MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0opthi Structured version   Visualization version   GIF version

Theorem nn0opthi 13261
Description: An ordered pair theorem for nonnegative integers. Theorem 17.3 of [Quine] p. 124. We can represent an ordered pair of nonnegative integers 𝐴 and 𝐵 by (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵). If two such ordered pairs are equal, their first elements are equal and their second elements are equal. Contrast this ordered pair representation with the standard one df-op 4323 that works for any set. (Contributed by Raph Levien, 10-Dec-2002.) (Proof shortened by Scott Fenton, 8-Sep-2010.)
Hypotheses
Ref Expression
nn0opth.1 𝐴 ∈ ℕ0
nn0opth.2 𝐵 ∈ ℕ0
nn0opth.3 𝐶 ∈ ℕ0
nn0opth.4 𝐷 ∈ ℕ0
Assertion
Ref Expression
nn0opthi ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem nn0opthi
StepHypRef Expression
1 nn0opth.1 . . . . . . . . . 10 𝐴 ∈ ℕ0
2 nn0opth.2 . . . . . . . . . 10 𝐵 ∈ ℕ0
31, 2nn0addcli 11532 . . . . . . . . 9 (𝐴 + 𝐵) ∈ ℕ0
43nn0rei 11505 . . . . . . . 8 (𝐴 + 𝐵) ∈ ℝ
5 nn0opth.3 . . . . . . . . . 10 𝐶 ∈ ℕ0
6 nn0opth.4 . . . . . . . . . 10 𝐷 ∈ ℕ0
75, 6nn0addcli 11532 . . . . . . . . 9 (𝐶 + 𝐷) ∈ ℕ0
87nn0rei 11505 . . . . . . . 8 (𝐶 + 𝐷) ∈ ℝ
94, 8lttri2i 10353 . . . . . . 7 ((𝐴 + 𝐵) ≠ (𝐶 + 𝐷) ↔ ((𝐴 + 𝐵) < (𝐶 + 𝐷) ∨ (𝐶 + 𝐷) < (𝐴 + 𝐵)))
101, 2, 7, 6nn0opthlem2 13260 . . . . . . . . 9 ((𝐴 + 𝐵) < (𝐶 + 𝐷) → (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵))
1110necomd 2998 . . . . . . . 8 ((𝐴 + 𝐵) < (𝐶 + 𝐷) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≠ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷))
125, 6, 3, 2nn0opthlem2 13260 . . . . . . . 8 ((𝐶 + 𝐷) < (𝐴 + 𝐵) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≠ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷))
1311, 12jaoi 846 . . . . . . 7 (((𝐴 + 𝐵) < (𝐶 + 𝐷) ∨ (𝐶 + 𝐷) < (𝐴 + 𝐵)) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≠ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷))
149, 13sylbi 207 . . . . . 6 ((𝐴 + 𝐵) ≠ (𝐶 + 𝐷) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≠ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷))
1514necon4i 2978 . . . . 5 ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) → (𝐴 + 𝐵) = (𝐶 + 𝐷))
16 id 22 . . . . . . . 8 ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷))
1715, 15oveq12d 6811 . . . . . . . . 9 ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) → ((𝐴 + 𝐵) · (𝐴 + 𝐵)) = ((𝐶 + 𝐷) · (𝐶 + 𝐷)))
1817oveq1d 6808 . . . . . . . 8 ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐷) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷))
1916, 18eqtr4d 2808 . . . . . . 7 ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐷))
203nn0cni 11506 . . . . . . . . 9 (𝐴 + 𝐵) ∈ ℂ
2120, 20mulcli 10247 . . . . . . . 8 ((𝐴 + 𝐵) · (𝐴 + 𝐵)) ∈ ℂ
222nn0cni 11506 . . . . . . . 8 𝐵 ∈ ℂ
236nn0cni 11506 . . . . . . . 8 𝐷 ∈ ℂ
2421, 22, 23addcani 10431 . . . . . . 7 ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐷) ↔ 𝐵 = 𝐷)
2519, 24sylib 208 . . . . . 6 ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) → 𝐵 = 𝐷)
2625oveq2d 6809 . . . . 5 ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) → (𝐶 + 𝐵) = (𝐶 + 𝐷))
2715, 26eqtr4d 2808 . . . 4 ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) → (𝐴 + 𝐵) = (𝐶 + 𝐵))
281nn0cni 11506 . . . . 5 𝐴 ∈ ℂ
295nn0cni 11506 . . . . 5 𝐶 ∈ ℂ
3028, 29, 22addcan2i 10432 . . . 4 ((𝐴 + 𝐵) = (𝐶 + 𝐵) ↔ 𝐴 = 𝐶)
3127, 30sylib 208 . . 3 ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) → 𝐴 = 𝐶)
3231, 25jca 501 . 2 ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷))
33 oveq12 6802 . . . 4 ((𝐴 = 𝐶𝐵 = 𝐷) → (𝐴 + 𝐵) = (𝐶 + 𝐷))
3433, 33oveq12d 6811 . . 3 ((𝐴 = 𝐶𝐵 = 𝐷) → ((𝐴 + 𝐵) · (𝐴 + 𝐵)) = ((𝐶 + 𝐷) · (𝐶 + 𝐷)))
35 simpr 471 . . 3 ((𝐴 = 𝐶𝐵 = 𝐷) → 𝐵 = 𝐷)
3634, 35oveq12d 6811 . 2 ((𝐴 = 𝐶𝐵 = 𝐷) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷))
3732, 36impbii 199 1 ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 382  wo 836   = wceq 1631  wcel 2145  wne 2943   class class class wbr 4786  (class class class)co 6793   + caddc 10141   · cmul 10143   < clt 10276  0cn0 11494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-n0 11495  df-z 11580  df-uz 11889  df-seq 13009  df-exp 13068
This theorem is referenced by:  nn0opth2i  13262
  Copyright terms: Public domain W3C validator