Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isnumbasgrplem3 Structured version   Visualization version   GIF version

Theorem isnumbasgrplem3 43098
Description: Every nonempty numerable set can be given the structure of an Abelian group, either a finite cyclic group or a vector space over Z/2Z. (Contributed by Stefan O'Rear, 10-Jul-2015.)
Assertion
Ref Expression
isnumbasgrplem3 ((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (Base “ Abel))

Proof of Theorem isnumbasgrplem3
StepHypRef Expression
1 hashcl 14282 . . . . . 6 (𝑆 ∈ Fin → (♯‘𝑆) ∈ ℕ0)
21adantl 481 . . . . 5 ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (♯‘𝑆) ∈ ℕ0)
3 eqid 2729 . . . . . 6 (ℤ/nℤ‘(♯‘𝑆)) = (ℤ/nℤ‘(♯‘𝑆))
43zncrng 21470 . . . . 5 ((♯‘𝑆) ∈ ℕ0 → (ℤ/nℤ‘(♯‘𝑆)) ∈ CRing)
5 crngring 20149 . . . . 5 ((ℤ/nℤ‘(♯‘𝑆)) ∈ CRing → (ℤ/nℤ‘(♯‘𝑆)) ∈ Ring)
6 ringabl 20185 . . . . 5 ((ℤ/nℤ‘(♯‘𝑆)) ∈ Ring → (ℤ/nℤ‘(♯‘𝑆)) ∈ Abel)
72, 4, 5, 64syl 19 . . . 4 ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (ℤ/nℤ‘(♯‘𝑆)) ∈ Abel)
8 hashnncl 14292 . . . . . . . 8 (𝑆 ∈ Fin → ((♯‘𝑆) ∈ ℕ ↔ 𝑆 ≠ ∅))
98biimparc 479 . . . . . . 7 ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (♯‘𝑆) ∈ ℕ)
10 eqid 2729 . . . . . . . 8 (Base‘(ℤ/nℤ‘(♯‘𝑆))) = (Base‘(ℤ/nℤ‘(♯‘𝑆)))
113, 10znhash 21484 . . . . . . 7 ((♯‘𝑆) ∈ ℕ → (♯‘(Base‘(ℤ/nℤ‘(♯‘𝑆)))) = (♯‘𝑆))
129, 11syl 17 . . . . . 6 ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (♯‘(Base‘(ℤ/nℤ‘(♯‘𝑆)))) = (♯‘𝑆))
1312eqcomd 2735 . . . . 5 ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (♯‘𝑆) = (♯‘(Base‘(ℤ/nℤ‘(♯‘𝑆)))))
14 simpr 484 . . . . . 6 ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → 𝑆 ∈ Fin)
153, 10znfi 21485 . . . . . . 7 ((♯‘𝑆) ∈ ℕ → (Base‘(ℤ/nℤ‘(♯‘𝑆))) ∈ Fin)
169, 15syl 17 . . . . . 6 ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (Base‘(ℤ/nℤ‘(♯‘𝑆))) ∈ Fin)
17 hashen 14273 . . . . . 6 ((𝑆 ∈ Fin ∧ (Base‘(ℤ/nℤ‘(♯‘𝑆))) ∈ Fin) → ((♯‘𝑆) = (♯‘(Base‘(ℤ/nℤ‘(♯‘𝑆)))) ↔ 𝑆 ≈ (Base‘(ℤ/nℤ‘(♯‘𝑆)))))
1814, 16, 17syl2anc 584 . . . . 5 ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → ((♯‘𝑆) = (♯‘(Base‘(ℤ/nℤ‘(♯‘𝑆)))) ↔ 𝑆 ≈ (Base‘(ℤ/nℤ‘(♯‘𝑆)))))
1913, 18mpbid 232 . . . 4 ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → 𝑆 ≈ (Base‘(ℤ/nℤ‘(♯‘𝑆))))
2010isnumbasgrplem1 43094 . . . 4 (((ℤ/nℤ‘(♯‘𝑆)) ∈ Abel ∧ 𝑆 ≈ (Base‘(ℤ/nℤ‘(♯‘𝑆)))) → 𝑆 ∈ (Base “ Abel))
217, 19, 20syl2anc 584 . . 3 ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → 𝑆 ∈ (Base “ Abel))
2221adantll 714 . 2 (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ 𝑆 ∈ Fin) → 𝑆 ∈ (Base “ Abel))
23 2nn0 12420 . . . . . . 7 2 ∈ ℕ0
24 eqid 2729 . . . . . . . 8 (ℤ/nℤ‘2) = (ℤ/nℤ‘2)
2524zncrng 21470 . . . . . . 7 (2 ∈ ℕ0 → (ℤ/nℤ‘2) ∈ CRing)
26 crngring 20149 . . . . . . 7 ((ℤ/nℤ‘2) ∈ CRing → (ℤ/nℤ‘2) ∈ Ring)
2723, 25, 26mp2b 10 . . . . . 6 (ℤ/nℤ‘2) ∈ Ring
28 eqid 2729 . . . . . . 7 ((ℤ/nℤ‘2) freeLMod 𝑆) = ((ℤ/nℤ‘2) freeLMod 𝑆)
2928frlmlmod 21675 . . . . . 6 (((ℤ/nℤ‘2) ∈ Ring ∧ 𝑆 ∈ dom card) → ((ℤ/nℤ‘2) freeLMod 𝑆) ∈ LMod)
3027, 29mpan 690 . . . . 5 (𝑆 ∈ dom card → ((ℤ/nℤ‘2) freeLMod 𝑆) ∈ LMod)
31 lmodabl 20831 . . . . 5 (((ℤ/nℤ‘2) freeLMod 𝑆) ∈ LMod → ((ℤ/nℤ‘2) freeLMod 𝑆) ∈ Abel)
3230, 31syl 17 . . . 4 (𝑆 ∈ dom card → ((ℤ/nℤ‘2) freeLMod 𝑆) ∈ Abel)
3332ad2antrr 726 . . 3 (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → ((ℤ/nℤ‘2) freeLMod 𝑆) ∈ Abel)
34 eqid 2729 . . . . . . 7 (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) = (Base‘((ℤ/nℤ‘2) freeLMod 𝑆))
3524, 28, 34frlmpwfi 43091 . . . . . 6 (𝑆 ∈ dom card → (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) ≈ (𝒫 𝑆 ∩ Fin))
3635ad2antrr 726 . . . . 5 (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) ≈ (𝒫 𝑆 ∩ Fin))
37 simpll 766 . . . . . 6 (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → 𝑆 ∈ dom card)
38 numinfctb 43096 . . . . . . 7 ((𝑆 ∈ dom card ∧ ¬ 𝑆 ∈ Fin) → ω ≼ 𝑆)
3938adantlr 715 . . . . . 6 (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → ω ≼ 𝑆)
40 infpwfien 9975 . . . . . 6 ((𝑆 ∈ dom card ∧ ω ≼ 𝑆) → (𝒫 𝑆 ∩ Fin) ≈ 𝑆)
4137, 39, 40syl2anc 584 . . . . 5 (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → (𝒫 𝑆 ∩ Fin) ≈ 𝑆)
42 entr 8938 . . . . 5 (((Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) ≈ (𝒫 𝑆 ∩ Fin) ∧ (𝒫 𝑆 ∩ Fin) ≈ 𝑆) → (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) ≈ 𝑆)
4336, 41, 42syl2anc 584 . . . 4 (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) ≈ 𝑆)
4443ensymd 8937 . . 3 (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → 𝑆 ≈ (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)))
4534isnumbasgrplem1 43094 . . 3 ((((ℤ/nℤ‘2) freeLMod 𝑆) ∈ Abel ∧ 𝑆 ≈ (Base‘((ℤ/nℤ‘2) freeLMod 𝑆))) → 𝑆 ∈ (Base “ Abel))
4633, 44, 45syl2anc 584 . 2 (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → 𝑆 ∈ (Base “ Abel))
4722, 46pm2.61dan 812 1 ((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (Base “ Abel))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  cin 3904  c0 4286  𝒫 cpw 4553   class class class wbr 5095  dom cdm 5623  cima 5626  cfv 6486  (class class class)co 7353  ωcom 7806  cen 8876  cdom 8877  Fincfn 8879  cardccrd 9850  cn 12147  2c2 12202  0cn0 12403  chash 14256  Basecbs 17139  Abelcabl 19679  Ringcrg 20137  CRingccrg 20138  LModclmod 20782  ℤ/nczn 21428   freeLMod cfrlm 21672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107  ax-mulf 11108
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-seqom 8377  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-ec 8634  df-qs 8638  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-inf 9352  df-oi 9421  df-dju 9816  df-card 9854  df-acn 9857  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-z 12491  df-dec 12611  df-uz 12755  df-rp 12913  df-fz 13430  df-fzo 13577  df-fl 13715  df-mod 13793  df-seq 13928  df-hash 14257  df-dvds 16183  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-ress 17161  df-plusg 17193  df-mulr 17194  df-starv 17195  df-sca 17196  df-vsca 17197  df-ip 17198  df-tset 17199  df-ple 17200  df-ds 17202  df-unif 17203  df-hom 17204  df-cco 17205  df-0g 17364  df-prds 17370  df-pws 17372  df-imas 17431  df-qus 17432  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-mhm 18676  df-grp 18834  df-minusg 18835  df-sbg 18836  df-mulg 18966  df-subg 19021  df-nsg 19022  df-eqg 19023  df-ghm 19111  df-gim 19157  df-gic 19158  df-cmn 19680  df-abl 19681  df-mgp 20045  df-rng 20057  df-ur 20086  df-ring 20139  df-cring 20140  df-oppr 20241  df-dvdsr 20261  df-rhm 20376  df-subrng 20450  df-subrg 20474  df-lmod 20784  df-lss 20854  df-lsp 20894  df-sra 21096  df-rgmod 21097  df-lidl 21134  df-rsp 21135  df-2idl 21176  df-cnfld 21281  df-zring 21373  df-zrh 21429  df-zn 21432  df-dsmm 21658  df-frlm 21673
This theorem is referenced by:  isnumbasabl  43099  dfacbasgrp  43101
  Copyright terms: Public domain W3C validator