![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > noetainflem3 | Structured version Visualization version GIF version |
Description: Lemma for noeta 27107. 𝑊 bounds 𝐵 below . (Contributed by Scott Fenton, 9-Aug-2024.) |
Ref | Expression |
---|---|
noetainflem.1 | ⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
noetainflem.2 | ⊢ 𝑊 = (𝑇 ∪ ((suc ∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o})) |
Ref | Expression |
---|---|
noetainflem3 | ⊢ (((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ 𝑌 ∈ 𝐵) → 𝑊 <s 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2 1193 | . . . 4 ⊢ (((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ 𝑌 ∈ 𝐵) → 𝐵 ⊆ No ) | |
2 | simpl3 1194 | . . . 4 ⊢ (((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ 𝑌 ∈ 𝐵) → 𝐵 ∈ V) | |
3 | noetainflem.1 | . . . . 5 ⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) | |
4 | noetainflem.2 | . . . . 5 ⊢ 𝑊 = (𝑇 ∪ ((suc ∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o})) | |
5 | 3, 4 | noetainflem2 27102 | . . . 4 ⊢ ((𝐵 ⊆ No ∧ 𝐵 ∈ V) → (𝑊 ↾ dom 𝑇) = 𝑇) |
6 | 1, 2, 5 | syl2anc 585 | . . 3 ⊢ (((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ 𝑌 ∈ 𝐵) → (𝑊 ↾ dom 𝑇) = 𝑇) |
7 | simpr 486 | . . . 4 ⊢ (((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
8 | 3 | noinfbnd1 27093 | . . . 4 ⊢ ((𝐵 ⊆ No ∧ 𝐵 ∈ V ∧ 𝑌 ∈ 𝐵) → 𝑇 <s (𝑌 ↾ dom 𝑇)) |
9 | 1, 2, 7, 8 | syl3anc 1372 | . . 3 ⊢ (((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ 𝑌 ∈ 𝐵) → 𝑇 <s (𝑌 ↾ dom 𝑇)) |
10 | 6, 9 | eqbrtrd 5128 | . 2 ⊢ (((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ 𝑌 ∈ 𝐵) → (𝑊 ↾ dom 𝑇) <s (𝑌 ↾ dom 𝑇)) |
11 | 3, 4 | noetainflem1 27101 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) → 𝑊 ∈ No ) |
12 | 11 | adantr 482 | . . 3 ⊢ (((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ 𝑌 ∈ 𝐵) → 𝑊 ∈ No ) |
13 | simp2 1138 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) → 𝐵 ⊆ No ) | |
14 | 13 | sselda 3945 | . . 3 ⊢ (((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ No ) |
15 | 3 | noinfno 27082 | . . . . 5 ⊢ ((𝐵 ⊆ No ∧ 𝐵 ∈ V) → 𝑇 ∈ No ) |
16 | 1, 2, 15 | syl2anc 585 | . . . 4 ⊢ (((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ 𝑌 ∈ 𝐵) → 𝑇 ∈ No ) |
17 | nodmon 27014 | . . . 4 ⊢ (𝑇 ∈ No → dom 𝑇 ∈ On) | |
18 | 16, 17 | syl 17 | . . 3 ⊢ (((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ 𝑌 ∈ 𝐵) → dom 𝑇 ∈ On) |
19 | sltres 27026 | . . 3 ⊢ ((𝑊 ∈ No ∧ 𝑌 ∈ No ∧ dom 𝑇 ∈ On) → ((𝑊 ↾ dom 𝑇) <s (𝑌 ↾ dom 𝑇) → 𝑊 <s 𝑌)) | |
20 | 12, 14, 18, 19 | syl3anc 1372 | . 2 ⊢ (((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ 𝑌 ∈ 𝐵) → ((𝑊 ↾ dom 𝑇) <s (𝑌 ↾ dom 𝑇) → 𝑊 <s 𝑌)) |
21 | 10, 20 | mpd 15 | 1 ⊢ (((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ 𝑌 ∈ 𝐵) → 𝑊 <s 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 {cab 2710 ∀wral 3061 ∃wrex 3070 Vcvv 3444 ∖ cdif 3908 ∪ cun 3909 ⊆ wss 3911 ifcif 4487 {csn 4587 ⟨cop 4593 ∪ cuni 4866 class class class wbr 5106 ↦ cmpt 5189 × cxp 5632 dom cdm 5634 ↾ cres 5636 “ cima 5637 Oncon0 6318 suc csuc 6320 ℩cio 6447 ‘cfv 6497 ℩crio 7313 1oc1o 8406 2oc2o 8407 No csur 27004 <s cslt 27005 bday cbday 27006 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-tp 4592 df-op 4594 df-uni 4867 df-int 4909 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-ord 6321 df-on 6322 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-1o 8413 df-2o 8414 df-no 27007 df-slt 27008 df-bday 27009 |
This theorem is referenced by: noetalem1 27105 |
Copyright terms: Public domain | W3C validator |