∈ ℂ ((𝑟↑3) = 1 ∧ 𝑋 = ((𝑟 · 𝑇) − (𝑀 / (𝑟 · 𝑇))))) |
37 | | dcubic.m |
. . . . . . . 8
⊢ (𝜑 → 𝑀 = (𝑃 / 3)) |
38 | | dcubic.c |
. . . . . . . . 9
⊢ (𝜑 → 𝑃 ∈ ℂ) |
39 | | 3cn 12054 |
. . . . . . . . . 10
⊢ 3 ∈
ℂ |
40 | 39 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 3 ∈
ℂ) |
41 | | 3ne0 12079 |
. . . . . . . . . 10
⊢ 3 ≠
0 |
42 | 41 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 3 ≠ 0) |
43 | 38, 40, 42 | divcld 11751 |
. . . . . . . 8
⊢ (𝜑 → (𝑃 / 3) ∈ ℂ) |
44 | 37, 43 | eqeltrd 2839 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℂ) |
45 | | dcubic2.z |
. . . . . . 7
⊢ (𝜑 → 𝑈 ≠ 0) |
46 | 44, 1, 45 | divcld 11751 |
. . . . . 6
⊢ (𝜑 → (𝑀 / 𝑈) ∈ ℂ) |
47 | 46 | negcld 11319 |
. . . . 5
⊢ (𝜑 → -(𝑀 / 𝑈) ∈ ℂ) |
48 | 47, 2, 3 | divcld 11751 |
. . . 4
⊢ (𝜑 → (-(𝑀 / 𝑈) / 𝑇) ∈ ℂ) |
49 | 48 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ (𝑈↑3) = -(𝐺 + 𝑁)) → (-(𝑀 / 𝑈) / 𝑇) ∈ ℂ) |
50 | 47, 2, 3, 7 | expdivd 13878 |
. . . . . 6
⊢ (𝜑 → ((-(𝑀 / 𝑈) / 𝑇)↑3) = ((-(𝑀 / 𝑈)↑3) / (𝑇↑3))) |
51 | 44, 1, 45 | divnegd 11764 |
. . . . . . . . 9
⊢ (𝜑 → -(𝑀 / 𝑈) = (-𝑀 / 𝑈)) |
52 | 51 | oveq1d 7290 |
. . . . . . . 8
⊢ (𝜑 → (-(𝑀 / 𝑈)↑3) = ((-𝑀 / 𝑈)↑3)) |
53 | 44 | negcld 11319 |
. . . . . . . . 9
⊢ (𝜑 → -𝑀 ∈ ℂ) |
54 | 53, 1, 45, 7 | expdivd 13878 |
. . . . . . . 8
⊢ (𝜑 → ((-𝑀 / 𝑈)↑3) = ((-𝑀↑3) / (𝑈↑3))) |
55 | 11 | oveq2d 7291 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐺 + 𝑁) · (𝑇↑3)) = ((𝐺 + 𝑁) · (𝐺 − 𝑁))) |
56 | | dcubic.g |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐺 ∈ ℂ) |
57 | | dcubic.n |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑁 = (𝑄 / 2)) |
58 | | dcubic.d |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑄 ∈ ℂ) |
59 | 58 | halfcld 12218 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑄 / 2) ∈ ℂ) |
60 | 57, 59 | eqeltrd 2839 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑁 ∈ ℂ) |
61 | | subsq 13926 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝐺↑2) − (𝑁↑2)) = ((𝐺 + 𝑁) · (𝐺 − 𝑁))) |
62 | 56, 60, 61 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐺↑2) − (𝑁↑2)) = ((𝐺 + 𝑁) · (𝐺 − 𝑁))) |
63 | 55, 62 | eqtr4d 2781 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐺 + 𝑁) · (𝑇↑3)) = ((𝐺↑2) − (𝑁↑2))) |
64 | | dcubic.2 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐺↑2) = ((𝑁↑2) + (𝑀↑3))) |
65 | 64 | oveq1d 7290 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐺↑2) − (𝑁↑2)) = (((𝑁↑2) + (𝑀↑3)) − (𝑁↑2))) |
66 | 60 | sqcld 13862 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑁↑2) ∈ ℂ) |
67 | | expcl 13800 |
. . . . . . . . . . . . . . 15
⊢ ((𝑀 ∈ ℂ ∧ 3 ∈
ℕ0) → (𝑀↑3) ∈ ℂ) |
68 | 44, 6, 67 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑀↑3) ∈ ℂ) |
69 | 66, 68 | pncan2d 11334 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (((𝑁↑2) + (𝑀↑3)) − (𝑁↑2)) = (𝑀↑3)) |
70 | 63, 65, 69 | 3eqtrd 2782 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐺 + 𝑁) · (𝑇↑3)) = (𝑀↑3)) |
71 | 70 | negeqd 11215 |
. . . . . . . . . . 11
⊢ (𝜑 → -((𝐺 + 𝑁) · (𝑇↑3)) = -(𝑀↑3)) |
72 | 56, 60 | addcld 10994 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐺 + 𝑁) ∈ ℂ) |
73 | 72, 14 | mulneg1d 11428 |
. . . . . . . . . . 11
⊢ (𝜑 → (-(𝐺 + 𝑁) · (𝑇↑3)) = -((𝐺 + 𝑁) · (𝑇↑3))) |
74 | | 3nn 12052 |
. . . . . . . . . . . . 13
⊢ 3 ∈
ℕ |
75 | 74 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 3 ∈
ℕ) |
76 | | n2dvds3 16080 |
. . . . . . . . . . . . 13
⊢ ¬ 2
∥ 3 |
77 | 76 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → ¬ 2 ∥
3) |
78 | | oexpneg 16054 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℂ ∧ 3 ∈
ℕ ∧ ¬ 2 ∥ 3) → (-𝑀↑3) = -(𝑀↑3)) |
79 | 44, 75, 77, 78 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ (𝜑 → (-𝑀↑3) = -(𝑀↑3)) |
80 | 71, 73, 79 | 3eqtr4d 2788 |
. . . . . . . . . 10
⊢ (𝜑 → (-(𝐺 + 𝑁) · (𝑇↑3)) = (-𝑀↑3)) |
81 | 80 | oveq1d 7290 |
. . . . . . . . 9
⊢ (𝜑 → ((-(𝐺 + 𝑁) · (𝑇↑3)) / (𝑈↑3)) = ((-𝑀↑3) / (𝑈↑3))) |
82 | 72 | negcld 11319 |
. . . . . . . . . 10
⊢ (𝜑 → -(𝐺 + 𝑁) ∈ ℂ) |
83 | | expcl 13800 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ ℂ ∧ 3 ∈
ℕ0) → (𝑈↑3) ∈ ℂ) |
84 | 1, 6, 83 | sylancl 586 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑈↑3) ∈ ℂ) |
85 | 1, 45, 16 | expne0d 13870 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑈↑3) ≠ 0) |
86 | 82, 14, 84, 85 | div23d 11788 |
. . . . . . . . 9
⊢ (𝜑 → ((-(𝐺 + 𝑁) · (𝑇↑3)) / (𝑈↑3)) = ((-(𝐺 + 𝑁) / (𝑈↑3)) · (𝑇↑3))) |
87 | 81, 86 | eqtr3d 2780 |
. . . . . . . 8
⊢ (𝜑 → ((-𝑀↑3) / (𝑈↑3)) = ((-(𝐺 + 𝑁) / (𝑈↑3)) · (𝑇↑3))) |
88 | 52, 54, 87 | 3eqtrd 2782 |
. . . . . . 7
⊢ (𝜑 → (-(𝑀 / 𝑈)↑3) = ((-(𝐺 + 𝑁) / (𝑈↑3)) · (𝑇↑3))) |
89 | 88 | oveq1d 7290 |
. . . . . 6
⊢ (𝜑 → ((-(𝑀 / 𝑈)↑3) / (𝑇↑3)) = (((-(𝐺 + 𝑁) / (𝑈↑3)) · (𝑇↑3)) / (𝑇↑3))) |
90 | 82, 84, 85 | divcld 11751 |
. . . . . . 7
⊢ (𝜑 → (-(𝐺 + 𝑁) / (𝑈↑3)) ∈ ℂ) |
91 | 90, 14, 17 | divcan4d 11757 |
. . . . . 6
⊢ (𝜑 → (((-(𝐺 + 𝑁) / (𝑈↑3)) · (𝑇↑3)) / (𝑇↑3)) = (-(𝐺 + 𝑁) / (𝑈↑3))) |
92 | 50, 89, 91 | 3eqtrd 2782 |
. . . . 5
⊢ (𝜑 → ((-(𝑀 / 𝑈) / 𝑇)↑3) = (-(𝐺 + 𝑁) / (𝑈↑3))) |
93 | 92 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑈↑3) = -(𝐺 + 𝑁)) → ((-(𝑀 / 𝑈) / 𝑇)↑3) = (-(𝐺 + 𝑁) / (𝑈↑3))) |
94 | | oveq1 7282 |
. . . . . 6
⊢ ((𝑈↑3) = -(𝐺 + 𝑁) → ((𝑈↑3) / (𝑈↑3)) = (-(𝐺 + 𝑁) / (𝑈↑3))) |
95 | 94 | eqcomd 2744 |
. . . . 5
⊢ ((𝑈↑3) = -(𝐺 + 𝑁) → (-(𝐺 + 𝑁) / (𝑈↑3)) = ((𝑈↑3) / (𝑈↑3))) |
96 | 84, 85 | dividd 11749 |
. . . . 5
⊢ (𝜑 → ((𝑈↑3) / (𝑈↑3)) = 1) |
97 | 95, 96 | sylan9eqr 2800 |
. . . 4
⊢ ((𝜑 ∧ (𝑈↑3) = -(𝐺 + 𝑁)) → (-(𝐺 + 𝑁) / (𝑈↑3)) = 1) |
98 | 93, 97 | eqtrd 2778 |
. . 3
⊢ ((𝜑 ∧ (𝑈↑3) = -(𝐺 + 𝑁)) → ((-(𝑀 / 𝑈) / 𝑇)↑3) = 1) |
99 | 46, 1 | neg2subd 11349 |
. . . . . 6
⊢ (𝜑 → (-(𝑀 / 𝑈) − -𝑈) = (𝑈 − (𝑀 / 𝑈))) |
100 | 22, 99 | eqtr4d 2781 |
. . . . 5
⊢ (𝜑 → 𝑋 = (-(𝑀 / 𝑈) − -𝑈)) |
101 | 100 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑈↑3) = -(𝐺 + 𝑁)) → 𝑋 = (-(𝑀 / 𝑈) − -𝑈)) |
102 | 47, 2, 3 | divcan1d 11752 |
. . . . . 6
⊢ (𝜑 → ((-(𝑀 / 𝑈) / 𝑇) · 𝑇) = -(𝑀 / 𝑈)) |
103 | 102 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑈↑3) = -(𝐺 + 𝑁)) → ((-(𝑀 / 𝑈) / 𝑇) · 𝑇) = -(𝑀 / 𝑈)) |
104 | 44, 1, 45 | divneg2d 11765 |
. . . . . . . . 9
⊢ (𝜑 → -(𝑀 / 𝑈) = (𝑀 / -𝑈)) |
105 | 102, 104 | eqtrd 2778 |
. . . . . . . 8
⊢ (𝜑 → ((-(𝑀 / 𝑈) / 𝑇) · 𝑇) = (𝑀 / -𝑈)) |
106 | 105 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑈↑3) = -(𝐺 + 𝑁)) → ((-(𝑀 / 𝑈) / 𝑇) · 𝑇) = (𝑀 / -𝑈)) |
107 | 106 | oveq2d 7291 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑈↑3) = -(𝐺 + 𝑁)) → (𝑀 / ((-(𝑀 / 𝑈) / 𝑇) · 𝑇)) = (𝑀 / (𝑀 / -𝑈))) |
108 | 44 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑈↑3) = -(𝐺 + 𝑁)) → 𝑀 ∈ ℂ) |
109 | 1 | negcld 11319 |
. . . . . . . 8
⊢ (𝜑 → -𝑈 ∈ ℂ) |
110 | 109 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑈↑3) = -(𝐺 + 𝑁)) → -𝑈 ∈ ℂ) |
111 | 73, 71 | eqtrd 2778 |
. . . . . . . . . 10
⊢ (𝜑 → (-(𝐺 + 𝑁) · (𝑇↑3)) = -(𝑀↑3)) |
112 | 111 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑈↑3) = -(𝐺 + 𝑁)) → (-(𝐺 + 𝑁) · (𝑇↑3)) = -(𝑀↑3)) |
113 | 82 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑈↑3) = -(𝐺 + 𝑁)) → -(𝐺 + 𝑁) ∈ ℂ) |
114 | 14 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑈↑3) = -(𝐺 + 𝑁)) → (𝑇↑3) ∈ ℂ) |
115 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑈↑3) = -(𝐺 + 𝑁)) → (𝑈↑3) = -(𝐺 + 𝑁)) |
116 | 85 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑈↑3) = -(𝐺 + 𝑁)) → (𝑈↑3) ≠ 0) |
117 | 115, 116 | eqnetrrd 3012 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑈↑3) = -(𝐺 + 𝑁)) → -(𝐺 + 𝑁) ≠ 0) |
118 | 17 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑈↑3) = -(𝐺 + 𝑁)) → (𝑇↑3) ≠ 0) |
119 | 113, 114,
117, 118 | mulne0d 11627 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑈↑3) = -(𝐺 + 𝑁)) → (-(𝐺 + 𝑁) · (𝑇↑3)) ≠ 0) |
120 | 112, 119 | eqnetrrd 3012 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑈↑3) = -(𝐺 + 𝑁)) → -(𝑀↑3) ≠ 0) |
121 | | oveq1 7282 |
. . . . . . . . . . . 12
⊢ (𝑀 = 0 → (𝑀↑3) = (0↑3)) |
122 | | 0exp 13818 |
. . . . . . . . . . . . 13
⊢ (3 ∈
ℕ → (0↑3) = 0) |
123 | 74, 122 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
(0↑3) = 0 |
124 | 121, 123 | eqtrdi 2794 |
. . . . . . . . . . 11
⊢ (𝑀 = 0 → (𝑀↑3) = 0) |
125 | 124 | negeqd 11215 |
. . . . . . . . . 10
⊢ (𝑀 = 0 → -(𝑀↑3) = -0) |
126 | | neg0 11267 |
. . . . . . . . . 10
⊢ -0 =
0 |
127 | 125, 126 | eqtrdi 2794 |
. . . . . . . . 9
⊢ (𝑀 = 0 → -(𝑀↑3) = 0) |
128 | 127 | necon3i 2976 |
. . . . . . . 8
⊢ (-(𝑀↑3) ≠ 0 → 𝑀 ≠ 0) |
129 | 120, 128 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑈↑3) = -(𝐺 + 𝑁)) → 𝑀 ≠ 0) |
130 | 1, 45 | negne0d 11330 |
. . . . . . . 8
⊢ (𝜑 → -𝑈 ≠ 0) |
131 | 130 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑈↑3) = -(𝐺 + 𝑁)) → -𝑈 ≠ 0) |
132 | 108, 110,
129, 131 | ddcand 11771 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑈↑3) = -(𝐺 + 𝑁)) → (𝑀 / (𝑀 / -𝑈)) = -𝑈) |
133 | 107, 132 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ (𝑈↑3) = -(𝐺 + 𝑁)) → (𝑀 / ((-(𝑀 / 𝑈) / 𝑇) · 𝑇)) = -𝑈) |
134 | 103, 133 | oveq12d 7293 |
. . . 4
⊢ ((𝜑 ∧ (𝑈↑3) = -(𝐺 + 𝑁)) → (((-(𝑀 / 𝑈) / 𝑇) · 𝑇) − (𝑀 / ((-(𝑀 / 𝑈) / 𝑇) · 𝑇))) = (-(𝑀 / 𝑈) − -𝑈)) |
135 | 101, 134 | eqtr4d 2781 |
. . 3
⊢ ((𝜑 ∧ (𝑈↑3) = -(𝐺 + 𝑁)) → 𝑋 = (((-(𝑀 / 𝑈) / 𝑇) · 𝑇) − (𝑀 / ((-(𝑀 / 𝑈) / 𝑇) · 𝑇)))) |
136 | | oveq1 7282 |
. . . . . 6
⊢ (𝑟 = (-(𝑀 / 𝑈) / 𝑇) → (𝑟↑3) = ((-(𝑀 / 𝑈) / 𝑇)↑3)) |
137 | 136 | eqeq1d 2740 |
. . . . 5
⊢ (𝑟 = (-(𝑀 / 𝑈) / 𝑇) → ((𝑟↑3) = 1 ↔ ((-(𝑀 / 𝑈) / 𝑇)↑3) = 1)) |
138 | | oveq1 7282 |
. . . . . . 7
⊢ (𝑟 = (-(𝑀 / 𝑈) / 𝑇) → (𝑟 · 𝑇) = ((-(𝑀 / 𝑈) / 𝑇) · 𝑇)) |
139 | 138 | oveq2d 7291 |
. . . . . . 7
⊢ (𝑟 = (-(𝑀 / 𝑈) / 𝑇) → (𝑀 / (𝑟 · 𝑇)) = (𝑀 / ((-(𝑀 / 𝑈) / 𝑇) · 𝑇))) |
140 | 138, 139 | oveq12d 7293 |
. . . . . 6
⊢ (𝑟 = (-(𝑀 / 𝑈) / 𝑇) → ((𝑟 · 𝑇) − (𝑀 / (𝑟 · 𝑇))) = (((-(𝑀 / 𝑈) / 𝑇) · 𝑇) − (𝑀 / ((-(𝑀 / 𝑈) / 𝑇) · 𝑇)))) |
141 | 140 | eqeq2d 2749 |
. . . . 5
⊢ (𝑟 = (-(𝑀 / 𝑈) / 𝑇) → (𝑋 = ((𝑟 · 𝑇) − (𝑀 / (𝑟 · 𝑇))) ↔ 𝑋 = (((-(𝑀 / 𝑈) / 𝑇) · 𝑇) − (𝑀 / ((-(𝑀 / 𝑈) / 𝑇) · 𝑇))))) |
142 | 137, 141 | anbi12d 631 |
. . . 4
⊢ (𝑟 = (-(𝑀 / 𝑈) / 𝑇) → (((𝑟↑3) = 1 ∧ 𝑋 = ((𝑟 · 𝑇) − (𝑀 / (𝑟 · 𝑇)))) ↔ (((-(𝑀 / 𝑈) / 𝑇)↑3) = 1 ∧ 𝑋 = (((-(𝑀 / 𝑈) / 𝑇) · 𝑇) − (𝑀 / ((-(𝑀 / 𝑈) / 𝑇) · 𝑇)))))) |
143 | 142 | rspcev 3561 |
. . 3
⊢
(((-(𝑀 / 𝑈) / 𝑇) ∈ ℂ ∧ (((-(𝑀 / 𝑈) / 𝑇)↑3) = 1 ∧ 𝑋 = (((-(𝑀 / 𝑈) / 𝑇) · 𝑇) − (𝑀 / ((-(𝑀 / 𝑈) / 𝑇) · 𝑇))))) → ∃𝑟 ∈ ℂ ((𝑟↑3) = 1 ∧ 𝑋 = ((𝑟 · 𝑇) − (𝑀 / (𝑟 · 𝑇))))) |
144 | 49, 98, 135, 143 | syl12anc 834 |
. 2
⊢ ((𝜑 ∧ (𝑈↑3) = -(𝐺 + 𝑁)) → ∃𝑟 ∈ ℂ ((𝑟↑3) = 1 ∧ 𝑋 = ((𝑟 · 𝑇) − (𝑀 / (𝑟 · 𝑇))))) |
145 | 84 | sqcld 13862 |
. . . . . . 7
⊢ (𝜑 → ((𝑈↑3)↑2) ∈
ℂ) |
146 | 145 | mulid2d 10993 |
. . . . . 6
⊢ (𝜑 → (1 · ((𝑈↑3)↑2)) = ((𝑈↑3)↑2)) |
147 | 58, 84 | mulcld 10995 |
. . . . . . 7
⊢ (𝜑 → (𝑄 · (𝑈↑3)) ∈ ℂ) |
148 | 147, 68 | negsubd 11338 |
. . . . . 6
⊢ (𝜑 → ((𝑄 · (𝑈↑3)) + -(𝑀↑3)) = ((𝑄 · (𝑈↑3)) − (𝑀↑3))) |
149 | 146, 148 | oveq12d 7293 |
. . . . 5
⊢ (𝜑 → ((1 · ((𝑈↑3)↑2)) + ((𝑄 · (𝑈↑3)) + -(𝑀↑3))) = (((𝑈↑3)↑2) + ((𝑄 · (𝑈↑3)) − (𝑀↑3)))) |
150 | | dcubic2.x |
. . . . . 6
⊢ (𝜑 → ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) |
151 | | dcubic.x |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ ℂ) |
152 | 38, 58, 151, 2, 11, 56, 64, 37, 57, 3, 1, 45, 22 | dcubic1lem 25993 |
. . . . . 6
⊢ (𝜑 → (((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0 ↔ (((𝑈↑3)↑2) + ((𝑄 · (𝑈↑3)) − (𝑀↑3))) = 0)) |
153 | 150, 152 | mpbid 231 |
. . . . 5
⊢ (𝜑 → (((𝑈↑3)↑2) + ((𝑄 · (𝑈↑3)) − (𝑀↑3))) = 0) |
154 | 149, 153 | eqtrd 2778 |
. . . 4
⊢ (𝜑 → ((1 · ((𝑈↑3)↑2)) + ((𝑄 · (𝑈↑3)) + -(𝑀↑3))) = 0) |
155 | | 1cnd 10970 |
. . . . 5
⊢ (𝜑 → 1 ∈
ℂ) |
156 | | ax-1ne0 10940 |
. . . . . 6
⊢ 1 ≠
0 |
157 | 156 | a1i 11 |
. . . . 5
⊢ (𝜑 → 1 ≠ 0) |
158 | 68 | negcld 11319 |
. . . . 5
⊢ (𝜑 → -(𝑀↑3) ∈ ℂ) |
159 | | 2cn 12048 |
. . . . . 6
⊢ 2 ∈
ℂ |
160 | | mulcl 10955 |
. . . . . 6
⊢ ((2
∈ ℂ ∧ 𝐺
∈ ℂ) → (2 · 𝐺) ∈ ℂ) |
161 | 159, 56, 160 | sylancr 587 |
. . . . 5
⊢ (𝜑 → (2 · 𝐺) ∈
ℂ) |
162 | | sqmul 13839 |
. . . . . . 7
⊢ ((2
∈ ℂ ∧ 𝐺
∈ ℂ) → ((2 · 𝐺)↑2) = ((2↑2) · (𝐺↑2))) |
163 | 159, 56, 162 | sylancr 587 |
. . . . . 6
⊢ (𝜑 → ((2 · 𝐺)↑2) = ((2↑2) ·
(𝐺↑2))) |
164 | 64 | oveq2d 7291 |
. . . . . 6
⊢ (𝜑 → ((2↑2) ·
(𝐺↑2)) = ((2↑2)
· ((𝑁↑2) +
(𝑀↑3)))) |
165 | 159 | sqcli 13898 |
. . . . . . . . 9
⊢
(2↑2) ∈ ℂ |
166 | | mulcl 10955 |
. . . . . . . . 9
⊢
(((2↑2) ∈ ℂ ∧ (𝑁↑2) ∈ ℂ) → ((2↑2)
· (𝑁↑2)) ∈
ℂ) |
167 | 165, 66, 166 | sylancr 587 |
. . . . . . . 8
⊢ (𝜑 → ((2↑2) ·
(𝑁↑2)) ∈
ℂ) |
168 | | mulcl 10955 |
. . . . . . . . 9
⊢
(((2↑2) ∈ ℂ ∧ (𝑀↑3) ∈ ℂ) → ((2↑2)
· (𝑀↑3)) ∈
ℂ) |
169 | 165, 68, 168 | sylancr 587 |
. . . . . . . 8
⊢ (𝜑 → ((2↑2) ·
(𝑀↑3)) ∈
ℂ) |
170 | 167, 169 | subnegd 11339 |
. . . . . . 7
⊢ (𝜑 → (((2↑2) ·
(𝑁↑2)) −
-((2↑2) · (𝑀↑3))) = (((2↑2) · (𝑁↑2)) + ((2↑2) ·
(𝑀↑3)))) |
171 | 57 | oveq2d 7291 |
. . . . . . . . . . 11
⊢ (𝜑 → (2 · 𝑁) = (2 · (𝑄 / 2))) |
172 | 159 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 2 ∈
ℂ) |
173 | | 2ne0 12077 |
. . . . . . . . . . . . 13
⊢ 2 ≠
0 |
174 | 173 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 2 ≠ 0) |
175 | 58, 172, 174 | divcan2d 11753 |
. . . . . . . . . . 11
⊢ (𝜑 → (2 · (𝑄 / 2)) = 𝑄) |
176 | 171, 175 | eqtrd 2778 |
. . . . . . . . . 10
⊢ (𝜑 → (2 · 𝑁) = 𝑄) |
177 | 176 | oveq1d 7290 |
. . . . . . . . 9
⊢ (𝜑 → ((2 · 𝑁)↑2) = (𝑄↑2)) |
178 | | sqmul 13839 |
. . . . . . . . . 10
⊢ ((2
∈ ℂ ∧ 𝑁
∈ ℂ) → ((2 · 𝑁)↑2) = ((2↑2) · (𝑁↑2))) |
179 | 159, 60, 178 | sylancr 587 |
. . . . . . . . 9
⊢ (𝜑 → ((2 · 𝑁)↑2) = ((2↑2) ·
(𝑁↑2))) |
180 | 177, 179 | eqtr3d 2780 |
. . . . . . . 8
⊢ (𝜑 → (𝑄↑2) = ((2↑2) · (𝑁↑2))) |
181 | 158 | mulid2d 10993 |
. . . . . . . . . . 11
⊢ (𝜑 → (1 · -(𝑀↑3)) = -(𝑀↑3)) |
182 | 181 | oveq2d 7291 |
. . . . . . . . . 10
⊢ (𝜑 → (4 · (1 ·
-(𝑀↑3))) = (4 ·
-(𝑀↑3))) |
183 | | 4cn 12058 |
. . . . . . . . . . 11
⊢ 4 ∈
ℂ |
184 | | mulneg2 11412 |
. . . . . . . . . . 11
⊢ ((4
∈ ℂ ∧ (𝑀↑3) ∈ ℂ) → (4 ·
-(𝑀↑3)) = -(4 ·
(𝑀↑3))) |
185 | 183, 68, 184 | sylancr 587 |
. . . . . . . . . 10
⊢ (𝜑 → (4 · -(𝑀↑3)) = -(4 · (𝑀↑3))) |
186 | 182, 185 | eqtrd 2778 |
. . . . . . . . 9
⊢ (𝜑 → (4 · (1 ·
-(𝑀↑3))) = -(4
· (𝑀↑3))) |
187 | | sq2 13914 |
. . . . . . . . . . 11
⊢
(2↑2) = 4 |
188 | 187 | oveq1i 7285 |
. . . . . . . . . 10
⊢
((2↑2) · (𝑀↑3)) = (4 · (𝑀↑3)) |
189 | 188 | negeqi 11214 |
. . . . . . . . 9
⊢
-((2↑2) · (𝑀↑3)) = -(4 · (𝑀↑3)) |
190 | 186, 189 | eqtr4di 2796 |
. . . . . . . 8
⊢ (𝜑 → (4 · (1 ·
-(𝑀↑3))) =
-((2↑2) · (𝑀↑3))) |
191 | 180, 190 | oveq12d 7293 |
. . . . . . 7
⊢ (𝜑 → ((𝑄↑2) − (4 · (1 ·
-(𝑀↑3)))) =
(((2↑2) · (𝑁↑2)) − -((2↑2) ·
(𝑀↑3)))) |
192 | 165 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (2↑2) ∈
ℂ) |
193 | 192, 66, 68 | adddid 10999 |
. . . . . . 7
⊢ (𝜑 → ((2↑2) ·
((𝑁↑2) + (𝑀↑3))) = (((2↑2)
· (𝑁↑2)) +
((2↑2) · (𝑀↑3)))) |
194 | 170, 191,
193 | 3eqtr4rd 2789 |
. . . . . 6
⊢ (𝜑 → ((2↑2) ·
((𝑁↑2) + (𝑀↑3))) = ((𝑄↑2) − (4 · (1 ·
-(𝑀↑3))))) |
195 | 163, 164,
194 | 3eqtrd 2782 |
. . . . 5
⊢ (𝜑 → ((2 · 𝐺)↑2) = ((𝑄↑2) − (4 · (1 ·
-(𝑀↑3))))) |
196 | 155, 157,
58, 158, 84, 161, 195 | quad2 25989 |
. . . 4
⊢ (𝜑 → (((1 · ((𝑈↑3)↑2)) + ((𝑄 · (𝑈↑3)) + -(𝑀↑3))) = 0 ↔ ((𝑈↑3) = ((-𝑄 + (2 · 𝐺)) / (2 · 1)) ∨ (𝑈↑3) = ((-𝑄 − (2 · 𝐺)) / (2 · 1))))) |
197 | 154, 196 | mpbid 231 |
. . 3
⊢ (𝜑 → ((𝑈↑3) = ((-𝑄 + (2 · 𝐺)) / (2 · 1)) ∨ (𝑈↑3) = ((-𝑄 − (2 · 𝐺)) / (2 · 1)))) |
198 | | 2t1e2 12136 |
. . . . . . 7
⊢ (2
· 1) = 2 |
199 | 198 | oveq2i 7286 |
. . . . . 6
⊢ ((-𝑄 + (2 · 𝐺)) / (2 · 1)) = ((-𝑄 + (2 · 𝐺)) / 2) |
200 | 58 | negcld 11319 |
. . . . . . . 8
⊢ (𝜑 → -𝑄 ∈ ℂ) |
201 | 200, 161,
172, 174 | divdird 11789 |
. . . . . . 7
⊢ (𝜑 → ((-𝑄 + (2 · 𝐺)) / 2) = ((-𝑄 / 2) + ((2 · 𝐺) / 2))) |
202 | 57 | negeqd 11215 |
. . . . . . . . 9
⊢ (𝜑 → -𝑁 = -(𝑄 / 2)) |
203 | 58, 172, 174 | divnegd 11764 |
. . . . . . . . 9
⊢ (𝜑 → -(𝑄 / 2) = (-𝑄 / 2)) |
204 | 202, 203 | eqtr2d 2779 |
. . . . . . . 8
⊢ (𝜑 → (-𝑄 / 2) = -𝑁) |
205 | 56, 172, 174 | divcan3d 11756 |
. . . . . . . 8
⊢ (𝜑 → ((2 · 𝐺) / 2) = 𝐺) |
206 | 204, 205 | oveq12d 7293 |
. . . . . . 7
⊢ (𝜑 → ((-𝑄 / 2) + ((2 · 𝐺) / 2)) = (-𝑁 + 𝐺)) |
207 | 60 | negcld 11319 |
. . . . . . . . 9
⊢ (𝜑 → -𝑁 ∈ ℂ) |
208 | 207, 56 | addcomd 11177 |
. . . . . . . 8
⊢ (𝜑 → (-𝑁 + 𝐺) = (𝐺 + -𝑁)) |
209 | 56, 60 | negsubd 11338 |
. . . . . . . 8
⊢ (𝜑 → (𝐺 + -𝑁) = (𝐺 − 𝑁)) |
210 | 208, 209 | eqtrd 2778 |
. . . . . . 7
⊢ (𝜑 → (-𝑁 + 𝐺) = (𝐺 − 𝑁)) |
211 | 201, 206,
210 | 3eqtrd 2782 |
. . . . . 6
⊢ (𝜑 → ((-𝑄 + (2 · 𝐺)) / 2) = (𝐺 − 𝑁)) |
212 | 199, 211 | eqtrid 2790 |
. . . . 5
⊢ (𝜑 → ((-𝑄 + (2 · 𝐺)) / (2 · 1)) = (𝐺 − 𝑁)) |
213 | 212 | eqeq2d 2749 |
. . . 4
⊢ (𝜑 → ((𝑈↑3) = ((-𝑄 + (2 · 𝐺)) / (2 · 1)) ↔ (𝑈↑3) = (𝐺 − 𝑁))) |
214 | 198 | oveq2i 7286 |
. . . . . 6
⊢ ((-𝑄 − (2 · 𝐺)) / (2 · 1)) = ((-𝑄 − (2 · 𝐺)) / 2) |
215 | 204, 205 | oveq12d 7293 |
. . . . . . 7
⊢ (𝜑 → ((-𝑄 / 2) − ((2 · 𝐺) / 2)) = (-𝑁 − 𝐺)) |
216 | 200, 161,
172, 174 | divsubdird 11790 |
. . . . . . 7
⊢ (𝜑 → ((-𝑄 − (2 · 𝐺)) / 2) = ((-𝑄 / 2) − ((2 · 𝐺) / 2))) |
217 | 56, 60 | addcomd 11177 |
. . . . . . . . 9
⊢ (𝜑 → (𝐺 + 𝑁) = (𝑁 + 𝐺)) |
218 | 217 | negeqd 11215 |
. . . . . . . 8
⊢ (𝜑 → -(𝐺 + 𝑁) = -(𝑁 + 𝐺)) |
219 | 60, 56 | negdi2d 11346 |
. . . . . . . 8
⊢ (𝜑 → -(𝑁 + 𝐺) = (-𝑁 − 𝐺)) |
220 | 218, 219 | eqtrd 2778 |
. . . . . . 7
⊢ (𝜑 → -(𝐺 + 𝑁) = (-𝑁 − 𝐺)) |
221 | 215, 216,
220 | 3eqtr4d 2788 |
. . . . . 6
⊢ (𝜑 → ((-𝑄 − (2 · 𝐺)) / 2) = -(𝐺 + 𝑁)) |
222 | 214, 221 | eqtrid 2790 |
. . . . 5
⊢ (𝜑 → ((-𝑄 − (2 · 𝐺)) / (2 · 1)) = -(𝐺 + 𝑁)) |
223 | 222 | eqeq2d 2749 |
. . . 4
⊢ (𝜑 → ((𝑈↑3) = ((-𝑄 − (2 · 𝐺)) / (2 · 1)) ↔ (𝑈↑3) = -(𝐺 + 𝑁))) |
224 | 213, 223 | orbi12d 916 |
. . 3
⊢ (𝜑 → (((𝑈↑3) = ((-𝑄 + (2 · 𝐺)) / (2 · 1)) ∨ (𝑈↑3) = ((-𝑄 − (2 · 𝐺)) / (2 · 1))) ↔ ((𝑈↑3) = (𝐺 − 𝑁) ∨ (𝑈↑3) = -(𝐺 + 𝑁)))) |
225 | 197, 224 | mpbid 231 |
. 2
⊢ (𝜑 → ((𝑈↑3) = (𝐺 − 𝑁) ∨ (𝑈↑3) = -(𝐺 + 𝑁))) |
226 | 36, 144, 225 | mpjaodan 956 |
1
⊢ (𝜑 → ∃𝑟 ∈ ℂ ((𝑟↑3) = 1 ∧ 𝑋 = ((𝑟 · 𝑇) − (𝑀 / (𝑟 · 𝑇))))) |