MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  no2inds Structured version   Visualization version   GIF version

Theorem no2inds 27886
Description: Double induction on surreals. The many substitution instances are to cover all possible cases. (Contributed by Scott Fenton, 22-Aug-2024.)
Hypotheses
Ref Expression
no2inds.1 (𝑥 = 𝑧 → (𝜑𝜓))
no2inds.2 (𝑦 = 𝑤 → (𝜓𝜒))
no2inds.3 (𝑥 = 𝑧 → (𝜃𝜒))
no2inds.4 (𝑥 = 𝐴 → (𝜑𝜏))
no2inds.5 (𝑦 = 𝐵 → (𝜏𝜂))
no2inds.i ((𝑥 No 𝑦 No ) → ((∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒 ∧ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓 ∧ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜃) → 𝜑))
Assertion
Ref Expression
no2inds ((𝐴 No 𝐵 No ) → 𝜂)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝜒,𝑦   𝜂,𝑦   𝜑,𝑧   𝜓,𝑤,𝑥   𝜏,𝑥   𝜃,𝑧   𝑥,𝑤,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑤)   𝜓(𝑦,𝑧)   𝜒(𝑥,𝑧,𝑤)   𝜃(𝑥,𝑦,𝑤)   𝜏(𝑦,𝑧,𝑤)   𝜂(𝑥,𝑧,𝑤)   𝐴(𝑧,𝑤)   𝐵(𝑥,𝑧,𝑤)

Proof of Theorem no2inds
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . 2 {⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} = {⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))}
2 no2inds.1 . 2 (𝑥 = 𝑧 → (𝜑𝜓))
3 no2inds.2 . 2 (𝑦 = 𝑤 → (𝜓𝜒))
4 no2inds.3 . 2 (𝑥 = 𝑧 → (𝜃𝜒))
5 no2inds.4 . 2 (𝑥 = 𝐴 → (𝜑𝜏))
6 no2inds.5 . 2 (𝑦 = 𝐵 → (𝜏𝜂))
7 no2inds.i . 2 ((𝑥 No 𝑦 No ) → ((∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒 ∧ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓 ∧ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜃) → 𝜑))
81, 2, 3, 4, 5, 6, 7no2indslem 27885 1 ((𝐴 No 𝐵 No ) → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cun 3903  {copab 5157  cfv 6486   No csur 27568   L cleft 27774   R cright 27775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-1o 8395  df-2o 8396  df-no 27571  df-slt 27572  df-bday 27573  df-sslt 27711  df-scut 27713  df-made 27776  df-old 27777  df-left 27779  df-right 27780
This theorem is referenced by:  addscom  27897  addsbday  27948  mulscom  28066
  Copyright terms: Public domain W3C validator