MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reasinsin Structured version   Visualization version   GIF version

Theorem reasinsin 26813
Description: The arcsine function composed with sin is equal to the identity. (Contributed by Mario Carneiro, 2-Apr-2015.)
Assertion
Ref Expression
reasinsin (𝐴 ∈ (-(π / 2)[,](π / 2)) → (arcsin‘(sin‘𝐴)) = 𝐴)

Proof of Theorem reasinsin
StepHypRef Expression
1 neghalfpire 26381 . . . . . 6 -(π / 2) ∈ ℝ
21rexri 11239 . . . . 5 -(π / 2) ∈ ℝ*
3 halfpire 26380 . . . . . 6 (π / 2) ∈ ℝ
43rexri 11239 . . . . 5 (π / 2) ∈ ℝ*
5 pirp 26377 . . . . . . . . . 10 π ∈ ℝ+
6 rphalfcl 12987 . . . . . . . . . 10 (π ∈ ℝ+ → (π / 2) ∈ ℝ+)
75, 6ax-mp 5 . . . . . . . . 9 (π / 2) ∈ ℝ+
8 rpgt0 12971 . . . . . . . . 9 ((π / 2) ∈ ℝ+ → 0 < (π / 2))
97, 8ax-mp 5 . . . . . . . 8 0 < (π / 2)
10 lt0neg2 11692 . . . . . . . . 9 ((π / 2) ∈ ℝ → (0 < (π / 2) ↔ -(π / 2) < 0))
113, 10ax-mp 5 . . . . . . . 8 (0 < (π / 2) ↔ -(π / 2) < 0)
129, 11mpbi 230 . . . . . . 7 -(π / 2) < 0
13 0re 11183 . . . . . . . 8 0 ∈ ℝ
141, 13, 3lttri 11307 . . . . . . 7 ((-(π / 2) < 0 ∧ 0 < (π / 2)) → -(π / 2) < (π / 2))
1512, 9, 14mp2an 692 . . . . . 6 -(π / 2) < (π / 2)
161, 3, 15ltleii 11304 . . . . 5 -(π / 2) ≤ (π / 2)
17 prunioo 13449 . . . . 5 ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ* ∧ -(π / 2) ≤ (π / 2)) → ((-(π / 2)(,)(π / 2)) ∪ {-(π / 2), (π / 2)}) = (-(π / 2)[,](π / 2)))
182, 4, 16, 17mp3an 1463 . . . 4 ((-(π / 2)(,)(π / 2)) ∪ {-(π / 2), (π / 2)}) = (-(π / 2)[,](π / 2))
1918eleq2i 2821 . . 3 (𝐴 ∈ ((-(π / 2)(,)(π / 2)) ∪ {-(π / 2), (π / 2)}) ↔ 𝐴 ∈ (-(π / 2)[,](π / 2)))
20 elun 4119 . . 3 (𝐴 ∈ ((-(π / 2)(,)(π / 2)) ∪ {-(π / 2), (π / 2)}) ↔ (𝐴 ∈ (-(π / 2)(,)(π / 2)) ∨ 𝐴 ∈ {-(π / 2), (π / 2)}))
2119, 20bitr3i 277 . 2 (𝐴 ∈ (-(π / 2)[,](π / 2)) ↔ (𝐴 ∈ (-(π / 2)(,)(π / 2)) ∨ 𝐴 ∈ {-(π / 2), (π / 2)}))
22 elioore 13343 . . . . 5 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 𝐴 ∈ ℝ)
2322recnd 11209 . . . 4 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 𝐴 ∈ ℂ)
2422rered 15197 . . . . 5 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (ℜ‘𝐴) = 𝐴)
25 id 22 . . . . 5 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 𝐴 ∈ (-(π / 2)(,)(π / 2)))
2624, 25eqeltrd 2829 . . . 4 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2)))
27 asinsin 26809 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (arcsin‘(sin‘𝐴)) = 𝐴)
2823, 26, 27syl2anc 584 . . 3 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (arcsin‘(sin‘𝐴)) = 𝐴)
29 elpri 4616 . . . 4 (𝐴 ∈ {-(π / 2), (π / 2)} → (𝐴 = -(π / 2) ∨ 𝐴 = (π / 2)))
30 ax-1cn 11133 . . . . . . . 8 1 ∈ ℂ
31 asinneg 26803 . . . . . . . 8 (1 ∈ ℂ → (arcsin‘-1) = -(arcsin‘1))
3230, 31ax-mp 5 . . . . . . 7 (arcsin‘-1) = -(arcsin‘1)
33 asin1 26811 . . . . . . . 8 (arcsin‘1) = (π / 2)
3433negeqi 11421 . . . . . . 7 -(arcsin‘1) = -(π / 2)
3532, 34eqtri 2753 . . . . . 6 (arcsin‘-1) = -(π / 2)
36 fveq2 6861 . . . . . . . 8 (𝐴 = -(π / 2) → (sin‘𝐴) = (sin‘-(π / 2)))
373recni 11195 . . . . . . . . . 10 (π / 2) ∈ ℂ
38 sinneg 16121 . . . . . . . . . 10 ((π / 2) ∈ ℂ → (sin‘-(π / 2)) = -(sin‘(π / 2)))
3937, 38ax-mp 5 . . . . . . . . 9 (sin‘-(π / 2)) = -(sin‘(π / 2))
40 sinhalfpi 26384 . . . . . . . . . 10 (sin‘(π / 2)) = 1
4140negeqi 11421 . . . . . . . . 9 -(sin‘(π / 2)) = -1
4239, 41eqtri 2753 . . . . . . . 8 (sin‘-(π / 2)) = -1
4336, 42eqtrdi 2781 . . . . . . 7 (𝐴 = -(π / 2) → (sin‘𝐴) = -1)
4443fveq2d 6865 . . . . . 6 (𝐴 = -(π / 2) → (arcsin‘(sin‘𝐴)) = (arcsin‘-1))
45 id 22 . . . . . 6 (𝐴 = -(π / 2) → 𝐴 = -(π / 2))
4635, 44, 453eqtr4a 2791 . . . . 5 (𝐴 = -(π / 2) → (arcsin‘(sin‘𝐴)) = 𝐴)
47 fveq2 6861 . . . . . . . 8 (𝐴 = (π / 2) → (sin‘𝐴) = (sin‘(π / 2)))
4847, 40eqtrdi 2781 . . . . . . 7 (𝐴 = (π / 2) → (sin‘𝐴) = 1)
4948fveq2d 6865 . . . . . 6 (𝐴 = (π / 2) → (arcsin‘(sin‘𝐴)) = (arcsin‘1))
50 id 22 . . . . . 6 (𝐴 = (π / 2) → 𝐴 = (π / 2))
5133, 49, 503eqtr4a 2791 . . . . 5 (𝐴 = (π / 2) → (arcsin‘(sin‘𝐴)) = 𝐴)
5246, 51jaoi 857 . . . 4 ((𝐴 = -(π / 2) ∨ 𝐴 = (π / 2)) → (arcsin‘(sin‘𝐴)) = 𝐴)
5329, 52syl 17 . . 3 (𝐴 ∈ {-(π / 2), (π / 2)} → (arcsin‘(sin‘𝐴)) = 𝐴)
5428, 53jaoi 857 . 2 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∨ 𝐴 ∈ {-(π / 2), (π / 2)}) → (arcsin‘(sin‘𝐴)) = 𝐴)
5521, 54sylbi 217 1 (𝐴 ∈ (-(π / 2)[,](π / 2)) → (arcsin‘(sin‘𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wo 847   = wceq 1540  wcel 2109  cun 3915  {cpr 4594   class class class wbr 5110  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076  *cxr 11214   < clt 11215  cle 11216  -cneg 11413   / cdiv 11842  2c2 12248  +crp 12958  (,)cioo 13313  [,]cicc 13316  cre 15070  sincsin 16036  πcpi 16039  arcsincasin 26779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775  df-log 26472  df-asin 26782
This theorem is referenced by:  asinrebnd  26818  asin1half  42352
  Copyright terms: Public domain W3C validator