![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > noetainflem3 | Structured version Visualization version GIF version |
Description: Lemma for noeta 27806. 𝑊 bounds 𝐵 below . (Contributed by Scott Fenton, 9-Aug-2024.) |
Ref | Expression |
---|---|
noetainflem.1 | ⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
noetainflem.2 | ⊢ 𝑊 = (𝑇 ∪ ((suc ∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o})) |
Ref | Expression |
---|---|
noetainflem3 | ⊢ (((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ 𝑌 ∈ 𝐵) → 𝑊 <s 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2 1192 | . . . 4 ⊢ (((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ 𝑌 ∈ 𝐵) → 𝐵 ⊆ No ) | |
2 | simpl3 1193 | . . . 4 ⊢ (((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ 𝑌 ∈ 𝐵) → 𝐵 ∈ V) | |
3 | noetainflem.1 | . . . . 5 ⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) | |
4 | noetainflem.2 | . . . . 5 ⊢ 𝑊 = (𝑇 ∪ ((suc ∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o})) | |
5 | 3, 4 | noetainflem2 27801 | . . . 4 ⊢ ((𝐵 ⊆ No ∧ 𝐵 ∈ V) → (𝑊 ↾ dom 𝑇) = 𝑇) |
6 | 1, 2, 5 | syl2anc 583 | . . 3 ⊢ (((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ 𝑌 ∈ 𝐵) → (𝑊 ↾ dom 𝑇) = 𝑇) |
7 | simpr 484 | . . . 4 ⊢ (((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
8 | 3 | noinfbnd1 27792 | . . . 4 ⊢ ((𝐵 ⊆ No ∧ 𝐵 ∈ V ∧ 𝑌 ∈ 𝐵) → 𝑇 <s (𝑌 ↾ dom 𝑇)) |
9 | 1, 2, 7, 8 | syl3anc 1371 | . . 3 ⊢ (((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ 𝑌 ∈ 𝐵) → 𝑇 <s (𝑌 ↾ dom 𝑇)) |
10 | 6, 9 | eqbrtrd 5188 | . 2 ⊢ (((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ 𝑌 ∈ 𝐵) → (𝑊 ↾ dom 𝑇) <s (𝑌 ↾ dom 𝑇)) |
11 | 3, 4 | noetainflem1 27800 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) → 𝑊 ∈ No ) |
12 | 11 | adantr 480 | . . 3 ⊢ (((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ 𝑌 ∈ 𝐵) → 𝑊 ∈ No ) |
13 | simp2 1137 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) → 𝐵 ⊆ No ) | |
14 | 13 | sselda 4008 | . . 3 ⊢ (((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ No ) |
15 | 3 | noinfno 27781 | . . . . 5 ⊢ ((𝐵 ⊆ No ∧ 𝐵 ∈ V) → 𝑇 ∈ No ) |
16 | 1, 2, 15 | syl2anc 583 | . . . 4 ⊢ (((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ 𝑌 ∈ 𝐵) → 𝑇 ∈ No ) |
17 | nodmon 27713 | . . . 4 ⊢ (𝑇 ∈ No → dom 𝑇 ∈ On) | |
18 | 16, 17 | syl 17 | . . 3 ⊢ (((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ 𝑌 ∈ 𝐵) → dom 𝑇 ∈ On) |
19 | sltres 27725 | . . 3 ⊢ ((𝑊 ∈ No ∧ 𝑌 ∈ No ∧ dom 𝑇 ∈ On) → ((𝑊 ↾ dom 𝑇) <s (𝑌 ↾ dom 𝑇) → 𝑊 <s 𝑌)) | |
20 | 12, 14, 18, 19 | syl3anc 1371 | . 2 ⊢ (((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ 𝑌 ∈ 𝐵) → ((𝑊 ↾ dom 𝑇) <s (𝑌 ↾ dom 𝑇) → 𝑊 <s 𝑌)) |
21 | 10, 20 | mpd 15 | 1 ⊢ (((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ 𝑌 ∈ 𝐵) → 𝑊 <s 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 {cab 2717 ∀wral 3067 ∃wrex 3076 Vcvv 3488 ∖ cdif 3973 ∪ cun 3974 ⊆ wss 3976 ifcif 4548 {csn 4648 〈cop 4654 ∪ cuni 4931 class class class wbr 5166 ↦ cmpt 5249 × cxp 5698 dom cdm 5700 ↾ cres 5702 “ cima 5703 Oncon0 6395 suc csuc 6397 ℩cio 6523 ‘cfv 6573 ℩crio 7403 1oc1o 8515 2oc2o 8516 No csur 27702 <s cslt 27703 bday cbday 27704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fo 6579 df-fv 6581 df-riota 7404 df-1o 8522 df-2o 8523 df-no 27705 df-slt 27706 df-bday 27707 |
This theorem is referenced by: noetalem1 27804 |
Copyright terms: Public domain | W3C validator |