MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reasinsin Structured version   Visualization version   GIF version

Theorem reasinsin 25471
Description: The arcsine function composed with sin is equal to the identity. (Contributed by Mario Carneiro, 2-Apr-2015.)
Assertion
Ref Expression
reasinsin (𝐴 ∈ (-(π / 2)[,](π / 2)) → (arcsin‘(sin‘𝐴)) = 𝐴)

Proof of Theorem reasinsin
StepHypRef Expression
1 neghalfpire 25047 . . . . . 6 -(π / 2) ∈ ℝ
21rexri 10684 . . . . 5 -(π / 2) ∈ ℝ*
3 halfpire 25046 . . . . . 6 (π / 2) ∈ ℝ
43rexri 10684 . . . . 5 (π / 2) ∈ ℝ*
5 pirp 25043 . . . . . . . . . 10 π ∈ ℝ+
6 rphalfcl 12402 . . . . . . . . . 10 (π ∈ ℝ+ → (π / 2) ∈ ℝ+)
75, 6ax-mp 5 . . . . . . . . 9 (π / 2) ∈ ℝ+
8 rpgt0 12387 . . . . . . . . 9 ((π / 2) ∈ ℝ+ → 0 < (π / 2))
97, 8ax-mp 5 . . . . . . . 8 0 < (π / 2)
10 lt0neg2 11132 . . . . . . . . 9 ((π / 2) ∈ ℝ → (0 < (π / 2) ↔ -(π / 2) < 0))
113, 10ax-mp 5 . . . . . . . 8 (0 < (π / 2) ↔ -(π / 2) < 0)
129, 11mpbi 233 . . . . . . 7 -(π / 2) < 0
13 0re 10628 . . . . . . . 8 0 ∈ ℝ
141, 13, 3lttri 10751 . . . . . . 7 ((-(π / 2) < 0 ∧ 0 < (π / 2)) → -(π / 2) < (π / 2))
1512, 9, 14mp2an 691 . . . . . 6 -(π / 2) < (π / 2)
161, 3, 15ltleii 10748 . . . . 5 -(π / 2) ≤ (π / 2)
17 prunioo 12857 . . . . 5 ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ* ∧ -(π / 2) ≤ (π / 2)) → ((-(π / 2)(,)(π / 2)) ∪ {-(π / 2), (π / 2)}) = (-(π / 2)[,](π / 2)))
182, 4, 16, 17mp3an 1458 . . . 4 ((-(π / 2)(,)(π / 2)) ∪ {-(π / 2), (π / 2)}) = (-(π / 2)[,](π / 2))
1918eleq2i 2907 . . 3 (𝐴 ∈ ((-(π / 2)(,)(π / 2)) ∪ {-(π / 2), (π / 2)}) ↔ 𝐴 ∈ (-(π / 2)[,](π / 2)))
20 elun 4109 . . 3 (𝐴 ∈ ((-(π / 2)(,)(π / 2)) ∪ {-(π / 2), (π / 2)}) ↔ (𝐴 ∈ (-(π / 2)(,)(π / 2)) ∨ 𝐴 ∈ {-(π / 2), (π / 2)}))
2119, 20bitr3i 280 . 2 (𝐴 ∈ (-(π / 2)[,](π / 2)) ↔ (𝐴 ∈ (-(π / 2)(,)(π / 2)) ∨ 𝐴 ∈ {-(π / 2), (π / 2)}))
22 elioore 12754 . . . . 5 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 𝐴 ∈ ℝ)
2322recnd 10654 . . . 4 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 𝐴 ∈ ℂ)
2422rered 14572 . . . . 5 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (ℜ‘𝐴) = 𝐴)
25 id 22 . . . . 5 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 𝐴 ∈ (-(π / 2)(,)(π / 2)))
2624, 25eqeltrd 2916 . . . 4 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2)))
27 asinsin 25467 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (arcsin‘(sin‘𝐴)) = 𝐴)
2823, 26, 27syl2anc 587 . . 3 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (arcsin‘(sin‘𝐴)) = 𝐴)
29 elpri 4570 . . . 4 (𝐴 ∈ {-(π / 2), (π / 2)} → (𝐴 = -(π / 2) ∨ 𝐴 = (π / 2)))
30 ax-1cn 10580 . . . . . . . 8 1 ∈ ℂ
31 asinneg 25461 . . . . . . . 8 (1 ∈ ℂ → (arcsin‘-1) = -(arcsin‘1))
3230, 31ax-mp 5 . . . . . . 7 (arcsin‘-1) = -(arcsin‘1)
33 asin1 25469 . . . . . . . 8 (arcsin‘1) = (π / 2)
3433negeqi 10864 . . . . . . 7 -(arcsin‘1) = -(π / 2)
3532, 34eqtri 2847 . . . . . 6 (arcsin‘-1) = -(π / 2)
36 fveq2 6651 . . . . . . . 8 (𝐴 = -(π / 2) → (sin‘𝐴) = (sin‘-(π / 2)))
373recni 10640 . . . . . . . . . 10 (π / 2) ∈ ℂ
38 sinneg 15488 . . . . . . . . . 10 ((π / 2) ∈ ℂ → (sin‘-(π / 2)) = -(sin‘(π / 2)))
3937, 38ax-mp 5 . . . . . . . . 9 (sin‘-(π / 2)) = -(sin‘(π / 2))
40 sinhalfpi 25050 . . . . . . . . . 10 (sin‘(π / 2)) = 1
4140negeqi 10864 . . . . . . . . 9 -(sin‘(π / 2)) = -1
4239, 41eqtri 2847 . . . . . . . 8 (sin‘-(π / 2)) = -1
4336, 42syl6eq 2875 . . . . . . 7 (𝐴 = -(π / 2) → (sin‘𝐴) = -1)
4443fveq2d 6655 . . . . . 6 (𝐴 = -(π / 2) → (arcsin‘(sin‘𝐴)) = (arcsin‘-1))
45 id 22 . . . . . 6 (𝐴 = -(π / 2) → 𝐴 = -(π / 2))
4635, 44, 453eqtr4a 2885 . . . . 5 (𝐴 = -(π / 2) → (arcsin‘(sin‘𝐴)) = 𝐴)
47 fveq2 6651 . . . . . . . 8 (𝐴 = (π / 2) → (sin‘𝐴) = (sin‘(π / 2)))
4847, 40syl6eq 2875 . . . . . . 7 (𝐴 = (π / 2) → (sin‘𝐴) = 1)
4948fveq2d 6655 . . . . . 6 (𝐴 = (π / 2) → (arcsin‘(sin‘𝐴)) = (arcsin‘1))
50 id 22 . . . . . 6 (𝐴 = (π / 2) → 𝐴 = (π / 2))
5133, 49, 503eqtr4a 2885 . . . . 5 (𝐴 = (π / 2) → (arcsin‘(sin‘𝐴)) = 𝐴)
5246, 51jaoi 854 . . . 4 ((𝐴 = -(π / 2) ∨ 𝐴 = (π / 2)) → (arcsin‘(sin‘𝐴)) = 𝐴)
5329, 52syl 17 . . 3 (𝐴 ∈ {-(π / 2), (π / 2)} → (arcsin‘(sin‘𝐴)) = 𝐴)
5428, 53jaoi 854 . 2 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∨ 𝐴 ∈ {-(π / 2), (π / 2)}) → (arcsin‘(sin‘𝐴)) = 𝐴)
5521, 54sylbi 220 1 (𝐴 ∈ (-(π / 2)[,](π / 2)) → (arcsin‘(sin‘𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wo 844   = wceq 1538  wcel 2115  cun 3916  {cpr 4550   class class class wbr 5047  cfv 6336  (class class class)co 7138  cc 10520  cr 10521  0cc0 10522  1c1 10523  *cxr 10659   < clt 10660  cle 10661  -cneg 10856   / cdiv 11282  2c2 11678  +crp 12375  (,)cioo 12724  [,]cicc 12727  cre 14445  sincsin 15406  πcpi 15409  arcsincasin 25437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-inf2 9088  ax-cnex 10578  ax-resscn 10579  ax-1cn 10580  ax-icn 10581  ax-addcl 10582  ax-addrcl 10583  ax-mulcl 10584  ax-mulrcl 10585  ax-mulcom 10586  ax-addass 10587  ax-mulass 10588  ax-distr 10589  ax-i2m1 10590  ax-1ne0 10591  ax-1rid 10592  ax-rnegex 10593  ax-rrecex 10594  ax-cnre 10595  ax-pre-lttri 10596  ax-pre-lttrn 10597  ax-pre-ltadd 10598  ax-pre-mulgt0 10599  ax-pre-sup 10600  ax-addf 10601  ax-mulf 10602
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-int 4858  df-iun 4902  df-iin 4903  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-se 5496  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-isom 6345  df-riota 7096  df-ov 7141  df-oprab 7142  df-mpo 7143  df-of 7392  df-om 7564  df-1st 7672  df-2nd 7673  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10662  df-mnf 10663  df-xr 10664  df-ltxr 10665  df-le 10666  df-sub 10857  df-neg 10858  df-div 11283  df-nn 11624  df-2 11686  df-3 11687  df-4 11688  df-5 11689  df-6 11690  df-7 11691  df-8 11692  df-9 11693  df-n0 11884  df-z 11968  df-dec 12085  df-uz 12230  df-q 12335  df-rp 12376  df-xneg 12493  df-xadd 12494  df-xmul 12495  df-ioo 12728  df-ioc 12729  df-ico 12730  df-icc 12731  df-fz 12884  df-fzo 13027  df-fl 13155  df-mod 13231  df-seq 13363  df-exp 13424  df-fac 13628  df-bc 13657  df-hash 13685  df-shft 14415  df-cj 14447  df-re 14448  df-im 14449  df-sqrt 14583  df-abs 14584  df-limsup 14817  df-clim 14834  df-rlim 14835  df-sum 15032  df-ef 15410  df-sin 15412  df-cos 15413  df-pi 15415  df-struct 16474  df-ndx 16475  df-slot 16476  df-base 16478  df-sets 16479  df-ress 16480  df-plusg 16567  df-mulr 16568  df-starv 16569  df-sca 16570  df-vsca 16571  df-ip 16572  df-tset 16573  df-ple 16574  df-ds 16576  df-unif 16577  df-hom 16578  df-cco 16579  df-rest 16685  df-topn 16686  df-0g 16704  df-gsum 16705  df-topgen 16706  df-pt 16707  df-prds 16710  df-xrs 16764  df-qtop 16769  df-imas 16770  df-xps 16772  df-mre 16846  df-mrc 16847  df-acs 16849  df-mgm 17841  df-sgrp 17890  df-mnd 17901  df-submnd 17946  df-mulg 18214  df-cntz 18436  df-cmn 18897  df-psmet 20523  df-xmet 20524  df-met 20525  df-bl 20526  df-mopn 20527  df-fbas 20528  df-fg 20529  df-cnfld 20532  df-top 21488  df-topon 21505  df-topsp 21527  df-bases 21540  df-cld 21613  df-ntr 21614  df-cls 21615  df-nei 21692  df-lp 21730  df-perf 21731  df-cn 21821  df-cnp 21822  df-haus 21909  df-tx 22156  df-hmeo 22349  df-fil 22440  df-fm 22532  df-flim 22533  df-flf 22534  df-xms 22916  df-ms 22917  df-tms 22918  df-cncf 23472  df-limc 24458  df-dv 24459  df-log 25137  df-asin 25440
This theorem is referenced by:  asinrebnd  25476
  Copyright terms: Public domain W3C validator