MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  no2inds Structured version   Visualization version   GIF version

Theorem no2inds 28003
Description: Double induction on surreals. The many substitution instances are to cover all possible cases. (Contributed by Scott Fenton, 22-Aug-2024.)
Hypotheses
Ref Expression
no2inds.1 (𝑥 = 𝑧 → (𝜑𝜓))
no2inds.2 (𝑦 = 𝑤 → (𝜓𝜒))
no2inds.3 (𝑥 = 𝑧 → (𝜃𝜒))
no2inds.4 (𝑥 = 𝐴 → (𝜑𝜏))
no2inds.5 (𝑦 = 𝐵 → (𝜏𝜂))
no2inds.i ((𝑥 No 𝑦 No ) → ((∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒 ∧ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓 ∧ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜃) → 𝜑))
Assertion
Ref Expression
no2inds ((𝐴 No 𝐵 No ) → 𝜂)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝜒,𝑦   𝜂,𝑦   𝜑,𝑧   𝜓,𝑤,𝑥   𝜏,𝑥   𝜃,𝑧   𝑥,𝑤,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑤)   𝜓(𝑦,𝑧)   𝜒(𝑥,𝑧,𝑤)   𝜃(𝑥,𝑦,𝑤)   𝜏(𝑦,𝑧,𝑤)   𝜂(𝑥,𝑧,𝑤)   𝐴(𝑧,𝑤)   𝐵(𝑥,𝑧,𝑤)

Proof of Theorem no2inds
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . 2 {⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} = {⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))}
2 no2inds.1 . 2 (𝑥 = 𝑧 → (𝜑𝜓))
3 no2inds.2 . 2 (𝑦 = 𝑤 → (𝜓𝜒))
4 no2inds.3 . 2 (𝑥 = 𝑧 → (𝜃𝜒))
5 no2inds.4 . 2 (𝑥 = 𝐴 → (𝜑𝜏))
6 no2inds.5 . 2 (𝑦 = 𝐵 → (𝜏𝜂))
7 no2inds.i . 2 ((𝑥 No 𝑦 No ) → ((∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒 ∧ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓 ∧ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜃) → 𝜑))
81, 2, 3, 4, 5, 6, 7no2indslem 28002 1 ((𝐴 No 𝐵 No ) → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  cun 3961  {copab 5210  cfv 6563   No csur 27699   L cleft 27899   R cright 27900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-1o 8505  df-2o 8506  df-no 27702  df-slt 27703  df-bday 27704  df-sslt 27841  df-scut 27843  df-made 27901  df-old 27902  df-left 27904  df-right 27905
This theorem is referenced by:  addscom  28014  addsbday  28065  mulscom  28180
  Copyright terms: Public domain W3C validator