Proof of Theorem nn0opthi
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | nn0opth.1 | . . . . . . . . . 10
⊢ 𝐴 ∈
ℕ0 | 
| 2 |  | nn0opth.2 | . . . . . . . . . 10
⊢ 𝐵 ∈
ℕ0 | 
| 3 | 1, 2 | nn0addcli 12565 | . . . . . . . . 9
⊢ (𝐴 + 𝐵) ∈
ℕ0 | 
| 4 | 3 | nn0rei 12539 | . . . . . . . 8
⊢ (𝐴 + 𝐵) ∈ ℝ | 
| 5 |  | nn0opth.3 | . . . . . . . . . 10
⊢ 𝐶 ∈
ℕ0 | 
| 6 |  | nn0opth.4 | . . . . . . . . . 10
⊢ 𝐷 ∈
ℕ0 | 
| 7 | 5, 6 | nn0addcli 12565 | . . . . . . . . 9
⊢ (𝐶 + 𝐷) ∈
ℕ0 | 
| 8 | 7 | nn0rei 12539 | . . . . . . . 8
⊢ (𝐶 + 𝐷) ∈ ℝ | 
| 9 | 4, 8 | lttri2i 11376 | . . . . . . 7
⊢ ((𝐴 + 𝐵) ≠ (𝐶 + 𝐷) ↔ ((𝐴 + 𝐵) < (𝐶 + 𝐷) ∨ (𝐶 + 𝐷) < (𝐴 + 𝐵))) | 
| 10 | 1, 2, 7, 6 | nn0opthlem2 14309 | . . . . . . . . 9
⊢ ((𝐴 + 𝐵) < (𝐶 + 𝐷) → (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵)) | 
| 11 | 10 | necomd 2995 | . . . . . . . 8
⊢ ((𝐴 + 𝐵) < (𝐶 + 𝐷) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≠ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) | 
| 12 | 5, 6, 3, 2 | nn0opthlem2 14309 | . . . . . . . 8
⊢ ((𝐶 + 𝐷) < (𝐴 + 𝐵) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≠ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) | 
| 13 | 11, 12 | jaoi 857 | . . . . . . 7
⊢ (((𝐴 + 𝐵) < (𝐶 + 𝐷) ∨ (𝐶 + 𝐷) < (𝐴 + 𝐵)) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≠ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) | 
| 14 | 9, 13 | sylbi 217 | . . . . . 6
⊢ ((𝐴 + 𝐵) ≠ (𝐶 + 𝐷) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≠ (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) | 
| 15 | 14 | necon4i 2975 | . . . . 5
⊢ ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) → (𝐴 + 𝐵) = (𝐶 + 𝐷)) | 
| 16 |  | id 22 | . . . . . . . 8
⊢ ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) | 
| 17 | 15, 15 | oveq12d 7450 | . . . . . . . . 9
⊢ ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) → ((𝐴 + 𝐵) · (𝐴 + 𝐵)) = ((𝐶 + 𝐷) · (𝐶 + 𝐷))) | 
| 18 | 17 | oveq1d 7447 | . . . . . . . 8
⊢ ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐷) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) | 
| 19 | 16, 18 | eqtr4d 2779 | . . . . . . 7
⊢ ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐷)) | 
| 20 | 3 | nn0cni 12540 | . . . . . . . . 9
⊢ (𝐴 + 𝐵) ∈ ℂ | 
| 21 | 20, 20 | mulcli 11269 | . . . . . . . 8
⊢ ((𝐴 + 𝐵) · (𝐴 + 𝐵)) ∈ ℂ | 
| 22 | 2 | nn0cni 12540 | . . . . . . . 8
⊢ 𝐵 ∈ ℂ | 
| 23 | 6 | nn0cni 12540 | . . . . . . . 8
⊢ 𝐷 ∈ ℂ | 
| 24 | 21, 22, 23 | addcani 11455 | . . . . . . 7
⊢ ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐷) ↔ 𝐵 = 𝐷) | 
| 25 | 19, 24 | sylib 218 | . . . . . 6
⊢ ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) → 𝐵 = 𝐷) | 
| 26 | 25 | oveq2d 7448 | . . . . 5
⊢ ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) → (𝐶 + 𝐵) = (𝐶 + 𝐷)) | 
| 27 | 15, 26 | eqtr4d 2779 | . . . 4
⊢ ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) → (𝐴 + 𝐵) = (𝐶 + 𝐵)) | 
| 28 | 1 | nn0cni 12540 | . . . . 5
⊢ 𝐴 ∈ ℂ | 
| 29 | 5 | nn0cni 12540 | . . . . 5
⊢ 𝐶 ∈ ℂ | 
| 30 | 28, 29, 22 | addcan2i 11456 | . . . 4
⊢ ((𝐴 + 𝐵) = (𝐶 + 𝐵) ↔ 𝐴 = 𝐶) | 
| 31 | 27, 30 | sylib 218 | . . 3
⊢ ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) → 𝐴 = 𝐶) | 
| 32 | 31, 25 | jca 511 | . 2
⊢ ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | 
| 33 |  | oveq12 7441 | . . . 4
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐴 + 𝐵) = (𝐶 + 𝐷)) | 
| 34 | 33, 33 | oveq12d 7450 | . . 3
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → ((𝐴 + 𝐵) · (𝐴 + 𝐵)) = ((𝐶 + 𝐷) · (𝐶 + 𝐷))) | 
| 35 |  | simpr 484 | . . 3
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 𝐵 = 𝐷) | 
| 36 | 34, 35 | oveq12d 7450 | . 2
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) | 
| 37 | 32, 36 | impbii 209 | 1
⊢ ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |