| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isnumbasgrplem3 | Structured version Visualization version GIF version | ||
| Description: Every nonempty numerable set can be given the structure of an Abelian group, either a finite cyclic group or a vector space over Z/2Z. (Contributed by Stefan O'Rear, 10-Jul-2015.) |
| Ref | Expression |
|---|---|
| isnumbasgrplem3 | ⊢ ((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (Base “ Abel)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashcl 14374 | . . . . . 6 ⊢ (𝑆 ∈ Fin → (♯‘𝑆) ∈ ℕ0) | |
| 2 | 1 | adantl 481 | . . . . 5 ⊢ ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (♯‘𝑆) ∈ ℕ0) |
| 3 | eqid 2735 | . . . . . 6 ⊢ (ℤ/nℤ‘(♯‘𝑆)) = (ℤ/nℤ‘(♯‘𝑆)) | |
| 4 | 3 | zncrng 21505 | . . . . 5 ⊢ ((♯‘𝑆) ∈ ℕ0 → (ℤ/nℤ‘(♯‘𝑆)) ∈ CRing) |
| 5 | crngring 20205 | . . . . 5 ⊢ ((ℤ/nℤ‘(♯‘𝑆)) ∈ CRing → (ℤ/nℤ‘(♯‘𝑆)) ∈ Ring) | |
| 6 | ringabl 20241 | . . . . 5 ⊢ ((ℤ/nℤ‘(♯‘𝑆)) ∈ Ring → (ℤ/nℤ‘(♯‘𝑆)) ∈ Abel) | |
| 7 | 2, 4, 5, 6 | 4syl 19 | . . . 4 ⊢ ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (ℤ/nℤ‘(♯‘𝑆)) ∈ Abel) |
| 8 | hashnncl 14384 | . . . . . . . 8 ⊢ (𝑆 ∈ Fin → ((♯‘𝑆) ∈ ℕ ↔ 𝑆 ≠ ∅)) | |
| 9 | 8 | biimparc 479 | . . . . . . 7 ⊢ ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (♯‘𝑆) ∈ ℕ) |
| 10 | eqid 2735 | . . . . . . . 8 ⊢ (Base‘(ℤ/nℤ‘(♯‘𝑆))) = (Base‘(ℤ/nℤ‘(♯‘𝑆))) | |
| 11 | 3, 10 | znhash 21519 | . . . . . . 7 ⊢ ((♯‘𝑆) ∈ ℕ → (♯‘(Base‘(ℤ/nℤ‘(♯‘𝑆)))) = (♯‘𝑆)) |
| 12 | 9, 11 | syl 17 | . . . . . 6 ⊢ ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (♯‘(Base‘(ℤ/nℤ‘(♯‘𝑆)))) = (♯‘𝑆)) |
| 13 | 12 | eqcomd 2741 | . . . . 5 ⊢ ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (♯‘𝑆) = (♯‘(Base‘(ℤ/nℤ‘(♯‘𝑆))))) |
| 14 | simpr 484 | . . . . . 6 ⊢ ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → 𝑆 ∈ Fin) | |
| 15 | 3, 10 | znfi 21520 | . . . . . . 7 ⊢ ((♯‘𝑆) ∈ ℕ → (Base‘(ℤ/nℤ‘(♯‘𝑆))) ∈ Fin) |
| 16 | 9, 15 | syl 17 | . . . . . 6 ⊢ ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (Base‘(ℤ/nℤ‘(♯‘𝑆))) ∈ Fin) |
| 17 | hashen 14365 | . . . . . 6 ⊢ ((𝑆 ∈ Fin ∧ (Base‘(ℤ/nℤ‘(♯‘𝑆))) ∈ Fin) → ((♯‘𝑆) = (♯‘(Base‘(ℤ/nℤ‘(♯‘𝑆)))) ↔ 𝑆 ≈ (Base‘(ℤ/nℤ‘(♯‘𝑆))))) | |
| 18 | 14, 16, 17 | syl2anc 584 | . . . . 5 ⊢ ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → ((♯‘𝑆) = (♯‘(Base‘(ℤ/nℤ‘(♯‘𝑆)))) ↔ 𝑆 ≈ (Base‘(ℤ/nℤ‘(♯‘𝑆))))) |
| 19 | 13, 18 | mpbid 232 | . . . 4 ⊢ ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → 𝑆 ≈ (Base‘(ℤ/nℤ‘(♯‘𝑆)))) |
| 20 | 10 | isnumbasgrplem1 43125 | . . . 4 ⊢ (((ℤ/nℤ‘(♯‘𝑆)) ∈ Abel ∧ 𝑆 ≈ (Base‘(ℤ/nℤ‘(♯‘𝑆)))) → 𝑆 ∈ (Base “ Abel)) |
| 21 | 7, 19, 20 | syl2anc 584 | . . 3 ⊢ ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → 𝑆 ∈ (Base “ Abel)) |
| 22 | 21 | adantll 714 | . 2 ⊢ (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ 𝑆 ∈ Fin) → 𝑆 ∈ (Base “ Abel)) |
| 23 | 2nn0 12518 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
| 24 | eqid 2735 | . . . . . . . 8 ⊢ (ℤ/nℤ‘2) = (ℤ/nℤ‘2) | |
| 25 | 24 | zncrng 21505 | . . . . . . 7 ⊢ (2 ∈ ℕ0 → (ℤ/nℤ‘2) ∈ CRing) |
| 26 | crngring 20205 | . . . . . . 7 ⊢ ((ℤ/nℤ‘2) ∈ CRing → (ℤ/nℤ‘2) ∈ Ring) | |
| 27 | 23, 25, 26 | mp2b 10 | . . . . . 6 ⊢ (ℤ/nℤ‘2) ∈ Ring |
| 28 | eqid 2735 | . . . . . . 7 ⊢ ((ℤ/nℤ‘2) freeLMod 𝑆) = ((ℤ/nℤ‘2) freeLMod 𝑆) | |
| 29 | 28 | frlmlmod 21709 | . . . . . 6 ⊢ (((ℤ/nℤ‘2) ∈ Ring ∧ 𝑆 ∈ dom card) → ((ℤ/nℤ‘2) freeLMod 𝑆) ∈ LMod) |
| 30 | 27, 29 | mpan 690 | . . . . 5 ⊢ (𝑆 ∈ dom card → ((ℤ/nℤ‘2) freeLMod 𝑆) ∈ LMod) |
| 31 | lmodabl 20866 | . . . . 5 ⊢ (((ℤ/nℤ‘2) freeLMod 𝑆) ∈ LMod → ((ℤ/nℤ‘2) freeLMod 𝑆) ∈ Abel) | |
| 32 | 30, 31 | syl 17 | . . . 4 ⊢ (𝑆 ∈ dom card → ((ℤ/nℤ‘2) freeLMod 𝑆) ∈ Abel) |
| 33 | 32 | ad2antrr 726 | . . 3 ⊢ (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → ((ℤ/nℤ‘2) freeLMod 𝑆) ∈ Abel) |
| 34 | eqid 2735 | . . . . . . 7 ⊢ (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) = (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) | |
| 35 | 24, 28, 34 | frlmpwfi 43122 | . . . . . 6 ⊢ (𝑆 ∈ dom card → (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) ≈ (𝒫 𝑆 ∩ Fin)) |
| 36 | 35 | ad2antrr 726 | . . . . 5 ⊢ (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) ≈ (𝒫 𝑆 ∩ Fin)) |
| 37 | simpll 766 | . . . . . 6 ⊢ (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → 𝑆 ∈ dom card) | |
| 38 | numinfctb 43127 | . . . . . . 7 ⊢ ((𝑆 ∈ dom card ∧ ¬ 𝑆 ∈ Fin) → ω ≼ 𝑆) | |
| 39 | 38 | adantlr 715 | . . . . . 6 ⊢ (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → ω ≼ 𝑆) |
| 40 | infpwfien 10076 | . . . . . 6 ⊢ ((𝑆 ∈ dom card ∧ ω ≼ 𝑆) → (𝒫 𝑆 ∩ Fin) ≈ 𝑆) | |
| 41 | 37, 39, 40 | syl2anc 584 | . . . . 5 ⊢ (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → (𝒫 𝑆 ∩ Fin) ≈ 𝑆) |
| 42 | entr 9020 | . . . . 5 ⊢ (((Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) ≈ (𝒫 𝑆 ∩ Fin) ∧ (𝒫 𝑆 ∩ Fin) ≈ 𝑆) → (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) ≈ 𝑆) | |
| 43 | 36, 41, 42 | syl2anc 584 | . . . 4 ⊢ (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) ≈ 𝑆) |
| 44 | 43 | ensymd 9019 | . . 3 ⊢ (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → 𝑆 ≈ (Base‘((ℤ/nℤ‘2) freeLMod 𝑆))) |
| 45 | 34 | isnumbasgrplem1 43125 | . . 3 ⊢ ((((ℤ/nℤ‘2) freeLMod 𝑆) ∈ Abel ∧ 𝑆 ≈ (Base‘((ℤ/nℤ‘2) freeLMod 𝑆))) → 𝑆 ∈ (Base “ Abel)) |
| 46 | 33, 44, 45 | syl2anc 584 | . 2 ⊢ (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → 𝑆 ∈ (Base “ Abel)) |
| 47 | 22, 46 | pm2.61dan 812 | 1 ⊢ ((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (Base “ Abel)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∩ cin 3925 ∅c0 4308 𝒫 cpw 4575 class class class wbr 5119 dom cdm 5654 “ cima 5657 ‘cfv 6531 (class class class)co 7405 ωcom 7861 ≈ cen 8956 ≼ cdom 8957 Fincfn 8959 cardccrd 9949 ℕcn 12240 2c2 12295 ℕ0cn0 12501 ♯chash 14348 Basecbs 17228 Abelcabl 19762 Ringcrg 20193 CRingccrg 20194 LModclmod 20817 ℤ/nℤczn 21463 freeLMod cfrlm 21706 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 ax-addf 11208 ax-mulf 11209 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-seqom 8462 df-1o 8480 df-2o 8481 df-oadd 8484 df-er 8719 df-ec 8721 df-qs 8725 df-map 8842 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-sup 9454 df-inf 9455 df-oi 9524 df-dju 9915 df-card 9953 df-acn 9956 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-rp 13009 df-fz 13525 df-fzo 13672 df-fl 13809 df-mod 13887 df-seq 14020 df-hash 14349 df-dvds 16273 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-starv 17286 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-hom 17295 df-cco 17296 df-0g 17455 df-prds 17461 df-pws 17463 df-imas 17522 df-qus 17523 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-mhm 18761 df-grp 18919 df-minusg 18920 df-sbg 18921 df-mulg 19051 df-subg 19106 df-nsg 19107 df-eqg 19108 df-ghm 19196 df-gim 19242 df-gic 19243 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-cring 20196 df-oppr 20297 df-dvdsr 20317 df-rhm 20432 df-subrng 20506 df-subrg 20530 df-lmod 20819 df-lss 20889 df-lsp 20929 df-sra 21131 df-rgmod 21132 df-lidl 21169 df-rsp 21170 df-2idl 21211 df-cnfld 21316 df-zring 21408 df-zrh 21464 df-zn 21467 df-dsmm 21692 df-frlm 21707 |
| This theorem is referenced by: isnumbasabl 43130 dfacbasgrp 43132 |
| Copyright terms: Public domain | W3C validator |