| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reasinsin | Structured version Visualization version GIF version | ||
| Description: The arcsine function composed with sin is equal to the identity. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| Ref | Expression |
|---|---|
| reasinsin | ⊢ (𝐴 ∈ (-(π / 2)[,](π / 2)) → (arcsin‘(sin‘𝐴)) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neghalfpire 26431 | . . . . . 6 ⊢ -(π / 2) ∈ ℝ | |
| 2 | 1 | rexri 11298 | . . . . 5 ⊢ -(π / 2) ∈ ℝ* |
| 3 | halfpire 26430 | . . . . . 6 ⊢ (π / 2) ∈ ℝ | |
| 4 | 3 | rexri 11298 | . . . . 5 ⊢ (π / 2) ∈ ℝ* |
| 5 | pirp 26427 | . . . . . . . . . 10 ⊢ π ∈ ℝ+ | |
| 6 | rphalfcl 13041 | . . . . . . . . . 10 ⊢ (π ∈ ℝ+ → (π / 2) ∈ ℝ+) | |
| 7 | 5, 6 | ax-mp 5 | . . . . . . . . 9 ⊢ (π / 2) ∈ ℝ+ |
| 8 | rpgt0 13026 | . . . . . . . . 9 ⊢ ((π / 2) ∈ ℝ+ → 0 < (π / 2)) | |
| 9 | 7, 8 | ax-mp 5 | . . . . . . . 8 ⊢ 0 < (π / 2) |
| 10 | lt0neg2 11749 | . . . . . . . . 9 ⊢ ((π / 2) ∈ ℝ → (0 < (π / 2) ↔ -(π / 2) < 0)) | |
| 11 | 3, 10 | ax-mp 5 | . . . . . . . 8 ⊢ (0 < (π / 2) ↔ -(π / 2) < 0) |
| 12 | 9, 11 | mpbi 230 | . . . . . . 7 ⊢ -(π / 2) < 0 |
| 13 | 0re 11242 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
| 14 | 1, 13, 3 | lttri 11366 | . . . . . . 7 ⊢ ((-(π / 2) < 0 ∧ 0 < (π / 2)) → -(π / 2) < (π / 2)) |
| 15 | 12, 9, 14 | mp2an 692 | . . . . . 6 ⊢ -(π / 2) < (π / 2) |
| 16 | 1, 3, 15 | ltleii 11363 | . . . . 5 ⊢ -(π / 2) ≤ (π / 2) |
| 17 | prunioo 13503 | . . . . 5 ⊢ ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ* ∧ -(π / 2) ≤ (π / 2)) → ((-(π / 2)(,)(π / 2)) ∪ {-(π / 2), (π / 2)}) = (-(π / 2)[,](π / 2))) | |
| 18 | 2, 4, 16, 17 | mp3an 1463 | . . . 4 ⊢ ((-(π / 2)(,)(π / 2)) ∪ {-(π / 2), (π / 2)}) = (-(π / 2)[,](π / 2)) |
| 19 | 18 | eleq2i 2827 | . . 3 ⊢ (𝐴 ∈ ((-(π / 2)(,)(π / 2)) ∪ {-(π / 2), (π / 2)}) ↔ 𝐴 ∈ (-(π / 2)[,](π / 2))) |
| 20 | elun 4133 | . . 3 ⊢ (𝐴 ∈ ((-(π / 2)(,)(π / 2)) ∪ {-(π / 2), (π / 2)}) ↔ (𝐴 ∈ (-(π / 2)(,)(π / 2)) ∨ 𝐴 ∈ {-(π / 2), (π / 2)})) | |
| 21 | 19, 20 | bitr3i 277 | . 2 ⊢ (𝐴 ∈ (-(π / 2)[,](π / 2)) ↔ (𝐴 ∈ (-(π / 2)(,)(π / 2)) ∨ 𝐴 ∈ {-(π / 2), (π / 2)})) |
| 22 | elioore 13397 | . . . . 5 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 𝐴 ∈ ℝ) | |
| 23 | 22 | recnd 11268 | . . . 4 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 𝐴 ∈ ℂ) |
| 24 | 22 | rered 15248 | . . . . 5 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (ℜ‘𝐴) = 𝐴) |
| 25 | id 22 | . . . . 5 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 𝐴 ∈ (-(π / 2)(,)(π / 2))) | |
| 26 | 24, 25 | eqeltrd 2835 | . . . 4 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) |
| 27 | asinsin 26859 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (arcsin‘(sin‘𝐴)) = 𝐴) | |
| 28 | 23, 26, 27 | syl2anc 584 | . . 3 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (arcsin‘(sin‘𝐴)) = 𝐴) |
| 29 | elpri 4630 | . . . 4 ⊢ (𝐴 ∈ {-(π / 2), (π / 2)} → (𝐴 = -(π / 2) ∨ 𝐴 = (π / 2))) | |
| 30 | ax-1cn 11192 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
| 31 | asinneg 26853 | . . . . . . . 8 ⊢ (1 ∈ ℂ → (arcsin‘-1) = -(arcsin‘1)) | |
| 32 | 30, 31 | ax-mp 5 | . . . . . . 7 ⊢ (arcsin‘-1) = -(arcsin‘1) |
| 33 | asin1 26861 | . . . . . . . 8 ⊢ (arcsin‘1) = (π / 2) | |
| 34 | 33 | negeqi 11480 | . . . . . . 7 ⊢ -(arcsin‘1) = -(π / 2) |
| 35 | 32, 34 | eqtri 2759 | . . . . . 6 ⊢ (arcsin‘-1) = -(π / 2) |
| 36 | fveq2 6881 | . . . . . . . 8 ⊢ (𝐴 = -(π / 2) → (sin‘𝐴) = (sin‘-(π / 2))) | |
| 37 | 3 | recni 11254 | . . . . . . . . . 10 ⊢ (π / 2) ∈ ℂ |
| 38 | sinneg 16169 | . . . . . . . . . 10 ⊢ ((π / 2) ∈ ℂ → (sin‘-(π / 2)) = -(sin‘(π / 2))) | |
| 39 | 37, 38 | ax-mp 5 | . . . . . . . . 9 ⊢ (sin‘-(π / 2)) = -(sin‘(π / 2)) |
| 40 | sinhalfpi 26434 | . . . . . . . . . 10 ⊢ (sin‘(π / 2)) = 1 | |
| 41 | 40 | negeqi 11480 | . . . . . . . . 9 ⊢ -(sin‘(π / 2)) = -1 |
| 42 | 39, 41 | eqtri 2759 | . . . . . . . 8 ⊢ (sin‘-(π / 2)) = -1 |
| 43 | 36, 42 | eqtrdi 2787 | . . . . . . 7 ⊢ (𝐴 = -(π / 2) → (sin‘𝐴) = -1) |
| 44 | 43 | fveq2d 6885 | . . . . . 6 ⊢ (𝐴 = -(π / 2) → (arcsin‘(sin‘𝐴)) = (arcsin‘-1)) |
| 45 | id 22 | . . . . . 6 ⊢ (𝐴 = -(π / 2) → 𝐴 = -(π / 2)) | |
| 46 | 35, 44, 45 | 3eqtr4a 2797 | . . . . 5 ⊢ (𝐴 = -(π / 2) → (arcsin‘(sin‘𝐴)) = 𝐴) |
| 47 | fveq2 6881 | . . . . . . . 8 ⊢ (𝐴 = (π / 2) → (sin‘𝐴) = (sin‘(π / 2))) | |
| 48 | 47, 40 | eqtrdi 2787 | . . . . . . 7 ⊢ (𝐴 = (π / 2) → (sin‘𝐴) = 1) |
| 49 | 48 | fveq2d 6885 | . . . . . 6 ⊢ (𝐴 = (π / 2) → (arcsin‘(sin‘𝐴)) = (arcsin‘1)) |
| 50 | id 22 | . . . . . 6 ⊢ (𝐴 = (π / 2) → 𝐴 = (π / 2)) | |
| 51 | 33, 49, 50 | 3eqtr4a 2797 | . . . . 5 ⊢ (𝐴 = (π / 2) → (arcsin‘(sin‘𝐴)) = 𝐴) |
| 52 | 46, 51 | jaoi 857 | . . . 4 ⊢ ((𝐴 = -(π / 2) ∨ 𝐴 = (π / 2)) → (arcsin‘(sin‘𝐴)) = 𝐴) |
| 53 | 29, 52 | syl 17 | . . 3 ⊢ (𝐴 ∈ {-(π / 2), (π / 2)} → (arcsin‘(sin‘𝐴)) = 𝐴) |
| 54 | 28, 53 | jaoi 857 | . 2 ⊢ ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∨ 𝐴 ∈ {-(π / 2), (π / 2)}) → (arcsin‘(sin‘𝐴)) = 𝐴) |
| 55 | 21, 54 | sylbi 217 | 1 ⊢ (𝐴 ∈ (-(π / 2)[,](π / 2)) → (arcsin‘(sin‘𝐴)) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∪ cun 3929 {cpr 4608 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 ℂcc 11132 ℝcr 11133 0cc0 11134 1c1 11135 ℝ*cxr 11273 < clt 11274 ≤ cle 11275 -cneg 11472 / cdiv 11899 2c2 12300 ℝ+crp 13013 (,)cioo 13367 [,]cicc 13370 ℜcre 15121 sincsin 16084 πcpi 16087 arcsincasin 26829 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 ax-addf 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-fi 9428 df-sup 9459 df-inf 9460 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-q 12970 df-rp 13014 df-xneg 13133 df-xadd 13134 df-xmul 13135 df-ioo 13371 df-ioc 13372 df-ico 13373 df-icc 13374 df-fz 13530 df-fzo 13677 df-fl 13814 df-mod 13892 df-seq 14025 df-exp 14085 df-fac 14297 df-bc 14326 df-hash 14354 df-shft 15091 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-limsup 15492 df-clim 15509 df-rlim 15510 df-sum 15708 df-ef 16088 df-sin 16090 df-cos 16091 df-pi 16093 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-starv 17291 df-sca 17292 df-vsca 17293 df-ip 17294 df-tset 17295 df-ple 17296 df-ds 17298 df-unif 17299 df-hom 17300 df-cco 17301 df-rest 17441 df-topn 17442 df-0g 17460 df-gsum 17461 df-topgen 17462 df-pt 17463 df-prds 17466 df-xrs 17521 df-qtop 17526 df-imas 17527 df-xps 17529 df-mre 17603 df-mrc 17604 df-acs 17606 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-mulg 19056 df-cntz 19305 df-cmn 19768 df-psmet 21312 df-xmet 21313 df-met 21314 df-bl 21315 df-mopn 21316 df-fbas 21317 df-fg 21318 df-cnfld 21321 df-top 22837 df-topon 22854 df-topsp 22876 df-bases 22889 df-cld 22962 df-ntr 22963 df-cls 22964 df-nei 23041 df-lp 23079 df-perf 23080 df-cn 23170 df-cnp 23171 df-haus 23258 df-tx 23505 df-hmeo 23698 df-fil 23789 df-fm 23881 df-flim 23882 df-flf 23883 df-xms 24264 df-ms 24265 df-tms 24266 df-cncf 24827 df-limc 25824 df-dv 25825 df-log 26522 df-asin 26832 |
| This theorem is referenced by: asinrebnd 26868 asin1half 42367 |
| Copyright terms: Public domain | W3C validator |