| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > no2inds | Structured version Visualization version GIF version | ||
| Description: Double induction on surreals. The many substitution instances are to cover all possible cases. (Contributed by Scott Fenton, 22-Aug-2024.) |
| Ref | Expression |
|---|---|
| no2inds.1 | ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) |
| no2inds.2 | ⊢ (𝑦 = 𝑤 → (𝜓 ↔ 𝜒)) |
| no2inds.3 | ⊢ (𝑥 = 𝑧 → (𝜃 ↔ 𝜒)) |
| no2inds.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
| no2inds.5 | ⊢ (𝑦 = 𝐵 → (𝜏 ↔ 𝜂)) |
| no2inds.i | ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → ((∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒 ∧ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓 ∧ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜃) → 𝜑)) |
| Ref | Expression |
|---|---|
| no2inds | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . 2 ⊢ {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} = {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} | |
| 2 | no2inds.1 | . 2 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) | |
| 3 | no2inds.2 | . 2 ⊢ (𝑦 = 𝑤 → (𝜓 ↔ 𝜒)) | |
| 4 | no2inds.3 | . 2 ⊢ (𝑥 = 𝑧 → (𝜃 ↔ 𝜒)) | |
| 5 | no2inds.4 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | |
| 6 | no2inds.5 | . 2 ⊢ (𝑦 = 𝐵 → (𝜏 ↔ 𝜂)) | |
| 7 | no2inds.i | . 2 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → ((∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒 ∧ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓 ∧ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜃) → 𝜑)) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | no2indslem 27892 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → 𝜂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∪ cun 3895 {copab 5148 ‘cfv 6476 No csur 27573 L cleft 27781 R cright 27782 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-1o 8380 df-2o 8381 df-no 27576 df-slt 27577 df-bday 27578 df-sslt 27716 df-scut 27718 df-made 27783 df-old 27784 df-left 27786 df-right 27787 |
| This theorem is referenced by: addscom 27904 addsbday 27955 mulscom 28073 |
| Copyright terms: Public domain | W3C validator |