Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isnumbasgrplem3 Structured version   Visualization version   GIF version

Theorem isnumbasgrplem3 39965
Description: Every nonempty numerable set can be given the structure of an Abelian group, either a finite cyclic group or a vector space over Z/2Z. (Contributed by Stefan O'Rear, 10-Jul-2015.)
Assertion
Ref Expression
isnumbasgrplem3 ((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (Base “ Abel))

Proof of Theorem isnumbasgrplem3
StepHypRef Expression
1 hashcl 13722 . . . . . 6 (𝑆 ∈ Fin → (♯‘𝑆) ∈ ℕ0)
21adantl 485 . . . . 5 ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (♯‘𝑆) ∈ ℕ0)
3 eqid 2824 . . . . . 6 (ℤ/nℤ‘(♯‘𝑆)) = (ℤ/nℤ‘(♯‘𝑆))
43zncrng 20691 . . . . 5 ((♯‘𝑆) ∈ ℕ0 → (ℤ/nℤ‘(♯‘𝑆)) ∈ CRing)
5 crngring 19309 . . . . 5 ((ℤ/nℤ‘(♯‘𝑆)) ∈ CRing → (ℤ/nℤ‘(♯‘𝑆)) ∈ Ring)
6 ringabl 19333 . . . . 5 ((ℤ/nℤ‘(♯‘𝑆)) ∈ Ring → (ℤ/nℤ‘(♯‘𝑆)) ∈ Abel)
72, 4, 5, 64syl 19 . . . 4 ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (ℤ/nℤ‘(♯‘𝑆)) ∈ Abel)
8 hashnncl 13732 . . . . . . . 8 (𝑆 ∈ Fin → ((♯‘𝑆) ∈ ℕ ↔ 𝑆 ≠ ∅))
98biimparc 483 . . . . . . 7 ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (♯‘𝑆) ∈ ℕ)
10 eqid 2824 . . . . . . . 8 (Base‘(ℤ/nℤ‘(♯‘𝑆))) = (Base‘(ℤ/nℤ‘(♯‘𝑆)))
113, 10znhash 20705 . . . . . . 7 ((♯‘𝑆) ∈ ℕ → (♯‘(Base‘(ℤ/nℤ‘(♯‘𝑆)))) = (♯‘𝑆))
129, 11syl 17 . . . . . 6 ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (♯‘(Base‘(ℤ/nℤ‘(♯‘𝑆)))) = (♯‘𝑆))
1312eqcomd 2830 . . . . 5 ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (♯‘𝑆) = (♯‘(Base‘(ℤ/nℤ‘(♯‘𝑆)))))
14 simpr 488 . . . . . 6 ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → 𝑆 ∈ Fin)
153, 10znfi 20706 . . . . . . 7 ((♯‘𝑆) ∈ ℕ → (Base‘(ℤ/nℤ‘(♯‘𝑆))) ∈ Fin)
169, 15syl 17 . . . . . 6 ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (Base‘(ℤ/nℤ‘(♯‘𝑆))) ∈ Fin)
17 hashen 13712 . . . . . 6 ((𝑆 ∈ Fin ∧ (Base‘(ℤ/nℤ‘(♯‘𝑆))) ∈ Fin) → ((♯‘𝑆) = (♯‘(Base‘(ℤ/nℤ‘(♯‘𝑆)))) ↔ 𝑆 ≈ (Base‘(ℤ/nℤ‘(♯‘𝑆)))))
1814, 16, 17syl2anc 587 . . . . 5 ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → ((♯‘𝑆) = (♯‘(Base‘(ℤ/nℤ‘(♯‘𝑆)))) ↔ 𝑆 ≈ (Base‘(ℤ/nℤ‘(♯‘𝑆)))))
1913, 18mpbid 235 . . . 4 ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → 𝑆 ≈ (Base‘(ℤ/nℤ‘(♯‘𝑆))))
2010isnumbasgrplem1 39961 . . . 4 (((ℤ/nℤ‘(♯‘𝑆)) ∈ Abel ∧ 𝑆 ≈ (Base‘(ℤ/nℤ‘(♯‘𝑆)))) → 𝑆 ∈ (Base “ Abel))
217, 19, 20syl2anc 587 . . 3 ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → 𝑆 ∈ (Base “ Abel))
2221adantll 713 . 2 (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ 𝑆 ∈ Fin) → 𝑆 ∈ (Base “ Abel))
23 2nn0 11911 . . . . . . 7 2 ∈ ℕ0
24 eqid 2824 . . . . . . . 8 (ℤ/nℤ‘2) = (ℤ/nℤ‘2)
2524zncrng 20691 . . . . . . 7 (2 ∈ ℕ0 → (ℤ/nℤ‘2) ∈ CRing)
26 crngring 19309 . . . . . . 7 ((ℤ/nℤ‘2) ∈ CRing → (ℤ/nℤ‘2) ∈ Ring)
2723, 25, 26mp2b 10 . . . . . 6 (ℤ/nℤ‘2) ∈ Ring
28 eqid 2824 . . . . . . 7 ((ℤ/nℤ‘2) freeLMod 𝑆) = ((ℤ/nℤ‘2) freeLMod 𝑆)
2928frlmlmod 20893 . . . . . 6 (((ℤ/nℤ‘2) ∈ Ring ∧ 𝑆 ∈ dom card) → ((ℤ/nℤ‘2) freeLMod 𝑆) ∈ LMod)
3027, 29mpan 689 . . . . 5 (𝑆 ∈ dom card → ((ℤ/nℤ‘2) freeLMod 𝑆) ∈ LMod)
31 lmodabl 19681 . . . . 5 (((ℤ/nℤ‘2) freeLMod 𝑆) ∈ LMod → ((ℤ/nℤ‘2) freeLMod 𝑆) ∈ Abel)
3230, 31syl 17 . . . 4 (𝑆 ∈ dom card → ((ℤ/nℤ‘2) freeLMod 𝑆) ∈ Abel)
3332ad2antrr 725 . . 3 (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → ((ℤ/nℤ‘2) freeLMod 𝑆) ∈ Abel)
34 eqid 2824 . . . . . . 7 (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) = (Base‘((ℤ/nℤ‘2) freeLMod 𝑆))
3524, 28, 34frlmpwfi 39958 . . . . . 6 (𝑆 ∈ dom card → (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) ≈ (𝒫 𝑆 ∩ Fin))
3635ad2antrr 725 . . . . 5 (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) ≈ (𝒫 𝑆 ∩ Fin))
37 simpll 766 . . . . . 6 (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → 𝑆 ∈ dom card)
38 numinfctb 39963 . . . . . . 7 ((𝑆 ∈ dom card ∧ ¬ 𝑆 ∈ Fin) → ω ≼ 𝑆)
3938adantlr 714 . . . . . 6 (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → ω ≼ 𝑆)
40 infpwfien 9486 . . . . . 6 ((𝑆 ∈ dom card ∧ ω ≼ 𝑆) → (𝒫 𝑆 ∩ Fin) ≈ 𝑆)
4137, 39, 40syl2anc 587 . . . . 5 (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → (𝒫 𝑆 ∩ Fin) ≈ 𝑆)
42 entr 8557 . . . . 5 (((Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) ≈ (𝒫 𝑆 ∩ Fin) ∧ (𝒫 𝑆 ∩ Fin) ≈ 𝑆) → (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) ≈ 𝑆)
4336, 41, 42syl2anc 587 . . . 4 (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) ≈ 𝑆)
4443ensymd 8556 . . 3 (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → 𝑆 ≈ (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)))
4534isnumbasgrplem1 39961 . . 3 ((((ℤ/nℤ‘2) freeLMod 𝑆) ∈ Abel ∧ 𝑆 ≈ (Base‘((ℤ/nℤ‘2) freeLMod 𝑆))) → 𝑆 ∈ (Base “ Abel))
4633, 44, 45syl2anc 587 . 2 (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → 𝑆 ∈ (Base “ Abel))
4722, 46pm2.61dan 812 1 ((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (Base “ Abel))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wne 3014  cin 3918  c0 4276  𝒫 cpw 4522   class class class wbr 5052  dom cdm 5542  cima 5545  cfv 6343  (class class class)co 7149  ωcom 7574  cen 8502  cdom 8503  Fincfn 8505  cardccrd 9361  cn 11634  2c2 11689  0cn0 11894  chash 13695  Basecbs 16483  Abelcabl 18907  Ringcrg 19297  CRingccrg 19298  LModclmod 19634  ℤ/nczn 20650   freeLMod cfrlm 20890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-inf2 9101  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-pre-sup 10613  ax-addf 10614  ax-mulf 10615
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-se 5502  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-isom 6352  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-supp 7827  df-tpos 7888  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-seqom 8080  df-1o 8098  df-2o 8099  df-oadd 8102  df-er 8285  df-ec 8287  df-qs 8291  df-map 8404  df-ixp 8458  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-fsupp 8831  df-sup 8903  df-inf 8904  df-oi 8971  df-dju 9327  df-card 9365  df-acn 9368  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-2 11697  df-3 11698  df-4 11699  df-5 11700  df-6 11701  df-7 11702  df-8 11703  df-9 11704  df-n0 11895  df-z 11979  df-dec 12096  df-uz 12241  df-rp 12387  df-fz 12895  df-fzo 13038  df-fl 13166  df-mod 13242  df-seq 13374  df-hash 13696  df-dvds 15608  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-0g 16715  df-prds 16721  df-pws 16723  df-imas 16781  df-qus 16782  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mulg 18225  df-subg 18276  df-nsg 18277  df-eqg 18278  df-ghm 18356  df-gim 18399  df-gic 18400  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-cring 19300  df-oppr 19376  df-dvdsr 19394  df-rnghom 19470  df-subrg 19533  df-lmod 19636  df-lss 19704  df-lsp 19744  df-sra 19944  df-rgmod 19945  df-lidl 19946  df-rsp 19947  df-2idl 20005  df-cnfld 20546  df-zring 20618  df-zrh 20651  df-zn 20654  df-dsmm 20876  df-frlm 20891
This theorem is referenced by:  isnumbasabl  39966  dfacbasgrp  39968
  Copyright terms: Public domain W3C validator