MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noetainflem3 Structured version   Visualization version   GIF version

Theorem noetainflem3 27103
Description: Lemma for noeta 27107. 𝑊 bounds 𝐵 below . (Contributed by Scott Fenton, 9-Aug-2024.)
Hypotheses
Ref Expression
noetainflem.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
noetainflem.2 𝑊 = (𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}))
Assertion
Ref Expression
noetainflem3 (((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) ∧ 𝑌𝐵) → 𝑊 <s 𝑌)
Distinct variable groups:   𝐵,𝑔,𝑢,𝑣,𝑥,𝑦   𝑣,𝑌,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑇(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑊(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑌(𝑢,𝑔)

Proof of Theorem noetainflem3
StepHypRef Expression
1 simpl2 1193 . . . 4 (((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) ∧ 𝑌𝐵) → 𝐵 No )
2 simpl3 1194 . . . 4 (((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) ∧ 𝑌𝐵) → 𝐵 ∈ V)
3 noetainflem.1 . . . . 5 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
4 noetainflem.2 . . . . 5 𝑊 = (𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}))
53, 4noetainflem2 27102 . . . 4 ((𝐵 No 𝐵 ∈ V) → (𝑊 ↾ dom 𝑇) = 𝑇)
61, 2, 5syl2anc 585 . . 3 (((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) ∧ 𝑌𝐵) → (𝑊 ↾ dom 𝑇) = 𝑇)
7 simpr 486 . . . 4 (((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) ∧ 𝑌𝐵) → 𝑌𝐵)
83noinfbnd1 27093 . . . 4 ((𝐵 No 𝐵 ∈ V ∧ 𝑌𝐵) → 𝑇 <s (𝑌 ↾ dom 𝑇))
91, 2, 7, 8syl3anc 1372 . . 3 (((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) ∧ 𝑌𝐵) → 𝑇 <s (𝑌 ↾ dom 𝑇))
106, 9eqbrtrd 5128 . 2 (((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) ∧ 𝑌𝐵) → (𝑊 ↾ dom 𝑇) <s (𝑌 ↾ dom 𝑇))
113, 4noetainflem1 27101 . . . 4 ((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) → 𝑊 No )
1211adantr 482 . . 3 (((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) ∧ 𝑌𝐵) → 𝑊 No )
13 simp2 1138 . . . 4 ((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) → 𝐵 No )
1413sselda 3945 . . 3 (((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) ∧ 𝑌𝐵) → 𝑌 No )
153noinfno 27082 . . . . 5 ((𝐵 No 𝐵 ∈ V) → 𝑇 No )
161, 2, 15syl2anc 585 . . . 4 (((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) ∧ 𝑌𝐵) → 𝑇 No )
17 nodmon 27014 . . . 4 (𝑇 No → dom 𝑇 ∈ On)
1816, 17syl 17 . . 3 (((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) ∧ 𝑌𝐵) → dom 𝑇 ∈ On)
19 sltres 27026 . . 3 ((𝑊 No 𝑌 No ∧ dom 𝑇 ∈ On) → ((𝑊 ↾ dom 𝑇) <s (𝑌 ↾ dom 𝑇) → 𝑊 <s 𝑌))
2012, 14, 18, 19syl3anc 1372 . 2 (((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) ∧ 𝑌𝐵) → ((𝑊 ↾ dom 𝑇) <s (𝑌 ↾ dom 𝑇) → 𝑊 <s 𝑌))
2110, 20mpd 15 1 (((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) ∧ 𝑌𝐵) → 𝑊 <s 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  {cab 2710  wral 3061  wrex 3070  Vcvv 3444  cdif 3908  cun 3909  wss 3911  ifcif 4487  {csn 4587  cop 4593   cuni 4866   class class class wbr 5106  cmpt 5189   × cxp 5632  dom cdm 5634  cres 5636  cima 5637  Oncon0 6318  suc csuc 6320  cio 6447  cfv 6497  crio 7313  1oc1o 8406  2oc2o 8407   No csur 27004   <s cslt 27005   bday cbday 27006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-tp 4592  df-op 4594  df-uni 4867  df-int 4909  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-ord 6321  df-on 6322  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-1o 8413  df-2o 8414  df-no 27007  df-slt 27008  df-bday 27009
This theorem is referenced by:  noetalem1  27105
  Copyright terms: Public domain W3C validator