Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  no2inds Structured version   Visualization version   GIF version

Theorem no2inds 34039
Description: Double induction on surreals. The many substitution instances are to cover all possible cases. (Contributed by Scott Fenton, 22-Aug-2024.)
Hypotheses
Ref Expression
no2inds.1 (𝑥 = 𝑧 → (𝜑𝜓))
no2inds.2 (𝑦 = 𝑤 → (𝜓𝜒))
no2inds.3 (𝑥 = 𝑧 → (𝜃𝜒))
no2inds.4 (𝑥 = 𝐴 → (𝜑𝜏))
no2inds.5 (𝑦 = 𝐵 → (𝜏𝜂))
no2inds.i ((𝑥 No 𝑦 No ) → ((∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒 ∧ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓 ∧ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜃) → 𝜑))
Assertion
Ref Expression
no2inds ((𝐴 No 𝐵 No ) → 𝜂)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝜒,𝑦   𝜂,𝑦   𝜑,𝑧   𝜓,𝑤,𝑥   𝜏,𝑥   𝜃,𝑧   𝑥,𝑤,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑤)   𝜓(𝑦,𝑧)   𝜒(𝑥,𝑧,𝑤)   𝜃(𝑥,𝑦,𝑤)   𝜏(𝑦,𝑧,𝑤)   𝜂(𝑥,𝑧,𝑤)   𝐴(𝑧,𝑤)   𝐵(𝑥,𝑧,𝑤)

Proof of Theorem no2inds
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . 2 {⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} = {⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))}
2 eqid 2738 . 2 {⟨𝑐, 𝑑⟩ ∣ (𝑐 ∈ ( No × No ) ∧ 𝑑 ∈ ( No × No ) ∧ (((1st𝑐){⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} (1st𝑑) ∨ (1st𝑐) = (1st𝑑)) ∧ ((2nd𝑐){⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} (2nd𝑑) ∨ (2nd𝑐) = (2nd𝑑)) ∧ 𝑐𝑑))} = {⟨𝑐, 𝑑⟩ ∣ (𝑐 ∈ ( No × No ) ∧ 𝑑 ∈ ( No × No ) ∧ (((1st𝑐){⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} (1st𝑑) ∨ (1st𝑐) = (1st𝑑)) ∧ ((2nd𝑐){⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} (2nd𝑑) ∨ (2nd𝑐) = (2nd𝑑)) ∧ 𝑐𝑑))}
3 no2inds.1 . 2 (𝑥 = 𝑧 → (𝜑𝜓))
4 no2inds.2 . 2 (𝑦 = 𝑤 → (𝜓𝜒))
5 no2inds.3 . 2 (𝑥 = 𝑧 → (𝜃𝜒))
6 no2inds.4 . 2 (𝑥 = 𝐴 → (𝜑𝜏))
7 no2inds.5 . 2 (𝑦 = 𝐵 → (𝜏𝜂))
8 no2inds.i . 2 ((𝑥 No 𝑦 No ) → ((∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒 ∧ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓 ∧ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜃) → 𝜑))
91, 2, 3, 4, 5, 6, 7, 8no2indslem 34038 1 ((𝐴 No 𝐵 No ) → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  cun 3881   class class class wbr 5070  {copab 5132   × cxp 5578  cfv 6418  1st c1st 7802  2nd c2nd 7803   No csur 33770   L cleft 33956   R cright 33957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-1o 8267  df-2o 8268  df-no 33773  df-slt 33774  df-bday 33775  df-sslt 33903  df-scut 33905  df-made 33958  df-old 33959  df-left 33961  df-right 33962
This theorem is referenced by:  addscom  34056
  Copyright terms: Public domain W3C validator