Proof of Theorem nn0opthi
Step | Hyp | Ref
| Expression |
1 | | nn0opth.1 |
. . . . . . . . . 10
⊢ 𝐴 ∈
ℕ0 |
2 | | nn0opth.2 |
. . . . . . . . . 10
⊢ 𝐵 ∈
ℕ0 |
3 | 1, 2 | nn0addcli 12200 |
. . . . . . . . 9
⊢ (𝐴 + 𝐵) ∈
ℕ0 |
4 | 3 | nn0rei 12174 |
. . . . . . . 8
⊢ (𝐴 + 𝐵) ∈ ℝ |
5 | | nn0opth.3 |
. . . . . . . . . 10
⊢ 𝐶 ∈
ℕ0 |
6 | | nn0opth.4 |
. . . . . . . . . 10
⊢ 𝐷 ∈
ℕ0 |
7 | 5, 6 | nn0addcli 12200 |
. . . . . . . . 9
⊢ (𝐶 + 𝐷) ∈
ℕ0 |
8 | 7 | nn0rei 12174 |
. . . . . . . 8
⊢ (𝐶 + 𝐷) ∈ ℝ |
9 | 4, 8 | lttri2i 11019 |
. . . . . . 7
⊢ ((𝐴 + 𝐵) ≠ (𝐶 + 𝐷) ↔ ((𝐴 + 𝐵) < (𝐶 + 𝐷) ∨ (𝐶 + 𝐷) < (𝐴 + 𝐵))) |
10 | 1, 2, 7, 6 | nn0opthlem2 13911 |
. . . . . . . . 9
⊢ ((𝐴 + 𝐵) < (𝐶 + 𝐷) → (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵)) |
11 | 10 | necomd 2998 |
. . . . . . . 8
⊢ ((𝐴 + 𝐵) < (𝐶 + 𝐷) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≠ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) |
12 | 5, 6, 3, 2 | nn0opthlem2 13911 |
. . . . . . . 8
⊢ ((𝐶 + 𝐷) < (𝐴 + 𝐵) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≠ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) |
13 | 11, 12 | jaoi 853 |
. . . . . . 7
⊢ (((𝐴 + 𝐵) < (𝐶 + 𝐷) ∨ (𝐶 + 𝐷) < (𝐴 + 𝐵)) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≠ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) |
14 | 9, 13 | sylbi 216 |
. . . . . 6
⊢ ((𝐴 + 𝐵) ≠ (𝐶 + 𝐷) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≠ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) |
15 | 14 | necon4i 2978 |
. . . . 5
⊢ ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) → (𝐴 + 𝐵) = (𝐶 + 𝐷)) |
16 | | id 22 |
. . . . . . . 8
⊢ ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) |
17 | 15, 15 | oveq12d 7273 |
. . . . . . . . 9
⊢ ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) → ((𝐴 + 𝐵) · (𝐴 + 𝐵)) = ((𝐶 + 𝐷) · (𝐶 + 𝐷))) |
18 | 17 | oveq1d 7270 |
. . . . . . . 8
⊢ ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐷) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) |
19 | 16, 18 | eqtr4d 2781 |
. . . . . . 7
⊢ ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐷)) |
20 | 3 | nn0cni 12175 |
. . . . . . . . 9
⊢ (𝐴 + 𝐵) ∈ ℂ |
21 | 20, 20 | mulcli 10913 |
. . . . . . . 8
⊢ ((𝐴 + 𝐵) · (𝐴 + 𝐵)) ∈ ℂ |
22 | 2 | nn0cni 12175 |
. . . . . . . 8
⊢ 𝐵 ∈ ℂ |
23 | 6 | nn0cni 12175 |
. . . . . . . 8
⊢ 𝐷 ∈ ℂ |
24 | 21, 22, 23 | addcani 11098 |
. . . . . . 7
⊢ ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐷) ↔ 𝐵 = 𝐷) |
25 | 19, 24 | sylib 217 |
. . . . . 6
⊢ ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) → 𝐵 = 𝐷) |
26 | 25 | oveq2d 7271 |
. . . . 5
⊢ ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) → (𝐶 + 𝐵) = (𝐶 + 𝐷)) |
27 | 15, 26 | eqtr4d 2781 |
. . . 4
⊢ ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) → (𝐴 + 𝐵) = (𝐶 + 𝐵)) |
28 | 1 | nn0cni 12175 |
. . . . 5
⊢ 𝐴 ∈ ℂ |
29 | 5 | nn0cni 12175 |
. . . . 5
⊢ 𝐶 ∈ ℂ |
30 | 28, 29, 22 | addcan2i 11099 |
. . . 4
⊢ ((𝐴 + 𝐵) = (𝐶 + 𝐵) ↔ 𝐴 = 𝐶) |
31 | 27, 30 | sylib 217 |
. . 3
⊢ ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) → 𝐴 = 𝐶) |
32 | 31, 25 | jca 511 |
. 2
⊢ ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
33 | | oveq12 7264 |
. . . 4
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐴 + 𝐵) = (𝐶 + 𝐷)) |
34 | 33, 33 | oveq12d 7273 |
. . 3
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → ((𝐴 + 𝐵) · (𝐴 + 𝐵)) = ((𝐶 + 𝐷) · (𝐶 + 𝐷))) |
35 | | simpr 484 |
. . 3
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 𝐵 = 𝐷) |
36 | 34, 35 | oveq12d 7273 |
. 2
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) |
37 | 32, 36 | impbii 208 |
1
⊢ ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |