| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reasinsin | Structured version Visualization version GIF version | ||
| Description: The arcsine function composed with sin is equal to the identity. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| Ref | Expression |
|---|---|
| reasinsin | ⊢ (𝐴 ∈ (-(π / 2)[,](π / 2)) → (arcsin‘(sin‘𝐴)) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neghalfpire 26374 | . . . . . 6 ⊢ -(π / 2) ∈ ℝ | |
| 2 | 1 | rexri 11232 | . . . . 5 ⊢ -(π / 2) ∈ ℝ* |
| 3 | halfpire 26373 | . . . . . 6 ⊢ (π / 2) ∈ ℝ | |
| 4 | 3 | rexri 11232 | . . . . 5 ⊢ (π / 2) ∈ ℝ* |
| 5 | pirp 26370 | . . . . . . . . . 10 ⊢ π ∈ ℝ+ | |
| 6 | rphalfcl 12980 | . . . . . . . . . 10 ⊢ (π ∈ ℝ+ → (π / 2) ∈ ℝ+) | |
| 7 | 5, 6 | ax-mp 5 | . . . . . . . . 9 ⊢ (π / 2) ∈ ℝ+ |
| 8 | rpgt0 12964 | . . . . . . . . 9 ⊢ ((π / 2) ∈ ℝ+ → 0 < (π / 2)) | |
| 9 | 7, 8 | ax-mp 5 | . . . . . . . 8 ⊢ 0 < (π / 2) |
| 10 | lt0neg2 11685 | . . . . . . . . 9 ⊢ ((π / 2) ∈ ℝ → (0 < (π / 2) ↔ -(π / 2) < 0)) | |
| 11 | 3, 10 | ax-mp 5 | . . . . . . . 8 ⊢ (0 < (π / 2) ↔ -(π / 2) < 0) |
| 12 | 9, 11 | mpbi 230 | . . . . . . 7 ⊢ -(π / 2) < 0 |
| 13 | 0re 11176 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
| 14 | 1, 13, 3 | lttri 11300 | . . . . . . 7 ⊢ ((-(π / 2) < 0 ∧ 0 < (π / 2)) → -(π / 2) < (π / 2)) |
| 15 | 12, 9, 14 | mp2an 692 | . . . . . 6 ⊢ -(π / 2) < (π / 2) |
| 16 | 1, 3, 15 | ltleii 11297 | . . . . 5 ⊢ -(π / 2) ≤ (π / 2) |
| 17 | prunioo 13442 | . . . . 5 ⊢ ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ* ∧ -(π / 2) ≤ (π / 2)) → ((-(π / 2)(,)(π / 2)) ∪ {-(π / 2), (π / 2)}) = (-(π / 2)[,](π / 2))) | |
| 18 | 2, 4, 16, 17 | mp3an 1463 | . . . 4 ⊢ ((-(π / 2)(,)(π / 2)) ∪ {-(π / 2), (π / 2)}) = (-(π / 2)[,](π / 2)) |
| 19 | 18 | eleq2i 2820 | . . 3 ⊢ (𝐴 ∈ ((-(π / 2)(,)(π / 2)) ∪ {-(π / 2), (π / 2)}) ↔ 𝐴 ∈ (-(π / 2)[,](π / 2))) |
| 20 | elun 4116 | . . 3 ⊢ (𝐴 ∈ ((-(π / 2)(,)(π / 2)) ∪ {-(π / 2), (π / 2)}) ↔ (𝐴 ∈ (-(π / 2)(,)(π / 2)) ∨ 𝐴 ∈ {-(π / 2), (π / 2)})) | |
| 21 | 19, 20 | bitr3i 277 | . 2 ⊢ (𝐴 ∈ (-(π / 2)[,](π / 2)) ↔ (𝐴 ∈ (-(π / 2)(,)(π / 2)) ∨ 𝐴 ∈ {-(π / 2), (π / 2)})) |
| 22 | elioore 13336 | . . . . 5 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 𝐴 ∈ ℝ) | |
| 23 | 22 | recnd 11202 | . . . 4 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 𝐴 ∈ ℂ) |
| 24 | 22 | rered 15190 | . . . . 5 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (ℜ‘𝐴) = 𝐴) |
| 25 | id 22 | . . . . 5 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 𝐴 ∈ (-(π / 2)(,)(π / 2))) | |
| 26 | 24, 25 | eqeltrd 2828 | . . . 4 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) |
| 27 | asinsin 26802 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (arcsin‘(sin‘𝐴)) = 𝐴) | |
| 28 | 23, 26, 27 | syl2anc 584 | . . 3 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (arcsin‘(sin‘𝐴)) = 𝐴) |
| 29 | elpri 4613 | . . . 4 ⊢ (𝐴 ∈ {-(π / 2), (π / 2)} → (𝐴 = -(π / 2) ∨ 𝐴 = (π / 2))) | |
| 30 | ax-1cn 11126 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
| 31 | asinneg 26796 | . . . . . . . 8 ⊢ (1 ∈ ℂ → (arcsin‘-1) = -(arcsin‘1)) | |
| 32 | 30, 31 | ax-mp 5 | . . . . . . 7 ⊢ (arcsin‘-1) = -(arcsin‘1) |
| 33 | asin1 26804 | . . . . . . . 8 ⊢ (arcsin‘1) = (π / 2) | |
| 34 | 33 | negeqi 11414 | . . . . . . 7 ⊢ -(arcsin‘1) = -(π / 2) |
| 35 | 32, 34 | eqtri 2752 | . . . . . 6 ⊢ (arcsin‘-1) = -(π / 2) |
| 36 | fveq2 6858 | . . . . . . . 8 ⊢ (𝐴 = -(π / 2) → (sin‘𝐴) = (sin‘-(π / 2))) | |
| 37 | 3 | recni 11188 | . . . . . . . . . 10 ⊢ (π / 2) ∈ ℂ |
| 38 | sinneg 16114 | . . . . . . . . . 10 ⊢ ((π / 2) ∈ ℂ → (sin‘-(π / 2)) = -(sin‘(π / 2))) | |
| 39 | 37, 38 | ax-mp 5 | . . . . . . . . 9 ⊢ (sin‘-(π / 2)) = -(sin‘(π / 2)) |
| 40 | sinhalfpi 26377 | . . . . . . . . . 10 ⊢ (sin‘(π / 2)) = 1 | |
| 41 | 40 | negeqi 11414 | . . . . . . . . 9 ⊢ -(sin‘(π / 2)) = -1 |
| 42 | 39, 41 | eqtri 2752 | . . . . . . . 8 ⊢ (sin‘-(π / 2)) = -1 |
| 43 | 36, 42 | eqtrdi 2780 | . . . . . . 7 ⊢ (𝐴 = -(π / 2) → (sin‘𝐴) = -1) |
| 44 | 43 | fveq2d 6862 | . . . . . 6 ⊢ (𝐴 = -(π / 2) → (arcsin‘(sin‘𝐴)) = (arcsin‘-1)) |
| 45 | id 22 | . . . . . 6 ⊢ (𝐴 = -(π / 2) → 𝐴 = -(π / 2)) | |
| 46 | 35, 44, 45 | 3eqtr4a 2790 | . . . . 5 ⊢ (𝐴 = -(π / 2) → (arcsin‘(sin‘𝐴)) = 𝐴) |
| 47 | fveq2 6858 | . . . . . . . 8 ⊢ (𝐴 = (π / 2) → (sin‘𝐴) = (sin‘(π / 2))) | |
| 48 | 47, 40 | eqtrdi 2780 | . . . . . . 7 ⊢ (𝐴 = (π / 2) → (sin‘𝐴) = 1) |
| 49 | 48 | fveq2d 6862 | . . . . . 6 ⊢ (𝐴 = (π / 2) → (arcsin‘(sin‘𝐴)) = (arcsin‘1)) |
| 50 | id 22 | . . . . . 6 ⊢ (𝐴 = (π / 2) → 𝐴 = (π / 2)) | |
| 51 | 33, 49, 50 | 3eqtr4a 2790 | . . . . 5 ⊢ (𝐴 = (π / 2) → (arcsin‘(sin‘𝐴)) = 𝐴) |
| 52 | 46, 51 | jaoi 857 | . . . 4 ⊢ ((𝐴 = -(π / 2) ∨ 𝐴 = (π / 2)) → (arcsin‘(sin‘𝐴)) = 𝐴) |
| 53 | 29, 52 | syl 17 | . . 3 ⊢ (𝐴 ∈ {-(π / 2), (π / 2)} → (arcsin‘(sin‘𝐴)) = 𝐴) |
| 54 | 28, 53 | jaoi 857 | . 2 ⊢ ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∨ 𝐴 ∈ {-(π / 2), (π / 2)}) → (arcsin‘(sin‘𝐴)) = 𝐴) |
| 55 | 21, 54 | sylbi 217 | 1 ⊢ (𝐴 ∈ (-(π / 2)[,](π / 2)) → (arcsin‘(sin‘𝐴)) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∪ cun 3912 {cpr 4591 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 ℝcr 11067 0cc0 11068 1c1 11069 ℝ*cxr 11207 < clt 11208 ≤ cle 11209 -cneg 11406 / cdiv 11835 2c2 12241 ℝ+crp 12951 (,)cioo 13306 [,]cicc 13309 ℜcre 15063 sincsin 16029 πcpi 16032 arcsincasin 26772 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-fi 9362 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ioo 13310 df-ioc 13311 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-fl 13754 df-mod 13832 df-seq 13967 df-exp 14027 df-fac 14239 df-bc 14268 df-hash 14296 df-shft 15033 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-limsup 15437 df-clim 15454 df-rlim 15455 df-sum 15653 df-ef 16033 df-sin 16035 df-cos 16036 df-pi 16038 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-rest 17385 df-topn 17386 df-0g 17404 df-gsum 17405 df-topgen 17406 df-pt 17407 df-prds 17410 df-xrs 17465 df-qtop 17470 df-imas 17471 df-xps 17473 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-mulg 19000 df-cntz 19249 df-cmn 19712 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-fbas 21261 df-fg 21262 df-cnfld 21265 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-cld 22906 df-ntr 22907 df-cls 22908 df-nei 22985 df-lp 23023 df-perf 23024 df-cn 23114 df-cnp 23115 df-haus 23202 df-tx 23449 df-hmeo 23642 df-fil 23733 df-fm 23825 df-flim 23826 df-flf 23827 df-xms 24208 df-ms 24209 df-tms 24210 df-cncf 24771 df-limc 25767 df-dv 25768 df-log 26465 df-asin 26775 |
| This theorem is referenced by: asinrebnd 26811 asin1half 42345 |
| Copyright terms: Public domain | W3C validator |