| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reasinsin | Structured version Visualization version GIF version | ||
| Description: The arcsine function composed with sin is equal to the identity. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| Ref | Expression |
|---|---|
| reasinsin | ⊢ (𝐴 ∈ (-(π / 2)[,](π / 2)) → (arcsin‘(sin‘𝐴)) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neghalfpire 26401 | . . . . . 6 ⊢ -(π / 2) ∈ ℝ | |
| 2 | 1 | rexri 11170 | . . . . 5 ⊢ -(π / 2) ∈ ℝ* |
| 3 | halfpire 26400 | . . . . . 6 ⊢ (π / 2) ∈ ℝ | |
| 4 | 3 | rexri 11170 | . . . . 5 ⊢ (π / 2) ∈ ℝ* |
| 5 | pirp 26397 | . . . . . . . . . 10 ⊢ π ∈ ℝ+ | |
| 6 | rphalfcl 12919 | . . . . . . . . . 10 ⊢ (π ∈ ℝ+ → (π / 2) ∈ ℝ+) | |
| 7 | 5, 6 | ax-mp 5 | . . . . . . . . 9 ⊢ (π / 2) ∈ ℝ+ |
| 8 | rpgt0 12903 | . . . . . . . . 9 ⊢ ((π / 2) ∈ ℝ+ → 0 < (π / 2)) | |
| 9 | 7, 8 | ax-mp 5 | . . . . . . . 8 ⊢ 0 < (π / 2) |
| 10 | lt0neg2 11624 | . . . . . . . . 9 ⊢ ((π / 2) ∈ ℝ → (0 < (π / 2) ↔ -(π / 2) < 0)) | |
| 11 | 3, 10 | ax-mp 5 | . . . . . . . 8 ⊢ (0 < (π / 2) ↔ -(π / 2) < 0) |
| 12 | 9, 11 | mpbi 230 | . . . . . . 7 ⊢ -(π / 2) < 0 |
| 13 | 0re 11114 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
| 14 | 1, 13, 3 | lttri 11239 | . . . . . . 7 ⊢ ((-(π / 2) < 0 ∧ 0 < (π / 2)) → -(π / 2) < (π / 2)) |
| 15 | 12, 9, 14 | mp2an 692 | . . . . . 6 ⊢ -(π / 2) < (π / 2) |
| 16 | 1, 3, 15 | ltleii 11236 | . . . . 5 ⊢ -(π / 2) ≤ (π / 2) |
| 17 | prunioo 13381 | . . . . 5 ⊢ ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ* ∧ -(π / 2) ≤ (π / 2)) → ((-(π / 2)(,)(π / 2)) ∪ {-(π / 2), (π / 2)}) = (-(π / 2)[,](π / 2))) | |
| 18 | 2, 4, 16, 17 | mp3an 1463 | . . . 4 ⊢ ((-(π / 2)(,)(π / 2)) ∪ {-(π / 2), (π / 2)}) = (-(π / 2)[,](π / 2)) |
| 19 | 18 | eleq2i 2823 | . . 3 ⊢ (𝐴 ∈ ((-(π / 2)(,)(π / 2)) ∪ {-(π / 2), (π / 2)}) ↔ 𝐴 ∈ (-(π / 2)[,](π / 2))) |
| 20 | elun 4100 | . . 3 ⊢ (𝐴 ∈ ((-(π / 2)(,)(π / 2)) ∪ {-(π / 2), (π / 2)}) ↔ (𝐴 ∈ (-(π / 2)(,)(π / 2)) ∨ 𝐴 ∈ {-(π / 2), (π / 2)})) | |
| 21 | 19, 20 | bitr3i 277 | . 2 ⊢ (𝐴 ∈ (-(π / 2)[,](π / 2)) ↔ (𝐴 ∈ (-(π / 2)(,)(π / 2)) ∨ 𝐴 ∈ {-(π / 2), (π / 2)})) |
| 22 | elioore 13275 | . . . . 5 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 𝐴 ∈ ℝ) | |
| 23 | 22 | recnd 11140 | . . . 4 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 𝐴 ∈ ℂ) |
| 24 | 22 | rered 15131 | . . . . 5 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (ℜ‘𝐴) = 𝐴) |
| 25 | id 22 | . . . . 5 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 𝐴 ∈ (-(π / 2)(,)(π / 2))) | |
| 26 | 24, 25 | eqeltrd 2831 | . . . 4 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) |
| 27 | asinsin 26829 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (arcsin‘(sin‘𝐴)) = 𝐴) | |
| 28 | 23, 26, 27 | syl2anc 584 | . . 3 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (arcsin‘(sin‘𝐴)) = 𝐴) |
| 29 | elpri 4597 | . . . 4 ⊢ (𝐴 ∈ {-(π / 2), (π / 2)} → (𝐴 = -(π / 2) ∨ 𝐴 = (π / 2))) | |
| 30 | ax-1cn 11064 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
| 31 | asinneg 26823 | . . . . . . . 8 ⊢ (1 ∈ ℂ → (arcsin‘-1) = -(arcsin‘1)) | |
| 32 | 30, 31 | ax-mp 5 | . . . . . . 7 ⊢ (arcsin‘-1) = -(arcsin‘1) |
| 33 | asin1 26831 | . . . . . . . 8 ⊢ (arcsin‘1) = (π / 2) | |
| 34 | 33 | negeqi 11353 | . . . . . . 7 ⊢ -(arcsin‘1) = -(π / 2) |
| 35 | 32, 34 | eqtri 2754 | . . . . . 6 ⊢ (arcsin‘-1) = -(π / 2) |
| 36 | fveq2 6822 | . . . . . . . 8 ⊢ (𝐴 = -(π / 2) → (sin‘𝐴) = (sin‘-(π / 2))) | |
| 37 | 3 | recni 11126 | . . . . . . . . . 10 ⊢ (π / 2) ∈ ℂ |
| 38 | sinneg 16055 | . . . . . . . . . 10 ⊢ ((π / 2) ∈ ℂ → (sin‘-(π / 2)) = -(sin‘(π / 2))) | |
| 39 | 37, 38 | ax-mp 5 | . . . . . . . . 9 ⊢ (sin‘-(π / 2)) = -(sin‘(π / 2)) |
| 40 | sinhalfpi 26404 | . . . . . . . . . 10 ⊢ (sin‘(π / 2)) = 1 | |
| 41 | 40 | negeqi 11353 | . . . . . . . . 9 ⊢ -(sin‘(π / 2)) = -1 |
| 42 | 39, 41 | eqtri 2754 | . . . . . . . 8 ⊢ (sin‘-(π / 2)) = -1 |
| 43 | 36, 42 | eqtrdi 2782 | . . . . . . 7 ⊢ (𝐴 = -(π / 2) → (sin‘𝐴) = -1) |
| 44 | 43 | fveq2d 6826 | . . . . . 6 ⊢ (𝐴 = -(π / 2) → (arcsin‘(sin‘𝐴)) = (arcsin‘-1)) |
| 45 | id 22 | . . . . . 6 ⊢ (𝐴 = -(π / 2) → 𝐴 = -(π / 2)) | |
| 46 | 35, 44, 45 | 3eqtr4a 2792 | . . . . 5 ⊢ (𝐴 = -(π / 2) → (arcsin‘(sin‘𝐴)) = 𝐴) |
| 47 | fveq2 6822 | . . . . . . . 8 ⊢ (𝐴 = (π / 2) → (sin‘𝐴) = (sin‘(π / 2))) | |
| 48 | 47, 40 | eqtrdi 2782 | . . . . . . 7 ⊢ (𝐴 = (π / 2) → (sin‘𝐴) = 1) |
| 49 | 48 | fveq2d 6826 | . . . . . 6 ⊢ (𝐴 = (π / 2) → (arcsin‘(sin‘𝐴)) = (arcsin‘1)) |
| 50 | id 22 | . . . . . 6 ⊢ (𝐴 = (π / 2) → 𝐴 = (π / 2)) | |
| 51 | 33, 49, 50 | 3eqtr4a 2792 | . . . . 5 ⊢ (𝐴 = (π / 2) → (arcsin‘(sin‘𝐴)) = 𝐴) |
| 52 | 46, 51 | jaoi 857 | . . . 4 ⊢ ((𝐴 = -(π / 2) ∨ 𝐴 = (π / 2)) → (arcsin‘(sin‘𝐴)) = 𝐴) |
| 53 | 29, 52 | syl 17 | . . 3 ⊢ (𝐴 ∈ {-(π / 2), (π / 2)} → (arcsin‘(sin‘𝐴)) = 𝐴) |
| 54 | 28, 53 | jaoi 857 | . 2 ⊢ ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∨ 𝐴 ∈ {-(π / 2), (π / 2)}) → (arcsin‘(sin‘𝐴)) = 𝐴) |
| 55 | 21, 54 | sylbi 217 | 1 ⊢ (𝐴 ∈ (-(π / 2)[,](π / 2)) → (arcsin‘(sin‘𝐴)) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ∪ cun 3895 {cpr 4575 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 ℝcr 11005 0cc0 11006 1c1 11007 ℝ*cxr 11145 < clt 11146 ≤ cle 11147 -cneg 11345 / cdiv 11774 2c2 12180 ℝ+crp 12890 (,)cioo 13245 [,]cicc 13248 ℜcre 15004 sincsin 15970 πcpi 15973 arcsincasin 26799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ioo 13249 df-ioc 13250 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-fac 14181 df-bc 14210 df-hash 14238 df-shft 14974 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 df-ef 15974 df-sin 15976 df-cos 15977 df-pi 15979 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-mulg 18981 df-cntz 19229 df-cmn 19694 df-psmet 21283 df-xmet 21284 df-met 21285 df-bl 21286 df-mopn 21287 df-fbas 21288 df-fg 21289 df-cnfld 21292 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22861 df-cld 22934 df-ntr 22935 df-cls 22936 df-nei 23013 df-lp 23051 df-perf 23052 df-cn 23142 df-cnp 23143 df-haus 23230 df-tx 23477 df-hmeo 23670 df-fil 23761 df-fm 23853 df-flim 23854 df-flf 23855 df-xms 24235 df-ms 24236 df-tms 24237 df-cncf 24798 df-limc 25794 df-dv 25795 df-log 26492 df-asin 26802 |
| This theorem is referenced by: asinrebnd 26838 asin1half 42460 |
| Copyright terms: Public domain | W3C validator |