![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > noetainflem3 | Structured version Visualization version GIF version |
Description: Lemma for noeta 27803. 𝑊 bounds 𝐵 below . (Contributed by Scott Fenton, 9-Aug-2024.) |
Ref | Expression |
---|---|
noetainflem.1 | ⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
noetainflem.2 | ⊢ 𝑊 = (𝑇 ∪ ((suc ∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o})) |
Ref | Expression |
---|---|
noetainflem3 | ⊢ (((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ 𝑌 ∈ 𝐵) → 𝑊 <s 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2 1191 | . . . 4 ⊢ (((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ 𝑌 ∈ 𝐵) → 𝐵 ⊆ No ) | |
2 | simpl3 1192 | . . . 4 ⊢ (((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ 𝑌 ∈ 𝐵) → 𝐵 ∈ V) | |
3 | noetainflem.1 | . . . . 5 ⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) | |
4 | noetainflem.2 | . . . . 5 ⊢ 𝑊 = (𝑇 ∪ ((suc ∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o})) | |
5 | 3, 4 | noetainflem2 27798 | . . . 4 ⊢ ((𝐵 ⊆ No ∧ 𝐵 ∈ V) → (𝑊 ↾ dom 𝑇) = 𝑇) |
6 | 1, 2, 5 | syl2anc 584 | . . 3 ⊢ (((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ 𝑌 ∈ 𝐵) → (𝑊 ↾ dom 𝑇) = 𝑇) |
7 | simpr 484 | . . . 4 ⊢ (((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
8 | 3 | noinfbnd1 27789 | . . . 4 ⊢ ((𝐵 ⊆ No ∧ 𝐵 ∈ V ∧ 𝑌 ∈ 𝐵) → 𝑇 <s (𝑌 ↾ dom 𝑇)) |
9 | 1, 2, 7, 8 | syl3anc 1370 | . . 3 ⊢ (((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ 𝑌 ∈ 𝐵) → 𝑇 <s (𝑌 ↾ dom 𝑇)) |
10 | 6, 9 | eqbrtrd 5170 | . 2 ⊢ (((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ 𝑌 ∈ 𝐵) → (𝑊 ↾ dom 𝑇) <s (𝑌 ↾ dom 𝑇)) |
11 | 3, 4 | noetainflem1 27797 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) → 𝑊 ∈ No ) |
12 | 11 | adantr 480 | . . 3 ⊢ (((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ 𝑌 ∈ 𝐵) → 𝑊 ∈ No ) |
13 | simp2 1136 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) → 𝐵 ⊆ No ) | |
14 | 13 | sselda 3995 | . . 3 ⊢ (((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ No ) |
15 | 3 | noinfno 27778 | . . . . 5 ⊢ ((𝐵 ⊆ No ∧ 𝐵 ∈ V) → 𝑇 ∈ No ) |
16 | 1, 2, 15 | syl2anc 584 | . . . 4 ⊢ (((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ 𝑌 ∈ 𝐵) → 𝑇 ∈ No ) |
17 | nodmon 27710 | . . . 4 ⊢ (𝑇 ∈ No → dom 𝑇 ∈ On) | |
18 | 16, 17 | syl 17 | . . 3 ⊢ (((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ 𝑌 ∈ 𝐵) → dom 𝑇 ∈ On) |
19 | sltres 27722 | . . 3 ⊢ ((𝑊 ∈ No ∧ 𝑌 ∈ No ∧ dom 𝑇 ∈ On) → ((𝑊 ↾ dom 𝑇) <s (𝑌 ↾ dom 𝑇) → 𝑊 <s 𝑌)) | |
20 | 12, 14, 18, 19 | syl3anc 1370 | . 2 ⊢ (((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ 𝑌 ∈ 𝐵) → ((𝑊 ↾ dom 𝑇) <s (𝑌 ↾ dom 𝑇) → 𝑊 <s 𝑌)) |
21 | 10, 20 | mpd 15 | 1 ⊢ (((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ 𝑌 ∈ 𝐵) → 𝑊 <s 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 {cab 2712 ∀wral 3059 ∃wrex 3068 Vcvv 3478 ∖ cdif 3960 ∪ cun 3961 ⊆ wss 3963 ifcif 4531 {csn 4631 〈cop 4637 ∪ cuni 4912 class class class wbr 5148 ↦ cmpt 5231 × cxp 5687 dom cdm 5689 ↾ cres 5691 “ cima 5692 Oncon0 6386 suc csuc 6388 ℩cio 6514 ‘cfv 6563 ℩crio 7387 1oc1o 8498 2oc2o 8499 No csur 27699 <s cslt 27700 bday cbday 27701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ord 6389 df-on 6390 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fo 6569 df-fv 6571 df-riota 7388 df-1o 8505 df-2o 8506 df-no 27702 df-slt 27703 df-bday 27704 |
This theorem is referenced by: noetalem1 27801 |
Copyright terms: Public domain | W3C validator |