![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reasinsin | Structured version Visualization version GIF version |
Description: The arcsine function composed with sin is equal to the identity. (Contributed by Mario Carneiro, 2-Apr-2015.) |
Ref | Expression |
---|---|
reasinsin | ⊢ (𝐴 ∈ (-(π / 2)[,](π / 2)) → (arcsin‘(sin‘𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neghalfpire 26445 | . . . . . 6 ⊢ -(π / 2) ∈ ℝ | |
2 | 1 | rexri 11304 | . . . . 5 ⊢ -(π / 2) ∈ ℝ* |
3 | halfpire 26444 | . . . . . 6 ⊢ (π / 2) ∈ ℝ | |
4 | 3 | rexri 11304 | . . . . 5 ⊢ (π / 2) ∈ ℝ* |
5 | pirp 26441 | . . . . . . . . . 10 ⊢ π ∈ ℝ+ | |
6 | rphalfcl 13036 | . . . . . . . . . 10 ⊢ (π ∈ ℝ+ → (π / 2) ∈ ℝ+) | |
7 | 5, 6 | ax-mp 5 | . . . . . . . . 9 ⊢ (π / 2) ∈ ℝ+ |
8 | rpgt0 13021 | . . . . . . . . 9 ⊢ ((π / 2) ∈ ℝ+ → 0 < (π / 2)) | |
9 | 7, 8 | ax-mp 5 | . . . . . . . 8 ⊢ 0 < (π / 2) |
10 | lt0neg2 11753 | . . . . . . . . 9 ⊢ ((π / 2) ∈ ℝ → (0 < (π / 2) ↔ -(π / 2) < 0)) | |
11 | 3, 10 | ax-mp 5 | . . . . . . . 8 ⊢ (0 < (π / 2) ↔ -(π / 2) < 0) |
12 | 9, 11 | mpbi 229 | . . . . . . 7 ⊢ -(π / 2) < 0 |
13 | 0re 11248 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
14 | 1, 13, 3 | lttri 11372 | . . . . . . 7 ⊢ ((-(π / 2) < 0 ∧ 0 < (π / 2)) → -(π / 2) < (π / 2)) |
15 | 12, 9, 14 | mp2an 690 | . . . . . 6 ⊢ -(π / 2) < (π / 2) |
16 | 1, 3, 15 | ltleii 11369 | . . . . 5 ⊢ -(π / 2) ≤ (π / 2) |
17 | prunioo 13493 | . . . . 5 ⊢ ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ* ∧ -(π / 2) ≤ (π / 2)) → ((-(π / 2)(,)(π / 2)) ∪ {-(π / 2), (π / 2)}) = (-(π / 2)[,](π / 2))) | |
18 | 2, 4, 16, 17 | mp3an 1457 | . . . 4 ⊢ ((-(π / 2)(,)(π / 2)) ∪ {-(π / 2), (π / 2)}) = (-(π / 2)[,](π / 2)) |
19 | 18 | eleq2i 2817 | . . 3 ⊢ (𝐴 ∈ ((-(π / 2)(,)(π / 2)) ∪ {-(π / 2), (π / 2)}) ↔ 𝐴 ∈ (-(π / 2)[,](π / 2))) |
20 | elun 4145 | . . 3 ⊢ (𝐴 ∈ ((-(π / 2)(,)(π / 2)) ∪ {-(π / 2), (π / 2)}) ↔ (𝐴 ∈ (-(π / 2)(,)(π / 2)) ∨ 𝐴 ∈ {-(π / 2), (π / 2)})) | |
21 | 19, 20 | bitr3i 276 | . 2 ⊢ (𝐴 ∈ (-(π / 2)[,](π / 2)) ↔ (𝐴 ∈ (-(π / 2)(,)(π / 2)) ∨ 𝐴 ∈ {-(π / 2), (π / 2)})) |
22 | elioore 13389 | . . . . 5 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 𝐴 ∈ ℝ) | |
23 | 22 | recnd 11274 | . . . 4 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 𝐴 ∈ ℂ) |
24 | 22 | rered 15207 | . . . . 5 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (ℜ‘𝐴) = 𝐴) |
25 | id 22 | . . . . 5 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 𝐴 ∈ (-(π / 2)(,)(π / 2))) | |
26 | 24, 25 | eqeltrd 2825 | . . . 4 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) |
27 | asinsin 26869 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (arcsin‘(sin‘𝐴)) = 𝐴) | |
28 | 23, 26, 27 | syl2anc 582 | . . 3 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (arcsin‘(sin‘𝐴)) = 𝐴) |
29 | elpri 4653 | . . . 4 ⊢ (𝐴 ∈ {-(π / 2), (π / 2)} → (𝐴 = -(π / 2) ∨ 𝐴 = (π / 2))) | |
30 | ax-1cn 11198 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
31 | asinneg 26863 | . . . . . . . 8 ⊢ (1 ∈ ℂ → (arcsin‘-1) = -(arcsin‘1)) | |
32 | 30, 31 | ax-mp 5 | . . . . . . 7 ⊢ (arcsin‘-1) = -(arcsin‘1) |
33 | asin1 26871 | . . . . . . . 8 ⊢ (arcsin‘1) = (π / 2) | |
34 | 33 | negeqi 11485 | . . . . . . 7 ⊢ -(arcsin‘1) = -(π / 2) |
35 | 32, 34 | eqtri 2753 | . . . . . 6 ⊢ (arcsin‘-1) = -(π / 2) |
36 | fveq2 6896 | . . . . . . . 8 ⊢ (𝐴 = -(π / 2) → (sin‘𝐴) = (sin‘-(π / 2))) | |
37 | 3 | recni 11260 | . . . . . . . . . 10 ⊢ (π / 2) ∈ ℂ |
38 | sinneg 16126 | . . . . . . . . . 10 ⊢ ((π / 2) ∈ ℂ → (sin‘-(π / 2)) = -(sin‘(π / 2))) | |
39 | 37, 38 | ax-mp 5 | . . . . . . . . 9 ⊢ (sin‘-(π / 2)) = -(sin‘(π / 2)) |
40 | sinhalfpi 26448 | . . . . . . . . . 10 ⊢ (sin‘(π / 2)) = 1 | |
41 | 40 | negeqi 11485 | . . . . . . . . 9 ⊢ -(sin‘(π / 2)) = -1 |
42 | 39, 41 | eqtri 2753 | . . . . . . . 8 ⊢ (sin‘-(π / 2)) = -1 |
43 | 36, 42 | eqtrdi 2781 | . . . . . . 7 ⊢ (𝐴 = -(π / 2) → (sin‘𝐴) = -1) |
44 | 43 | fveq2d 6900 | . . . . . 6 ⊢ (𝐴 = -(π / 2) → (arcsin‘(sin‘𝐴)) = (arcsin‘-1)) |
45 | id 22 | . . . . . 6 ⊢ (𝐴 = -(π / 2) → 𝐴 = -(π / 2)) | |
46 | 35, 44, 45 | 3eqtr4a 2791 | . . . . 5 ⊢ (𝐴 = -(π / 2) → (arcsin‘(sin‘𝐴)) = 𝐴) |
47 | fveq2 6896 | . . . . . . . 8 ⊢ (𝐴 = (π / 2) → (sin‘𝐴) = (sin‘(π / 2))) | |
48 | 47, 40 | eqtrdi 2781 | . . . . . . 7 ⊢ (𝐴 = (π / 2) → (sin‘𝐴) = 1) |
49 | 48 | fveq2d 6900 | . . . . . 6 ⊢ (𝐴 = (π / 2) → (arcsin‘(sin‘𝐴)) = (arcsin‘1)) |
50 | id 22 | . . . . . 6 ⊢ (𝐴 = (π / 2) → 𝐴 = (π / 2)) | |
51 | 33, 49, 50 | 3eqtr4a 2791 | . . . . 5 ⊢ (𝐴 = (π / 2) → (arcsin‘(sin‘𝐴)) = 𝐴) |
52 | 46, 51 | jaoi 855 | . . . 4 ⊢ ((𝐴 = -(π / 2) ∨ 𝐴 = (π / 2)) → (arcsin‘(sin‘𝐴)) = 𝐴) |
53 | 29, 52 | syl 17 | . . 3 ⊢ (𝐴 ∈ {-(π / 2), (π / 2)} → (arcsin‘(sin‘𝐴)) = 𝐴) |
54 | 28, 53 | jaoi 855 | . 2 ⊢ ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∨ 𝐴 ∈ {-(π / 2), (π / 2)}) → (arcsin‘(sin‘𝐴)) = 𝐴) |
55 | 21, 54 | sylbi 216 | 1 ⊢ (𝐴 ∈ (-(π / 2)[,](π / 2)) → (arcsin‘(sin‘𝐴)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∨ wo 845 = wceq 1533 ∈ wcel 2098 ∪ cun 3942 {cpr 4632 class class class wbr 5149 ‘cfv 6549 (class class class)co 7419 ℂcc 11138 ℝcr 11139 0cc0 11140 1c1 11141 ℝ*cxr 11279 < clt 11280 ≤ cle 11281 -cneg 11477 / cdiv 11903 2c2 12300 ℝ+crp 13009 (,)cioo 13359 [,]cicc 13362 ℜcre 15080 sincsin 16043 πcpi 16046 arcsincasin 26839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-inf2 9666 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-pre-sup 11218 ax-addf 11219 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-of 7685 df-om 7872 df-1st 7994 df-2nd 7995 df-supp 8166 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-er 8725 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9388 df-fi 9436 df-sup 9467 df-inf 9468 df-oi 9535 df-card 9964 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-div 11904 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12506 df-z 12592 df-dec 12711 df-uz 12856 df-q 12966 df-rp 13010 df-xneg 13127 df-xadd 13128 df-xmul 13129 df-ioo 13363 df-ioc 13364 df-ico 13365 df-icc 13366 df-fz 13520 df-fzo 13663 df-fl 13793 df-mod 13871 df-seq 14003 df-exp 14063 df-fac 14269 df-bc 14298 df-hash 14326 df-shft 15050 df-cj 15082 df-re 15083 df-im 15084 df-sqrt 15218 df-abs 15219 df-limsup 15451 df-clim 15468 df-rlim 15469 df-sum 15669 df-ef 16047 df-sin 16049 df-cos 16050 df-pi 16052 df-struct 17119 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-ress 17213 df-plusg 17249 df-mulr 17250 df-starv 17251 df-sca 17252 df-vsca 17253 df-ip 17254 df-tset 17255 df-ple 17256 df-ds 17258 df-unif 17259 df-hom 17260 df-cco 17261 df-rest 17407 df-topn 17408 df-0g 17426 df-gsum 17427 df-topgen 17428 df-pt 17429 df-prds 17432 df-xrs 17487 df-qtop 17492 df-imas 17493 df-xps 17495 df-mre 17569 df-mrc 17570 df-acs 17572 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-submnd 18744 df-mulg 19032 df-cntz 19280 df-cmn 19749 df-psmet 21288 df-xmet 21289 df-met 21290 df-bl 21291 df-mopn 21292 df-fbas 21293 df-fg 21294 df-cnfld 21297 df-top 22840 df-topon 22857 df-topsp 22879 df-bases 22893 df-cld 22967 df-ntr 22968 df-cls 22969 df-nei 23046 df-lp 23084 df-perf 23085 df-cn 23175 df-cnp 23176 df-haus 23263 df-tx 23510 df-hmeo 23703 df-fil 23794 df-fm 23886 df-flim 23887 df-flf 23888 df-xms 24270 df-ms 24271 df-tms 24272 df-cncf 24842 df-limc 25839 df-dv 25840 df-log 26535 df-asin 26842 |
This theorem is referenced by: asinrebnd 26878 |
Copyright terms: Public domain | W3C validator |