![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isnumbasgrplem3 | Structured version Visualization version GIF version |
Description: Every nonempty numerable set can be given the structure of an Abelian group, either a finite cyclic group or a vector space over Z/2Z. (Contributed by Stefan O'Rear, 10-Jul-2015.) |
Ref | Expression |
---|---|
isnumbasgrplem3 | ⊢ ((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (Base “ Abel)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashcl 14347 | . . . . . 6 ⊢ (𝑆 ∈ Fin → (♯‘𝑆) ∈ ℕ0) | |
2 | 1 | adantl 480 | . . . . 5 ⊢ ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (♯‘𝑆) ∈ ℕ0) |
3 | eqid 2725 | . . . . . 6 ⊢ (ℤ/nℤ‘(♯‘𝑆)) = (ℤ/nℤ‘(♯‘𝑆)) | |
4 | 3 | zncrng 21482 | . . . . 5 ⊢ ((♯‘𝑆) ∈ ℕ0 → (ℤ/nℤ‘(♯‘𝑆)) ∈ CRing) |
5 | crngring 20189 | . . . . 5 ⊢ ((ℤ/nℤ‘(♯‘𝑆)) ∈ CRing → (ℤ/nℤ‘(♯‘𝑆)) ∈ Ring) | |
6 | ringabl 20221 | . . . . 5 ⊢ ((ℤ/nℤ‘(♯‘𝑆)) ∈ Ring → (ℤ/nℤ‘(♯‘𝑆)) ∈ Abel) | |
7 | 2, 4, 5, 6 | 4syl 19 | . . . 4 ⊢ ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (ℤ/nℤ‘(♯‘𝑆)) ∈ Abel) |
8 | hashnncl 14357 | . . . . . . . 8 ⊢ (𝑆 ∈ Fin → ((♯‘𝑆) ∈ ℕ ↔ 𝑆 ≠ ∅)) | |
9 | 8 | biimparc 478 | . . . . . . 7 ⊢ ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (♯‘𝑆) ∈ ℕ) |
10 | eqid 2725 | . . . . . . . 8 ⊢ (Base‘(ℤ/nℤ‘(♯‘𝑆))) = (Base‘(ℤ/nℤ‘(♯‘𝑆))) | |
11 | 3, 10 | znhash 21496 | . . . . . . 7 ⊢ ((♯‘𝑆) ∈ ℕ → (♯‘(Base‘(ℤ/nℤ‘(♯‘𝑆)))) = (♯‘𝑆)) |
12 | 9, 11 | syl 17 | . . . . . 6 ⊢ ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (♯‘(Base‘(ℤ/nℤ‘(♯‘𝑆)))) = (♯‘𝑆)) |
13 | 12 | eqcomd 2731 | . . . . 5 ⊢ ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (♯‘𝑆) = (♯‘(Base‘(ℤ/nℤ‘(♯‘𝑆))))) |
14 | simpr 483 | . . . . . 6 ⊢ ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → 𝑆 ∈ Fin) | |
15 | 3, 10 | znfi 21497 | . . . . . . 7 ⊢ ((♯‘𝑆) ∈ ℕ → (Base‘(ℤ/nℤ‘(♯‘𝑆))) ∈ Fin) |
16 | 9, 15 | syl 17 | . . . . . 6 ⊢ ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (Base‘(ℤ/nℤ‘(♯‘𝑆))) ∈ Fin) |
17 | hashen 14338 | . . . . . 6 ⊢ ((𝑆 ∈ Fin ∧ (Base‘(ℤ/nℤ‘(♯‘𝑆))) ∈ Fin) → ((♯‘𝑆) = (♯‘(Base‘(ℤ/nℤ‘(♯‘𝑆)))) ↔ 𝑆 ≈ (Base‘(ℤ/nℤ‘(♯‘𝑆))))) | |
18 | 14, 16, 17 | syl2anc 582 | . . . . 5 ⊢ ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → ((♯‘𝑆) = (♯‘(Base‘(ℤ/nℤ‘(♯‘𝑆)))) ↔ 𝑆 ≈ (Base‘(ℤ/nℤ‘(♯‘𝑆))))) |
19 | 13, 18 | mpbid 231 | . . . 4 ⊢ ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → 𝑆 ≈ (Base‘(ℤ/nℤ‘(♯‘𝑆)))) |
20 | 10 | isnumbasgrplem1 42590 | . . . 4 ⊢ (((ℤ/nℤ‘(♯‘𝑆)) ∈ Abel ∧ 𝑆 ≈ (Base‘(ℤ/nℤ‘(♯‘𝑆)))) → 𝑆 ∈ (Base “ Abel)) |
21 | 7, 19, 20 | syl2anc 582 | . . 3 ⊢ ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → 𝑆 ∈ (Base “ Abel)) |
22 | 21 | adantll 712 | . 2 ⊢ (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ 𝑆 ∈ Fin) → 𝑆 ∈ (Base “ Abel)) |
23 | 2nn0 12519 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
24 | eqid 2725 | . . . . . . . 8 ⊢ (ℤ/nℤ‘2) = (ℤ/nℤ‘2) | |
25 | 24 | zncrng 21482 | . . . . . . 7 ⊢ (2 ∈ ℕ0 → (ℤ/nℤ‘2) ∈ CRing) |
26 | crngring 20189 | . . . . . . 7 ⊢ ((ℤ/nℤ‘2) ∈ CRing → (ℤ/nℤ‘2) ∈ Ring) | |
27 | 23, 25, 26 | mp2b 10 | . . . . . 6 ⊢ (ℤ/nℤ‘2) ∈ Ring |
28 | eqid 2725 | . . . . . . 7 ⊢ ((ℤ/nℤ‘2) freeLMod 𝑆) = ((ℤ/nℤ‘2) freeLMod 𝑆) | |
29 | 28 | frlmlmod 21687 | . . . . . 6 ⊢ (((ℤ/nℤ‘2) ∈ Ring ∧ 𝑆 ∈ dom card) → ((ℤ/nℤ‘2) freeLMod 𝑆) ∈ LMod) |
30 | 27, 29 | mpan 688 | . . . . 5 ⊢ (𝑆 ∈ dom card → ((ℤ/nℤ‘2) freeLMod 𝑆) ∈ LMod) |
31 | lmodabl 20796 | . . . . 5 ⊢ (((ℤ/nℤ‘2) freeLMod 𝑆) ∈ LMod → ((ℤ/nℤ‘2) freeLMod 𝑆) ∈ Abel) | |
32 | 30, 31 | syl 17 | . . . 4 ⊢ (𝑆 ∈ dom card → ((ℤ/nℤ‘2) freeLMod 𝑆) ∈ Abel) |
33 | 32 | ad2antrr 724 | . . 3 ⊢ (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → ((ℤ/nℤ‘2) freeLMod 𝑆) ∈ Abel) |
34 | eqid 2725 | . . . . . . 7 ⊢ (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) = (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) | |
35 | 24, 28, 34 | frlmpwfi 42587 | . . . . . 6 ⊢ (𝑆 ∈ dom card → (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) ≈ (𝒫 𝑆 ∩ Fin)) |
36 | 35 | ad2antrr 724 | . . . . 5 ⊢ (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) ≈ (𝒫 𝑆 ∩ Fin)) |
37 | simpll 765 | . . . . . 6 ⊢ (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → 𝑆 ∈ dom card) | |
38 | numinfctb 42592 | . . . . . . 7 ⊢ ((𝑆 ∈ dom card ∧ ¬ 𝑆 ∈ Fin) → ω ≼ 𝑆) | |
39 | 38 | adantlr 713 | . . . . . 6 ⊢ (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → ω ≼ 𝑆) |
40 | infpwfien 10085 | . . . . . 6 ⊢ ((𝑆 ∈ dom card ∧ ω ≼ 𝑆) → (𝒫 𝑆 ∩ Fin) ≈ 𝑆) | |
41 | 37, 39, 40 | syl2anc 582 | . . . . 5 ⊢ (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → (𝒫 𝑆 ∩ Fin) ≈ 𝑆) |
42 | entr 9025 | . . . . 5 ⊢ (((Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) ≈ (𝒫 𝑆 ∩ Fin) ∧ (𝒫 𝑆 ∩ Fin) ≈ 𝑆) → (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) ≈ 𝑆) | |
43 | 36, 41, 42 | syl2anc 582 | . . . 4 ⊢ (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) ≈ 𝑆) |
44 | 43 | ensymd 9024 | . . 3 ⊢ (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → 𝑆 ≈ (Base‘((ℤ/nℤ‘2) freeLMod 𝑆))) |
45 | 34 | isnumbasgrplem1 42590 | . . 3 ⊢ ((((ℤ/nℤ‘2) freeLMod 𝑆) ∈ Abel ∧ 𝑆 ≈ (Base‘((ℤ/nℤ‘2) freeLMod 𝑆))) → 𝑆 ∈ (Base “ Abel)) |
46 | 33, 44, 45 | syl2anc 582 | . 2 ⊢ (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → 𝑆 ∈ (Base “ Abel)) |
47 | 22, 46 | pm2.61dan 811 | 1 ⊢ ((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (Base “ Abel)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2930 ∩ cin 3944 ∅c0 4323 𝒫 cpw 4603 class class class wbr 5148 dom cdm 5677 “ cima 5680 ‘cfv 6547 (class class class)co 7417 ωcom 7869 ≈ cen 8959 ≼ cdom 8960 Fincfn 8962 cardccrd 9958 ℕcn 12242 2c2 12297 ℕ0cn0 12502 ♯chash 14321 Basecbs 17179 Abelcabl 19740 Ringcrg 20177 CRingccrg 20178 LModclmod 20747 ℤ/nℤczn 21432 freeLMod cfrlm 21684 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-inf2 9664 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 ax-addf 11217 ax-mulf 11218 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-isom 6556 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-1st 7992 df-2nd 7993 df-supp 8164 df-tpos 8230 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-seqom 8467 df-1o 8485 df-2o 8486 df-oadd 8489 df-er 8723 df-ec 8725 df-qs 8729 df-map 8845 df-ixp 8915 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-fsupp 9386 df-sup 9465 df-inf 9466 df-oi 9533 df-dju 9924 df-card 9962 df-acn 9965 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-7 12310 df-8 12311 df-9 12312 df-n0 12503 df-z 12589 df-dec 12708 df-uz 12853 df-rp 13007 df-fz 13517 df-fzo 13660 df-fl 13789 df-mod 13867 df-seq 13999 df-hash 14322 df-dvds 16231 df-struct 17115 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-ress 17209 df-plusg 17245 df-mulr 17246 df-starv 17247 df-sca 17248 df-vsca 17249 df-ip 17250 df-tset 17251 df-ple 17252 df-ds 17254 df-unif 17255 df-hom 17256 df-cco 17257 df-0g 17422 df-prds 17428 df-pws 17430 df-imas 17489 df-qus 17490 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-mhm 18739 df-grp 18897 df-minusg 18898 df-sbg 18899 df-mulg 19028 df-subg 19082 df-nsg 19083 df-eqg 19084 df-ghm 19172 df-gim 19217 df-gic 19218 df-cmn 19741 df-abl 19742 df-mgp 20079 df-rng 20097 df-ur 20126 df-ring 20179 df-cring 20180 df-oppr 20277 df-dvdsr 20300 df-rhm 20415 df-subrng 20487 df-subrg 20512 df-lmod 20749 df-lss 20820 df-lsp 20860 df-sra 21062 df-rgmod 21063 df-lidl 21108 df-rsp 21109 df-2idl 21148 df-cnfld 21284 df-zring 21377 df-zrh 21433 df-zn 21436 df-dsmm 21670 df-frlm 21685 |
This theorem is referenced by: isnumbasabl 42595 dfacbasgrp 42597 |
Copyright terms: Public domain | W3C validator |