![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reasinsin | Structured version Visualization version GIF version |
Description: The arcsine function composed with sin is equal to the identity. (Contributed by Mario Carneiro, 2-Apr-2015.) |
Ref | Expression |
---|---|
reasinsin | β’ (π΄ β (-(Ο / 2)[,](Ο / 2)) β (arcsinβ(sinβπ΄)) = π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neghalfpire 26211 | . . . . . 6 β’ -(Ο / 2) β β | |
2 | 1 | rexri 11276 | . . . . 5 β’ -(Ο / 2) β β* |
3 | halfpire 26210 | . . . . . 6 β’ (Ο / 2) β β | |
4 | 3 | rexri 11276 | . . . . 5 β’ (Ο / 2) β β* |
5 | pirp 26207 | . . . . . . . . . 10 β’ Ο β β+ | |
6 | rphalfcl 13005 | . . . . . . . . . 10 β’ (Ο β β+ β (Ο / 2) β β+) | |
7 | 5, 6 | ax-mp 5 | . . . . . . . . 9 β’ (Ο / 2) β β+ |
8 | rpgt0 12990 | . . . . . . . . 9 β’ ((Ο / 2) β β+ β 0 < (Ο / 2)) | |
9 | 7, 8 | ax-mp 5 | . . . . . . . 8 β’ 0 < (Ο / 2) |
10 | lt0neg2 11725 | . . . . . . . . 9 β’ ((Ο / 2) β β β (0 < (Ο / 2) β -(Ο / 2) < 0)) | |
11 | 3, 10 | ax-mp 5 | . . . . . . . 8 β’ (0 < (Ο / 2) β -(Ο / 2) < 0) |
12 | 9, 11 | mpbi 229 | . . . . . . 7 β’ -(Ο / 2) < 0 |
13 | 0re 11220 | . . . . . . . 8 β’ 0 β β | |
14 | 1, 13, 3 | lttri 11344 | . . . . . . 7 β’ ((-(Ο / 2) < 0 β§ 0 < (Ο / 2)) β -(Ο / 2) < (Ο / 2)) |
15 | 12, 9, 14 | mp2an 688 | . . . . . 6 β’ -(Ο / 2) < (Ο / 2) |
16 | 1, 3, 15 | ltleii 11341 | . . . . 5 β’ -(Ο / 2) β€ (Ο / 2) |
17 | prunioo 13462 | . . . . 5 β’ ((-(Ο / 2) β β* β§ (Ο / 2) β β* β§ -(Ο / 2) β€ (Ο / 2)) β ((-(Ο / 2)(,)(Ο / 2)) βͺ {-(Ο / 2), (Ο / 2)}) = (-(Ο / 2)[,](Ο / 2))) | |
18 | 2, 4, 16, 17 | mp3an 1459 | . . . 4 β’ ((-(Ο / 2)(,)(Ο / 2)) βͺ {-(Ο / 2), (Ο / 2)}) = (-(Ο / 2)[,](Ο / 2)) |
19 | 18 | eleq2i 2823 | . . 3 β’ (π΄ β ((-(Ο / 2)(,)(Ο / 2)) βͺ {-(Ο / 2), (Ο / 2)}) β π΄ β (-(Ο / 2)[,](Ο / 2))) |
20 | elun 4147 | . . 3 β’ (π΄ β ((-(Ο / 2)(,)(Ο / 2)) βͺ {-(Ο / 2), (Ο / 2)}) β (π΄ β (-(Ο / 2)(,)(Ο / 2)) β¨ π΄ β {-(Ο / 2), (Ο / 2)})) | |
21 | 19, 20 | bitr3i 276 | . 2 β’ (π΄ β (-(Ο / 2)[,](Ο / 2)) β (π΄ β (-(Ο / 2)(,)(Ο / 2)) β¨ π΄ β {-(Ο / 2), (Ο / 2)})) |
22 | elioore 13358 | . . . . 5 β’ (π΄ β (-(Ο / 2)(,)(Ο / 2)) β π΄ β β) | |
23 | 22 | recnd 11246 | . . . 4 β’ (π΄ β (-(Ο / 2)(,)(Ο / 2)) β π΄ β β) |
24 | 22 | rered 15175 | . . . . 5 β’ (π΄ β (-(Ο / 2)(,)(Ο / 2)) β (ββπ΄) = π΄) |
25 | id 22 | . . . . 5 β’ (π΄ β (-(Ο / 2)(,)(Ο / 2)) β π΄ β (-(Ο / 2)(,)(Ο / 2))) | |
26 | 24, 25 | eqeltrd 2831 | . . . 4 β’ (π΄ β (-(Ο / 2)(,)(Ο / 2)) β (ββπ΄) β (-(Ο / 2)(,)(Ο / 2))) |
27 | asinsin 26633 | . . . 4 β’ ((π΄ β β β§ (ββπ΄) β (-(Ο / 2)(,)(Ο / 2))) β (arcsinβ(sinβπ΄)) = π΄) | |
28 | 23, 26, 27 | syl2anc 582 | . . 3 β’ (π΄ β (-(Ο / 2)(,)(Ο / 2)) β (arcsinβ(sinβπ΄)) = π΄) |
29 | elpri 4649 | . . . 4 β’ (π΄ β {-(Ο / 2), (Ο / 2)} β (π΄ = -(Ο / 2) β¨ π΄ = (Ο / 2))) | |
30 | ax-1cn 11170 | . . . . . . . 8 β’ 1 β β | |
31 | asinneg 26627 | . . . . . . . 8 β’ (1 β β β (arcsinβ-1) = -(arcsinβ1)) | |
32 | 30, 31 | ax-mp 5 | . . . . . . 7 β’ (arcsinβ-1) = -(arcsinβ1) |
33 | asin1 26635 | . . . . . . . 8 β’ (arcsinβ1) = (Ο / 2) | |
34 | 33 | negeqi 11457 | . . . . . . 7 β’ -(arcsinβ1) = -(Ο / 2) |
35 | 32, 34 | eqtri 2758 | . . . . . 6 β’ (arcsinβ-1) = -(Ο / 2) |
36 | fveq2 6890 | . . . . . . . 8 β’ (π΄ = -(Ο / 2) β (sinβπ΄) = (sinβ-(Ο / 2))) | |
37 | 3 | recni 11232 | . . . . . . . . . 10 β’ (Ο / 2) β β |
38 | sinneg 16093 | . . . . . . . . . 10 β’ ((Ο / 2) β β β (sinβ-(Ο / 2)) = -(sinβ(Ο / 2))) | |
39 | 37, 38 | ax-mp 5 | . . . . . . . . 9 β’ (sinβ-(Ο / 2)) = -(sinβ(Ο / 2)) |
40 | sinhalfpi 26214 | . . . . . . . . . 10 β’ (sinβ(Ο / 2)) = 1 | |
41 | 40 | negeqi 11457 | . . . . . . . . 9 β’ -(sinβ(Ο / 2)) = -1 |
42 | 39, 41 | eqtri 2758 | . . . . . . . 8 β’ (sinβ-(Ο / 2)) = -1 |
43 | 36, 42 | eqtrdi 2786 | . . . . . . 7 β’ (π΄ = -(Ο / 2) β (sinβπ΄) = -1) |
44 | 43 | fveq2d 6894 | . . . . . 6 β’ (π΄ = -(Ο / 2) β (arcsinβ(sinβπ΄)) = (arcsinβ-1)) |
45 | id 22 | . . . . . 6 β’ (π΄ = -(Ο / 2) β π΄ = -(Ο / 2)) | |
46 | 35, 44, 45 | 3eqtr4a 2796 | . . . . 5 β’ (π΄ = -(Ο / 2) β (arcsinβ(sinβπ΄)) = π΄) |
47 | fveq2 6890 | . . . . . . . 8 β’ (π΄ = (Ο / 2) β (sinβπ΄) = (sinβ(Ο / 2))) | |
48 | 47, 40 | eqtrdi 2786 | . . . . . . 7 β’ (π΄ = (Ο / 2) β (sinβπ΄) = 1) |
49 | 48 | fveq2d 6894 | . . . . . 6 β’ (π΄ = (Ο / 2) β (arcsinβ(sinβπ΄)) = (arcsinβ1)) |
50 | id 22 | . . . . . 6 β’ (π΄ = (Ο / 2) β π΄ = (Ο / 2)) | |
51 | 33, 49, 50 | 3eqtr4a 2796 | . . . . 5 β’ (π΄ = (Ο / 2) β (arcsinβ(sinβπ΄)) = π΄) |
52 | 46, 51 | jaoi 853 | . . . 4 β’ ((π΄ = -(Ο / 2) β¨ π΄ = (Ο / 2)) β (arcsinβ(sinβπ΄)) = π΄) |
53 | 29, 52 | syl 17 | . . 3 β’ (π΄ β {-(Ο / 2), (Ο / 2)} β (arcsinβ(sinβπ΄)) = π΄) |
54 | 28, 53 | jaoi 853 | . 2 β’ ((π΄ β (-(Ο / 2)(,)(Ο / 2)) β¨ π΄ β {-(Ο / 2), (Ο / 2)}) β (arcsinβ(sinβπ΄)) = π΄) |
55 | 21, 54 | sylbi 216 | 1 β’ (π΄ β (-(Ο / 2)[,](Ο / 2)) β (arcsinβ(sinβπ΄)) = π΄) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β¨ wo 843 = wceq 1539 β wcel 2104 βͺ cun 3945 {cpr 4629 class class class wbr 5147 βcfv 6542 (class class class)co 7411 βcc 11110 βcr 11111 0cc0 11112 1c1 11113 β*cxr 11251 < clt 11252 β€ cle 11253 -cneg 11449 / cdiv 11875 2c2 12271 β+crp 12978 (,)cioo 13328 [,]cicc 13331 βcre 15048 sincsin 16011 Οcpi 16014 arcsincasin 26603 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-inf2 9638 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 ax-addf 11191 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-of 7672 df-om 7858 df-1st 7977 df-2nd 7978 df-supp 8149 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-2o 8469 df-er 8705 df-map 8824 df-pm 8825 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-fi 9408 df-sup 9439 df-inf 9440 df-oi 9507 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-q 12937 df-rp 12979 df-xneg 13096 df-xadd 13097 df-xmul 13098 df-ioo 13332 df-ioc 13333 df-ico 13334 df-icc 13335 df-fz 13489 df-fzo 13632 df-fl 13761 df-mod 13839 df-seq 13971 df-exp 14032 df-fac 14238 df-bc 14267 df-hash 14295 df-shft 15018 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-limsup 15419 df-clim 15436 df-rlim 15437 df-sum 15637 df-ef 16015 df-sin 16017 df-cos 16018 df-pi 16020 df-struct 17084 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-mulr 17215 df-starv 17216 df-sca 17217 df-vsca 17218 df-ip 17219 df-tset 17220 df-ple 17221 df-ds 17223 df-unif 17224 df-hom 17225 df-cco 17226 df-rest 17372 df-topn 17373 df-0g 17391 df-gsum 17392 df-topgen 17393 df-pt 17394 df-prds 17397 df-xrs 17452 df-qtop 17457 df-imas 17458 df-xps 17460 df-mre 17534 df-mrc 17535 df-acs 17537 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-submnd 18706 df-mulg 18987 df-cntz 19222 df-cmn 19691 df-psmet 21136 df-xmet 21137 df-met 21138 df-bl 21139 df-mopn 21140 df-fbas 21141 df-fg 21142 df-cnfld 21145 df-top 22616 df-topon 22633 df-topsp 22655 df-bases 22669 df-cld 22743 df-ntr 22744 df-cls 22745 df-nei 22822 df-lp 22860 df-perf 22861 df-cn 22951 df-cnp 22952 df-haus 23039 df-tx 23286 df-hmeo 23479 df-fil 23570 df-fm 23662 df-flim 23663 df-flf 23664 df-xms 24046 df-ms 24047 df-tms 24048 df-cncf 24618 df-limc 25615 df-dv 25616 df-log 26301 df-asin 26606 |
This theorem is referenced by: asinrebnd 26642 |
Copyright terms: Public domain | W3C validator |