Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  no2inds Structured version   Visualization version   GIF version

Theorem no2inds 33694
Description: Double induction on surreals. The many substitution instances are to cover all possible cases. (Contributed by Scott Fenton, 22-Aug-2024.)
Hypotheses
Ref Expression
no2inds.1 (𝑥 = 𝑧 → (𝜑𝜓))
no2inds.2 (𝑦 = 𝑤 → (𝜓𝜒))
no2inds.3 (𝑥 = 𝑧 → (𝜃𝜒))
no2inds.4 (𝑥 = 𝐴 → (𝜑𝜏))
no2inds.5 (𝑦 = 𝐵 → (𝜏𝜂))
no2inds.i ((𝑥 No 𝑦 No ) → ((∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒 ∧ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓 ∧ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜃) → 𝜑))
Assertion
Ref Expression
no2inds ((𝐴 No 𝐵 No ) → 𝜂)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝜒,𝑦   𝜂,𝑦   𝜑,𝑧   𝜓,𝑤,𝑥   𝜏,𝑥   𝜃,𝑧   𝑥,𝑤,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑤)   𝜓(𝑦,𝑧)   𝜒(𝑥,𝑧,𝑤)   𝜃(𝑥,𝑦,𝑤)   𝜏(𝑦,𝑧,𝑤)   𝜂(𝑥,𝑧,𝑤)   𝐴(𝑧,𝑤)   𝐵(𝑥,𝑧,𝑤)

Proof of Theorem no2inds
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2758 . 2 {⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} = {⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))}
2 eqid 2758 . 2 {⟨𝑐, 𝑑⟩ ∣ (𝑐 ∈ ( No × No ) ∧ 𝑑 ∈ ( No × No ) ∧ (((1st𝑐){⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} (1st𝑑) ∨ (1st𝑐) = (1st𝑑)) ∧ ((2nd𝑐){⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} (2nd𝑑) ∨ (2nd𝑐) = (2nd𝑑)) ∧ 𝑐𝑑))} = {⟨𝑐, 𝑑⟩ ∣ (𝑐 ∈ ( No × No ) ∧ 𝑑 ∈ ( No × No ) ∧ (((1st𝑐){⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} (1st𝑑) ∨ (1st𝑐) = (1st𝑑)) ∧ ((2nd𝑐){⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} (2nd𝑑) ∨ (2nd𝑐) = (2nd𝑑)) ∧ 𝑐𝑑))}
3 no2inds.1 . 2 (𝑥 = 𝑧 → (𝜑𝜓))
4 no2inds.2 . 2 (𝑦 = 𝑤 → (𝜓𝜒))
5 no2inds.3 . 2 (𝑥 = 𝑧 → (𝜃𝜒))
6 no2inds.4 . 2 (𝑥 = 𝐴 → (𝜑𝜏))
7 no2inds.5 . 2 (𝑦 = 𝐵 → (𝜏𝜂))
8 no2inds.i . 2 ((𝑥 No 𝑦 No ) → ((∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒 ∧ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓 ∧ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜃) → 𝜑))
91, 2, 3, 4, 5, 6, 7, 8no2indslem 33693 1 ((𝐴 No 𝐵 No ) → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  wne 2951  wral 3070  cun 3858   class class class wbr 5036  {copab 5098   × cxp 5526  cfv 6340  1st c1st 7697  2nd c2nd 7698   No csur 33440   L cleft 33623   R cright 33624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7699  df-2nd 7700  df-wrecs 7963  df-recs 8024  df-1o 8118  df-2o 8119  df-no 33443  df-slt 33444  df-bday 33445  df-sslt 33573  df-scut 33575  df-made 33625  df-old 33626  df-left 33628  df-right 33629
This theorem is referenced by:  addscom  33712
  Copyright terms: Public domain W3C validator