![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isnumbasgrplem3 | Structured version Visualization version GIF version |
Description: Every nonempty numerable set can be given the structure of an Abelian group, either a finite cyclic group or a vector space over Z/2Z. (Contributed by Stefan O'Rear, 10-Jul-2015.) |
Ref | Expression |
---|---|
isnumbasgrplem3 | ⊢ ((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (Base “ Abel)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashcl 14342 | . . . . . 6 ⊢ (𝑆 ∈ Fin → (♯‘𝑆) ∈ ℕ0) | |
2 | 1 | adantl 481 | . . . . 5 ⊢ ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (♯‘𝑆) ∈ ℕ0) |
3 | eqid 2728 | . . . . . 6 ⊢ (ℤ/nℤ‘(♯‘𝑆)) = (ℤ/nℤ‘(♯‘𝑆)) | |
4 | 3 | zncrng 21472 | . . . . 5 ⊢ ((♯‘𝑆) ∈ ℕ0 → (ℤ/nℤ‘(♯‘𝑆)) ∈ CRing) |
5 | crngring 20179 | . . . . 5 ⊢ ((ℤ/nℤ‘(♯‘𝑆)) ∈ CRing → (ℤ/nℤ‘(♯‘𝑆)) ∈ Ring) | |
6 | ringabl 20211 | . . . . 5 ⊢ ((ℤ/nℤ‘(♯‘𝑆)) ∈ Ring → (ℤ/nℤ‘(♯‘𝑆)) ∈ Abel) | |
7 | 2, 4, 5, 6 | 4syl 19 | . . . 4 ⊢ ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (ℤ/nℤ‘(♯‘𝑆)) ∈ Abel) |
8 | hashnncl 14352 | . . . . . . . 8 ⊢ (𝑆 ∈ Fin → ((♯‘𝑆) ∈ ℕ ↔ 𝑆 ≠ ∅)) | |
9 | 8 | biimparc 479 | . . . . . . 7 ⊢ ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (♯‘𝑆) ∈ ℕ) |
10 | eqid 2728 | . . . . . . . 8 ⊢ (Base‘(ℤ/nℤ‘(♯‘𝑆))) = (Base‘(ℤ/nℤ‘(♯‘𝑆))) | |
11 | 3, 10 | znhash 21486 | . . . . . . 7 ⊢ ((♯‘𝑆) ∈ ℕ → (♯‘(Base‘(ℤ/nℤ‘(♯‘𝑆)))) = (♯‘𝑆)) |
12 | 9, 11 | syl 17 | . . . . . 6 ⊢ ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (♯‘(Base‘(ℤ/nℤ‘(♯‘𝑆)))) = (♯‘𝑆)) |
13 | 12 | eqcomd 2734 | . . . . 5 ⊢ ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (♯‘𝑆) = (♯‘(Base‘(ℤ/nℤ‘(♯‘𝑆))))) |
14 | simpr 484 | . . . . . 6 ⊢ ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → 𝑆 ∈ Fin) | |
15 | 3, 10 | znfi 21487 | . . . . . . 7 ⊢ ((♯‘𝑆) ∈ ℕ → (Base‘(ℤ/nℤ‘(♯‘𝑆))) ∈ Fin) |
16 | 9, 15 | syl 17 | . . . . . 6 ⊢ ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (Base‘(ℤ/nℤ‘(♯‘𝑆))) ∈ Fin) |
17 | hashen 14333 | . . . . . 6 ⊢ ((𝑆 ∈ Fin ∧ (Base‘(ℤ/nℤ‘(♯‘𝑆))) ∈ Fin) → ((♯‘𝑆) = (♯‘(Base‘(ℤ/nℤ‘(♯‘𝑆)))) ↔ 𝑆 ≈ (Base‘(ℤ/nℤ‘(♯‘𝑆))))) | |
18 | 14, 16, 17 | syl2anc 583 | . . . . 5 ⊢ ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → ((♯‘𝑆) = (♯‘(Base‘(ℤ/nℤ‘(♯‘𝑆)))) ↔ 𝑆 ≈ (Base‘(ℤ/nℤ‘(♯‘𝑆))))) |
19 | 13, 18 | mpbid 231 | . . . 4 ⊢ ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → 𝑆 ≈ (Base‘(ℤ/nℤ‘(♯‘𝑆)))) |
20 | 10 | isnumbasgrplem1 42516 | . . . 4 ⊢ (((ℤ/nℤ‘(♯‘𝑆)) ∈ Abel ∧ 𝑆 ≈ (Base‘(ℤ/nℤ‘(♯‘𝑆)))) → 𝑆 ∈ (Base “ Abel)) |
21 | 7, 19, 20 | syl2anc 583 | . . 3 ⊢ ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → 𝑆 ∈ (Base “ Abel)) |
22 | 21 | adantll 713 | . 2 ⊢ (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ 𝑆 ∈ Fin) → 𝑆 ∈ (Base “ Abel)) |
23 | 2nn0 12514 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
24 | eqid 2728 | . . . . . . . 8 ⊢ (ℤ/nℤ‘2) = (ℤ/nℤ‘2) | |
25 | 24 | zncrng 21472 | . . . . . . 7 ⊢ (2 ∈ ℕ0 → (ℤ/nℤ‘2) ∈ CRing) |
26 | crngring 20179 | . . . . . . 7 ⊢ ((ℤ/nℤ‘2) ∈ CRing → (ℤ/nℤ‘2) ∈ Ring) | |
27 | 23, 25, 26 | mp2b 10 | . . . . . 6 ⊢ (ℤ/nℤ‘2) ∈ Ring |
28 | eqid 2728 | . . . . . . 7 ⊢ ((ℤ/nℤ‘2) freeLMod 𝑆) = ((ℤ/nℤ‘2) freeLMod 𝑆) | |
29 | 28 | frlmlmod 21677 | . . . . . 6 ⊢ (((ℤ/nℤ‘2) ∈ Ring ∧ 𝑆 ∈ dom card) → ((ℤ/nℤ‘2) freeLMod 𝑆) ∈ LMod) |
30 | 27, 29 | mpan 689 | . . . . 5 ⊢ (𝑆 ∈ dom card → ((ℤ/nℤ‘2) freeLMod 𝑆) ∈ LMod) |
31 | lmodabl 20786 | . . . . 5 ⊢ (((ℤ/nℤ‘2) freeLMod 𝑆) ∈ LMod → ((ℤ/nℤ‘2) freeLMod 𝑆) ∈ Abel) | |
32 | 30, 31 | syl 17 | . . . 4 ⊢ (𝑆 ∈ dom card → ((ℤ/nℤ‘2) freeLMod 𝑆) ∈ Abel) |
33 | 32 | ad2antrr 725 | . . 3 ⊢ (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → ((ℤ/nℤ‘2) freeLMod 𝑆) ∈ Abel) |
34 | eqid 2728 | . . . . . . 7 ⊢ (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) = (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) | |
35 | 24, 28, 34 | frlmpwfi 42513 | . . . . . 6 ⊢ (𝑆 ∈ dom card → (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) ≈ (𝒫 𝑆 ∩ Fin)) |
36 | 35 | ad2antrr 725 | . . . . 5 ⊢ (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) ≈ (𝒫 𝑆 ∩ Fin)) |
37 | simpll 766 | . . . . . 6 ⊢ (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → 𝑆 ∈ dom card) | |
38 | numinfctb 42518 | . . . . . . 7 ⊢ ((𝑆 ∈ dom card ∧ ¬ 𝑆 ∈ Fin) → ω ≼ 𝑆) | |
39 | 38 | adantlr 714 | . . . . . 6 ⊢ (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → ω ≼ 𝑆) |
40 | infpwfien 10080 | . . . . . 6 ⊢ ((𝑆 ∈ dom card ∧ ω ≼ 𝑆) → (𝒫 𝑆 ∩ Fin) ≈ 𝑆) | |
41 | 37, 39, 40 | syl2anc 583 | . . . . 5 ⊢ (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → (𝒫 𝑆 ∩ Fin) ≈ 𝑆) |
42 | entr 9021 | . . . . 5 ⊢ (((Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) ≈ (𝒫 𝑆 ∩ Fin) ∧ (𝒫 𝑆 ∩ Fin) ≈ 𝑆) → (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) ≈ 𝑆) | |
43 | 36, 41, 42 | syl2anc 583 | . . . 4 ⊢ (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) ≈ 𝑆) |
44 | 43 | ensymd 9020 | . . 3 ⊢ (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → 𝑆 ≈ (Base‘((ℤ/nℤ‘2) freeLMod 𝑆))) |
45 | 34 | isnumbasgrplem1 42516 | . . 3 ⊢ ((((ℤ/nℤ‘2) freeLMod 𝑆) ∈ Abel ∧ 𝑆 ≈ (Base‘((ℤ/nℤ‘2) freeLMod 𝑆))) → 𝑆 ∈ (Base “ Abel)) |
46 | 33, 44, 45 | syl2anc 583 | . 2 ⊢ (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → 𝑆 ∈ (Base “ Abel)) |
47 | 22, 46 | pm2.61dan 812 | 1 ⊢ ((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (Base “ Abel)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ≠ wne 2936 ∩ cin 3944 ∅c0 4319 𝒫 cpw 4599 class class class wbr 5143 dom cdm 5673 “ cima 5676 ‘cfv 6543 (class class class)co 7415 ωcom 7865 ≈ cen 8955 ≼ cdom 8956 Fincfn 8958 cardccrd 9953 ℕcn 12237 2c2 12292 ℕ0cn0 12497 ♯chash 14316 Basecbs 17174 Abelcabl 19730 Ringcrg 20167 CRingccrg 20168 LModclmod 20737 ℤ/nℤczn 21422 freeLMod cfrlm 21674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-inf2 9659 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 ax-pre-sup 11211 ax-addf 11212 ax-mulf 11213 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-se 5629 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7866 df-1st 7988 df-2nd 7989 df-supp 8161 df-tpos 8226 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-seqom 8463 df-1o 8481 df-2o 8482 df-oadd 8485 df-er 8719 df-ec 8721 df-qs 8725 df-map 8841 df-ixp 8911 df-en 8959 df-dom 8960 df-sdom 8961 df-fin 8962 df-fsupp 9381 df-sup 9460 df-inf 9461 df-oi 9528 df-dju 9919 df-card 9957 df-acn 9960 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-div 11897 df-nn 12238 df-2 12300 df-3 12301 df-4 12302 df-5 12303 df-6 12304 df-7 12305 df-8 12306 df-9 12307 df-n0 12498 df-z 12584 df-dec 12703 df-uz 12848 df-rp 13002 df-fz 13512 df-fzo 13655 df-fl 13784 df-mod 13862 df-seq 13994 df-hash 14317 df-dvds 16226 df-struct 17110 df-sets 17127 df-slot 17145 df-ndx 17157 df-base 17175 df-ress 17204 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-0g 17417 df-prds 17423 df-pws 17425 df-imas 17484 df-qus 17485 df-mgm 18594 df-sgrp 18673 df-mnd 18689 df-mhm 18734 df-grp 18887 df-minusg 18888 df-sbg 18889 df-mulg 19018 df-subg 19072 df-nsg 19073 df-eqg 19074 df-ghm 19162 df-gim 19207 df-gic 19208 df-cmn 19731 df-abl 19732 df-mgp 20069 df-rng 20087 df-ur 20116 df-ring 20169 df-cring 20170 df-oppr 20267 df-dvdsr 20290 df-rhm 20405 df-subrng 20477 df-subrg 20502 df-lmod 20739 df-lss 20810 df-lsp 20850 df-sra 21052 df-rgmod 21053 df-lidl 21098 df-rsp 21099 df-2idl 21138 df-cnfld 21274 df-zring 21367 df-zrh 21423 df-zn 21426 df-dsmm 21660 df-frlm 21675 |
This theorem is referenced by: isnumbasabl 42521 dfacbasgrp 42523 |
Copyright terms: Public domain | W3C validator |