MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noetainflem3 Structured version   Visualization version   GIF version

Theorem noetainflem3 27799
Description: Lemma for noeta 27803. 𝑊 bounds 𝐵 below . (Contributed by Scott Fenton, 9-Aug-2024.)
Hypotheses
Ref Expression
noetainflem.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
noetainflem.2 𝑊 = (𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}))
Assertion
Ref Expression
noetainflem3 (((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) ∧ 𝑌𝐵) → 𝑊 <s 𝑌)
Distinct variable groups:   𝐵,𝑔,𝑢,𝑣,𝑥,𝑦   𝑣,𝑌,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑇(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑊(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑌(𝑢,𝑔)

Proof of Theorem noetainflem3
StepHypRef Expression
1 simpl2 1191 . . . 4 (((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) ∧ 𝑌𝐵) → 𝐵 No )
2 simpl3 1192 . . . 4 (((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) ∧ 𝑌𝐵) → 𝐵 ∈ V)
3 noetainflem.1 . . . . 5 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
4 noetainflem.2 . . . . 5 𝑊 = (𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}))
53, 4noetainflem2 27798 . . . 4 ((𝐵 No 𝐵 ∈ V) → (𝑊 ↾ dom 𝑇) = 𝑇)
61, 2, 5syl2anc 584 . . 3 (((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) ∧ 𝑌𝐵) → (𝑊 ↾ dom 𝑇) = 𝑇)
7 simpr 484 . . . 4 (((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) ∧ 𝑌𝐵) → 𝑌𝐵)
83noinfbnd1 27789 . . . 4 ((𝐵 No 𝐵 ∈ V ∧ 𝑌𝐵) → 𝑇 <s (𝑌 ↾ dom 𝑇))
91, 2, 7, 8syl3anc 1370 . . 3 (((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) ∧ 𝑌𝐵) → 𝑇 <s (𝑌 ↾ dom 𝑇))
106, 9eqbrtrd 5170 . 2 (((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) ∧ 𝑌𝐵) → (𝑊 ↾ dom 𝑇) <s (𝑌 ↾ dom 𝑇))
113, 4noetainflem1 27797 . . . 4 ((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) → 𝑊 No )
1211adantr 480 . . 3 (((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) ∧ 𝑌𝐵) → 𝑊 No )
13 simp2 1136 . . . 4 ((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) → 𝐵 No )
1413sselda 3995 . . 3 (((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) ∧ 𝑌𝐵) → 𝑌 No )
153noinfno 27778 . . . . 5 ((𝐵 No 𝐵 ∈ V) → 𝑇 No )
161, 2, 15syl2anc 584 . . . 4 (((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) ∧ 𝑌𝐵) → 𝑇 No )
17 nodmon 27710 . . . 4 (𝑇 No → dom 𝑇 ∈ On)
1816, 17syl 17 . . 3 (((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) ∧ 𝑌𝐵) → dom 𝑇 ∈ On)
19 sltres 27722 . . 3 ((𝑊 No 𝑌 No ∧ dom 𝑇 ∈ On) → ((𝑊 ↾ dom 𝑇) <s (𝑌 ↾ dom 𝑇) → 𝑊 <s 𝑌))
2012, 14, 18, 19syl3anc 1370 . 2 (((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) ∧ 𝑌𝐵) → ((𝑊 ↾ dom 𝑇) <s (𝑌 ↾ dom 𝑇) → 𝑊 <s 𝑌))
2110, 20mpd 15 1 (((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) ∧ 𝑌𝐵) → 𝑊 <s 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  {cab 2712  wral 3059  wrex 3068  Vcvv 3478  cdif 3960  cun 3961  wss 3963  ifcif 4531  {csn 4631  cop 4637   cuni 4912   class class class wbr 5148  cmpt 5231   × cxp 5687  dom cdm 5689  cres 5691  cima 5692  Oncon0 6386  suc csuc 6388  cio 6514  cfv 6563  crio 7387  1oc1o 8498  2oc2o 8499   No csur 27699   <s cslt 27700   bday cbday 27701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fo 6569  df-fv 6571  df-riota 7388  df-1o 8505  df-2o 8506  df-no 27702  df-slt 27703  df-bday 27704
This theorem is referenced by:  noetalem1  27801
  Copyright terms: Public domain W3C validator