MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnasuc Structured version   Visualization version   GIF version

Theorem nnasuc 7840
Description: Addition with successor. Theorem 4I(A2) of [Enderton] p. 79. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
Assertion
Ref Expression
nnasuc ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +𝑜 suc 𝐵) = suc (𝐴 +𝑜 𝐵))

Proof of Theorem nnasuc
StepHypRef Expression
1 nnon 7218 . 2 (𝐴 ∈ ω → 𝐴 ∈ On)
2 onasuc 7762 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 +𝑜 suc 𝐵) = suc (𝐴 +𝑜 𝐵))
31, 2sylan 569 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +𝑜 suc 𝐵) = suc (𝐴 +𝑜 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  Oncon0 5866  suc csuc 5868  (class class class)co 6793  ωcom 7212   +𝑜 coa 7710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-oadd 7717
This theorem is referenced by:  nna0r  7843  nnacl  7845  nnacom  7851  nnaordi  7852  nnawordi  7855  nnaass  7856  nndi  7857  nnmsucr  7859  nnawordex  7871  nneob  7886  omopthlem1  7889  ackbij1lem14  9257  ackbij1lem18  9261  hashgadd  13368  finxpreclem4  33568
  Copyright terms: Public domain W3C validator