MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noetainflem3 Structured version   Visualization version   GIF version

Theorem noetainflem3 27802
Description: Lemma for noeta 27806. 𝑊 bounds 𝐵 below . (Contributed by Scott Fenton, 9-Aug-2024.)
Hypotheses
Ref Expression
noetainflem.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
noetainflem.2 𝑊 = (𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}))
Assertion
Ref Expression
noetainflem3 (((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) ∧ 𝑌𝐵) → 𝑊 <s 𝑌)
Distinct variable groups:   𝐵,𝑔,𝑢,𝑣,𝑥,𝑦   𝑣,𝑌,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑇(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑊(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑌(𝑢,𝑔)

Proof of Theorem noetainflem3
StepHypRef Expression
1 simpl2 1192 . . . 4 (((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) ∧ 𝑌𝐵) → 𝐵 No )
2 simpl3 1193 . . . 4 (((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) ∧ 𝑌𝐵) → 𝐵 ∈ V)
3 noetainflem.1 . . . . 5 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
4 noetainflem.2 . . . . 5 𝑊 = (𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}))
53, 4noetainflem2 27801 . . . 4 ((𝐵 No 𝐵 ∈ V) → (𝑊 ↾ dom 𝑇) = 𝑇)
61, 2, 5syl2anc 583 . . 3 (((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) ∧ 𝑌𝐵) → (𝑊 ↾ dom 𝑇) = 𝑇)
7 simpr 484 . . . 4 (((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) ∧ 𝑌𝐵) → 𝑌𝐵)
83noinfbnd1 27792 . . . 4 ((𝐵 No 𝐵 ∈ V ∧ 𝑌𝐵) → 𝑇 <s (𝑌 ↾ dom 𝑇))
91, 2, 7, 8syl3anc 1371 . . 3 (((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) ∧ 𝑌𝐵) → 𝑇 <s (𝑌 ↾ dom 𝑇))
106, 9eqbrtrd 5188 . 2 (((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) ∧ 𝑌𝐵) → (𝑊 ↾ dom 𝑇) <s (𝑌 ↾ dom 𝑇))
113, 4noetainflem1 27800 . . . 4 ((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) → 𝑊 No )
1211adantr 480 . . 3 (((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) ∧ 𝑌𝐵) → 𝑊 No )
13 simp2 1137 . . . 4 ((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) → 𝐵 No )
1413sselda 4008 . . 3 (((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) ∧ 𝑌𝐵) → 𝑌 No )
153noinfno 27781 . . . . 5 ((𝐵 No 𝐵 ∈ V) → 𝑇 No )
161, 2, 15syl2anc 583 . . . 4 (((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) ∧ 𝑌𝐵) → 𝑇 No )
17 nodmon 27713 . . . 4 (𝑇 No → dom 𝑇 ∈ On)
1816, 17syl 17 . . 3 (((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) ∧ 𝑌𝐵) → dom 𝑇 ∈ On)
19 sltres 27725 . . 3 ((𝑊 No 𝑌 No ∧ dom 𝑇 ∈ On) → ((𝑊 ↾ dom 𝑇) <s (𝑌 ↾ dom 𝑇) → 𝑊 <s 𝑌))
2012, 14, 18, 19syl3anc 1371 . 2 (((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) ∧ 𝑌𝐵) → ((𝑊 ↾ dom 𝑇) <s (𝑌 ↾ dom 𝑇) → 𝑊 <s 𝑌))
2110, 20mpd 15 1 (((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) ∧ 𝑌𝐵) → 𝑊 <s 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  {cab 2717  wral 3067  wrex 3076  Vcvv 3488  cdif 3973  cun 3974  wss 3976  ifcif 4548  {csn 4648  cop 4654   cuni 4931   class class class wbr 5166  cmpt 5249   × cxp 5698  dom cdm 5700  cres 5702  cima 5703  Oncon0 6395  suc csuc 6397  cio 6523  cfv 6573  crio 7403  1oc1o 8515  2oc2o 8516   No csur 27702   <s cslt 27703   bday cbday 27704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fo 6579  df-fv 6581  df-riota 7404  df-1o 8522  df-2o 8523  df-no 27705  df-slt 27706  df-bday 27707
This theorem is referenced by:  noetalem1  27804
  Copyright terms: Public domain W3C validator