Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isnumbasgrplem3 | Structured version Visualization version GIF version |
Description: Every nonempty numerable set can be given the structure of an Abelian group, either a finite cyclic group or a vector space over Z/2Z. (Contributed by Stefan O'Rear, 10-Jul-2015.) |
Ref | Expression |
---|---|
isnumbasgrplem3 | ⊢ ((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (Base “ Abel)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashcl 14081 | . . . . . 6 ⊢ (𝑆 ∈ Fin → (♯‘𝑆) ∈ ℕ0) | |
2 | 1 | adantl 482 | . . . . 5 ⊢ ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (♯‘𝑆) ∈ ℕ0) |
3 | eqid 2738 | . . . . . 6 ⊢ (ℤ/nℤ‘(♯‘𝑆)) = (ℤ/nℤ‘(♯‘𝑆)) | |
4 | 3 | zncrng 20762 | . . . . 5 ⊢ ((♯‘𝑆) ∈ ℕ0 → (ℤ/nℤ‘(♯‘𝑆)) ∈ CRing) |
5 | crngring 19805 | . . . . 5 ⊢ ((ℤ/nℤ‘(♯‘𝑆)) ∈ CRing → (ℤ/nℤ‘(♯‘𝑆)) ∈ Ring) | |
6 | ringabl 19829 | . . . . 5 ⊢ ((ℤ/nℤ‘(♯‘𝑆)) ∈ Ring → (ℤ/nℤ‘(♯‘𝑆)) ∈ Abel) | |
7 | 2, 4, 5, 6 | 4syl 19 | . . . 4 ⊢ ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (ℤ/nℤ‘(♯‘𝑆)) ∈ Abel) |
8 | hashnncl 14091 | . . . . . . . 8 ⊢ (𝑆 ∈ Fin → ((♯‘𝑆) ∈ ℕ ↔ 𝑆 ≠ ∅)) | |
9 | 8 | biimparc 480 | . . . . . . 7 ⊢ ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (♯‘𝑆) ∈ ℕ) |
10 | eqid 2738 | . . . . . . . 8 ⊢ (Base‘(ℤ/nℤ‘(♯‘𝑆))) = (Base‘(ℤ/nℤ‘(♯‘𝑆))) | |
11 | 3, 10 | znhash 20776 | . . . . . . 7 ⊢ ((♯‘𝑆) ∈ ℕ → (♯‘(Base‘(ℤ/nℤ‘(♯‘𝑆)))) = (♯‘𝑆)) |
12 | 9, 11 | syl 17 | . . . . . 6 ⊢ ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (♯‘(Base‘(ℤ/nℤ‘(♯‘𝑆)))) = (♯‘𝑆)) |
13 | 12 | eqcomd 2744 | . . . . 5 ⊢ ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (♯‘𝑆) = (♯‘(Base‘(ℤ/nℤ‘(♯‘𝑆))))) |
14 | simpr 485 | . . . . . 6 ⊢ ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → 𝑆 ∈ Fin) | |
15 | 3, 10 | znfi 20777 | . . . . . . 7 ⊢ ((♯‘𝑆) ∈ ℕ → (Base‘(ℤ/nℤ‘(♯‘𝑆))) ∈ Fin) |
16 | 9, 15 | syl 17 | . . . . . 6 ⊢ ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (Base‘(ℤ/nℤ‘(♯‘𝑆))) ∈ Fin) |
17 | hashen 14071 | . . . . . 6 ⊢ ((𝑆 ∈ Fin ∧ (Base‘(ℤ/nℤ‘(♯‘𝑆))) ∈ Fin) → ((♯‘𝑆) = (♯‘(Base‘(ℤ/nℤ‘(♯‘𝑆)))) ↔ 𝑆 ≈ (Base‘(ℤ/nℤ‘(♯‘𝑆))))) | |
18 | 14, 16, 17 | syl2anc 584 | . . . . 5 ⊢ ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → ((♯‘𝑆) = (♯‘(Base‘(ℤ/nℤ‘(♯‘𝑆)))) ↔ 𝑆 ≈ (Base‘(ℤ/nℤ‘(♯‘𝑆))))) |
19 | 13, 18 | mpbid 231 | . . . 4 ⊢ ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → 𝑆 ≈ (Base‘(ℤ/nℤ‘(♯‘𝑆)))) |
20 | 10 | isnumbasgrplem1 40934 | . . . 4 ⊢ (((ℤ/nℤ‘(♯‘𝑆)) ∈ Abel ∧ 𝑆 ≈ (Base‘(ℤ/nℤ‘(♯‘𝑆)))) → 𝑆 ∈ (Base “ Abel)) |
21 | 7, 19, 20 | syl2anc 584 | . . 3 ⊢ ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → 𝑆 ∈ (Base “ Abel)) |
22 | 21 | adantll 711 | . 2 ⊢ (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ 𝑆 ∈ Fin) → 𝑆 ∈ (Base “ Abel)) |
23 | 2nn0 12260 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
24 | eqid 2738 | . . . . . . . 8 ⊢ (ℤ/nℤ‘2) = (ℤ/nℤ‘2) | |
25 | 24 | zncrng 20762 | . . . . . . 7 ⊢ (2 ∈ ℕ0 → (ℤ/nℤ‘2) ∈ CRing) |
26 | crngring 19805 | . . . . . . 7 ⊢ ((ℤ/nℤ‘2) ∈ CRing → (ℤ/nℤ‘2) ∈ Ring) | |
27 | 23, 25, 26 | mp2b 10 | . . . . . 6 ⊢ (ℤ/nℤ‘2) ∈ Ring |
28 | eqid 2738 | . . . . . . 7 ⊢ ((ℤ/nℤ‘2) freeLMod 𝑆) = ((ℤ/nℤ‘2) freeLMod 𝑆) | |
29 | 28 | frlmlmod 20966 | . . . . . 6 ⊢ (((ℤ/nℤ‘2) ∈ Ring ∧ 𝑆 ∈ dom card) → ((ℤ/nℤ‘2) freeLMod 𝑆) ∈ LMod) |
30 | 27, 29 | mpan 687 | . . . . 5 ⊢ (𝑆 ∈ dom card → ((ℤ/nℤ‘2) freeLMod 𝑆) ∈ LMod) |
31 | lmodabl 20180 | . . . . 5 ⊢ (((ℤ/nℤ‘2) freeLMod 𝑆) ∈ LMod → ((ℤ/nℤ‘2) freeLMod 𝑆) ∈ Abel) | |
32 | 30, 31 | syl 17 | . . . 4 ⊢ (𝑆 ∈ dom card → ((ℤ/nℤ‘2) freeLMod 𝑆) ∈ Abel) |
33 | 32 | ad2antrr 723 | . . 3 ⊢ (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → ((ℤ/nℤ‘2) freeLMod 𝑆) ∈ Abel) |
34 | eqid 2738 | . . . . . . 7 ⊢ (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) = (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) | |
35 | 24, 28, 34 | frlmpwfi 40931 | . . . . . 6 ⊢ (𝑆 ∈ dom card → (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) ≈ (𝒫 𝑆 ∩ Fin)) |
36 | 35 | ad2antrr 723 | . . . . 5 ⊢ (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) ≈ (𝒫 𝑆 ∩ Fin)) |
37 | simpll 764 | . . . . . 6 ⊢ (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → 𝑆 ∈ dom card) | |
38 | numinfctb 40936 | . . . . . . 7 ⊢ ((𝑆 ∈ dom card ∧ ¬ 𝑆 ∈ Fin) → ω ≼ 𝑆) | |
39 | 38 | adantlr 712 | . . . . . 6 ⊢ (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → ω ≼ 𝑆) |
40 | infpwfien 9828 | . . . . . 6 ⊢ ((𝑆 ∈ dom card ∧ ω ≼ 𝑆) → (𝒫 𝑆 ∩ Fin) ≈ 𝑆) | |
41 | 37, 39, 40 | syl2anc 584 | . . . . 5 ⊢ (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → (𝒫 𝑆 ∩ Fin) ≈ 𝑆) |
42 | entr 8779 | . . . . 5 ⊢ (((Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) ≈ (𝒫 𝑆 ∩ Fin) ∧ (𝒫 𝑆 ∩ Fin) ≈ 𝑆) → (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) ≈ 𝑆) | |
43 | 36, 41, 42 | syl2anc 584 | . . . 4 ⊢ (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) ≈ 𝑆) |
44 | 43 | ensymd 8778 | . . 3 ⊢ (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → 𝑆 ≈ (Base‘((ℤ/nℤ‘2) freeLMod 𝑆))) |
45 | 34 | isnumbasgrplem1 40934 | . . 3 ⊢ ((((ℤ/nℤ‘2) freeLMod 𝑆) ∈ Abel ∧ 𝑆 ≈ (Base‘((ℤ/nℤ‘2) freeLMod 𝑆))) → 𝑆 ∈ (Base “ Abel)) |
46 | 33, 44, 45 | syl2anc 584 | . 2 ⊢ (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → 𝑆 ∈ (Base “ Abel)) |
47 | 22, 46 | pm2.61dan 810 | 1 ⊢ ((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (Base “ Abel)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∩ cin 3885 ∅c0 4256 𝒫 cpw 4533 class class class wbr 5073 dom cdm 5584 “ cima 5587 ‘cfv 6426 (class class class)co 7267 ωcom 7702 ≈ cen 8717 ≼ cdom 8718 Fincfn 8720 cardccrd 9703 ℕcn 11983 2c2 12038 ℕ0cn0 12243 ♯chash 14054 Basecbs 16922 Abelcabl 19397 Ringcrg 19793 CRingccrg 19794 LModclmod 20133 ℤ/nℤczn 20714 freeLMod cfrlm 20963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-inf2 9386 ax-cnex 10937 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 ax-pre-sup 10959 ax-addf 10960 ax-mulf 10961 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-se 5540 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-isom 6435 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-om 7703 df-1st 7820 df-2nd 7821 df-supp 7965 df-tpos 8029 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-seqom 8266 df-1o 8284 df-2o 8285 df-oadd 8288 df-er 8485 df-ec 8487 df-qs 8491 df-map 8604 df-ixp 8673 df-en 8721 df-dom 8722 df-sdom 8723 df-fin 8724 df-fsupp 9116 df-sup 9188 df-inf 9189 df-oi 9256 df-dju 9669 df-card 9707 df-acn 9710 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-div 11643 df-nn 11984 df-2 12046 df-3 12047 df-4 12048 df-5 12049 df-6 12050 df-7 12051 df-8 12052 df-9 12053 df-n0 12244 df-z 12330 df-dec 12448 df-uz 12593 df-rp 12741 df-fz 13250 df-fzo 13393 df-fl 13522 df-mod 13600 df-seq 13732 df-hash 14055 df-dvds 15974 df-struct 16858 df-sets 16875 df-slot 16893 df-ndx 16905 df-base 16923 df-ress 16952 df-plusg 16985 df-mulr 16986 df-starv 16987 df-sca 16988 df-vsca 16989 df-ip 16990 df-tset 16991 df-ple 16992 df-ds 16994 df-unif 16995 df-hom 16996 df-cco 16997 df-0g 17162 df-prds 17168 df-pws 17170 df-imas 17229 df-qus 17230 df-mgm 18336 df-sgrp 18385 df-mnd 18396 df-mhm 18440 df-grp 18590 df-minusg 18591 df-sbg 18592 df-mulg 18711 df-subg 18762 df-nsg 18763 df-eqg 18764 df-ghm 18842 df-gim 18885 df-gic 18886 df-cmn 19398 df-abl 19399 df-mgp 19731 df-ur 19748 df-ring 19795 df-cring 19796 df-oppr 19872 df-dvdsr 19893 df-rnghom 19969 df-subrg 20032 df-lmod 20135 df-lss 20204 df-lsp 20244 df-sra 20444 df-rgmod 20445 df-lidl 20446 df-rsp 20447 df-2idl 20513 df-cnfld 20608 df-zring 20681 df-zrh 20715 df-zn 20718 df-dsmm 20949 df-frlm 20964 |
This theorem is referenced by: isnumbasabl 40939 dfacbasgrp 40941 |
Copyright terms: Public domain | W3C validator |