Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pl42lem1N Structured version   Visualization version   GIF version

Theorem pl42lem1N 39154
Description: Lemma for pl42N 39158. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pl42lem.b 𝐡 = (Baseβ€˜πΎ)
pl42lem.l ≀ = (leβ€˜πΎ)
pl42lem.j ∨ = (joinβ€˜πΎ)
pl42lem.m ∧ = (meetβ€˜πΎ)
pl42lem.o βŠ₯ = (ocβ€˜πΎ)
pl42lem.f 𝐹 = (pmapβ€˜πΎ)
pl42lem.p + = (+π‘ƒβ€˜πΎ)
Assertion
Ref Expression
pl42lem1N (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡 ∧ 𝑉 ∈ 𝐡)) β†’ ((𝑋 ≀ ( βŠ₯ β€˜π‘Œ) ∧ 𝑍 ≀ ( βŠ₯ β€˜π‘Š)) β†’ (πΉβ€˜((((𝑋 ∨ π‘Œ) ∧ 𝑍) ∨ π‘Š) ∧ 𝑉)) = (((((πΉβ€˜π‘‹) + (πΉβ€˜π‘Œ)) ∩ (πΉβ€˜π‘)) + (πΉβ€˜π‘Š)) ∩ (πΉβ€˜π‘‰))))

Proof of Theorem pl42lem1N
StepHypRef Expression
1 simp11 1202 . . . 4 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡 ∧ 𝑉 ∈ 𝐡) ∧ (𝑋 ≀ ( βŠ₯ β€˜π‘Œ) ∧ 𝑍 ≀ ( βŠ₯ β€˜π‘Š))) β†’ 𝐾 ∈ HL)
21hllatd 38538 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡 ∧ 𝑉 ∈ 𝐡) ∧ (𝑋 ≀ ( βŠ₯ β€˜π‘Œ) ∧ 𝑍 ≀ ( βŠ₯ β€˜π‘Š))) β†’ 𝐾 ∈ Lat)
3 simp12 1203 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡 ∧ 𝑉 ∈ 𝐡) ∧ (𝑋 ≀ ( βŠ₯ β€˜π‘Œ) ∧ 𝑍 ≀ ( βŠ₯ β€˜π‘Š))) β†’ 𝑋 ∈ 𝐡)
4 simp13 1204 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡 ∧ 𝑉 ∈ 𝐡) ∧ (𝑋 ≀ ( βŠ₯ β€˜π‘Œ) ∧ 𝑍 ≀ ( βŠ₯ β€˜π‘Š))) β†’ π‘Œ ∈ 𝐡)
5 pl42lem.b . . . . . . . 8 𝐡 = (Baseβ€˜πΎ)
6 pl42lem.j . . . . . . . 8 ∨ = (joinβ€˜πΎ)
75, 6latjcl 18397 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋 ∨ π‘Œ) ∈ 𝐡)
82, 3, 4, 7syl3anc 1370 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡 ∧ 𝑉 ∈ 𝐡) ∧ (𝑋 ≀ ( βŠ₯ β€˜π‘Œ) ∧ 𝑍 ≀ ( βŠ₯ β€˜π‘Š))) β†’ (𝑋 ∨ π‘Œ) ∈ 𝐡)
9 simp21 1205 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡 ∧ 𝑉 ∈ 𝐡) ∧ (𝑋 ≀ ( βŠ₯ β€˜π‘Œ) ∧ 𝑍 ≀ ( βŠ₯ β€˜π‘Š))) β†’ 𝑍 ∈ 𝐡)
10 pl42lem.m . . . . . . 7 ∧ = (meetβ€˜πΎ)
115, 10latmcl 18398 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑋 ∨ π‘Œ) ∈ 𝐡 ∧ 𝑍 ∈ 𝐡) β†’ ((𝑋 ∨ π‘Œ) ∧ 𝑍) ∈ 𝐡)
122, 8, 9, 11syl3anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡 ∧ 𝑉 ∈ 𝐡) ∧ (𝑋 ≀ ( βŠ₯ β€˜π‘Œ) ∧ 𝑍 ≀ ( βŠ₯ β€˜π‘Š))) β†’ ((𝑋 ∨ π‘Œ) ∧ 𝑍) ∈ 𝐡)
13 simp22 1206 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡 ∧ 𝑉 ∈ 𝐡) ∧ (𝑋 ≀ ( βŠ₯ β€˜π‘Œ) ∧ 𝑍 ≀ ( βŠ₯ β€˜π‘Š))) β†’ π‘Š ∈ 𝐡)
145, 6latjcl 18397 . . . . 5 ((𝐾 ∈ Lat ∧ ((𝑋 ∨ π‘Œ) ∧ 𝑍) ∈ 𝐡 ∧ π‘Š ∈ 𝐡) β†’ (((𝑋 ∨ π‘Œ) ∧ 𝑍) ∨ π‘Š) ∈ 𝐡)
152, 12, 13, 14syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡 ∧ 𝑉 ∈ 𝐡) ∧ (𝑋 ≀ ( βŠ₯ β€˜π‘Œ) ∧ 𝑍 ≀ ( βŠ₯ β€˜π‘Š))) β†’ (((𝑋 ∨ π‘Œ) ∧ 𝑍) ∨ π‘Š) ∈ 𝐡)
16 simp23 1207 . . . 4 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡 ∧ 𝑉 ∈ 𝐡) ∧ (𝑋 ≀ ( βŠ₯ β€˜π‘Œ) ∧ 𝑍 ≀ ( βŠ₯ β€˜π‘Š))) β†’ 𝑉 ∈ 𝐡)
17 eqid 2731 . . . . 5 (Atomsβ€˜πΎ) = (Atomsβ€˜πΎ)
18 pl42lem.f . . . . 5 𝐹 = (pmapβ€˜πΎ)
195, 10, 17, 18pmapmeet 38948 . . . 4 ((𝐾 ∈ HL ∧ (((𝑋 ∨ π‘Œ) ∧ 𝑍) ∨ π‘Š) ∈ 𝐡 ∧ 𝑉 ∈ 𝐡) β†’ (πΉβ€˜((((𝑋 ∨ π‘Œ) ∧ 𝑍) ∨ π‘Š) ∧ 𝑉)) = ((πΉβ€˜(((𝑋 ∨ π‘Œ) ∧ 𝑍) ∨ π‘Š)) ∩ (πΉβ€˜π‘‰)))
201, 15, 16, 19syl3anc 1370 . . 3 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡 ∧ 𝑉 ∈ 𝐡) ∧ (𝑋 ≀ ( βŠ₯ β€˜π‘Œ) ∧ 𝑍 ≀ ( βŠ₯ β€˜π‘Š))) β†’ (πΉβ€˜((((𝑋 ∨ π‘Œ) ∧ 𝑍) ∨ π‘Š) ∧ 𝑉)) = ((πΉβ€˜(((𝑋 ∨ π‘Œ) ∧ 𝑍) ∨ π‘Š)) ∩ (πΉβ€˜π‘‰)))
21 pl42lem.l . . . . . . 7 ≀ = (leβ€˜πΎ)
22 hlop 38536 . . . . . . . . 9 (𝐾 ∈ HL β†’ 𝐾 ∈ OP)
231, 22syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡 ∧ 𝑉 ∈ 𝐡) ∧ (𝑋 ≀ ( βŠ₯ β€˜π‘Œ) ∧ 𝑍 ≀ ( βŠ₯ β€˜π‘Š))) β†’ 𝐾 ∈ OP)
24 pl42lem.o . . . . . . . . 9 βŠ₯ = (ocβ€˜πΎ)
255, 24opoccl 38368 . . . . . . . 8 ((𝐾 ∈ OP ∧ π‘Š ∈ 𝐡) β†’ ( βŠ₯ β€˜π‘Š) ∈ 𝐡)
2623, 13, 25syl2anc 583 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡 ∧ 𝑉 ∈ 𝐡) ∧ (𝑋 ≀ ( βŠ₯ β€˜π‘Œ) ∧ 𝑍 ≀ ( βŠ₯ β€˜π‘Š))) β†’ ( βŠ₯ β€˜π‘Š) ∈ 𝐡)
275, 21, 10latmle2 18423 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑋 ∨ π‘Œ) ∈ 𝐡 ∧ 𝑍 ∈ 𝐡) β†’ ((𝑋 ∨ π‘Œ) ∧ 𝑍) ≀ 𝑍)
282, 8, 9, 27syl3anc 1370 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡 ∧ 𝑉 ∈ 𝐡) ∧ (𝑋 ≀ ( βŠ₯ β€˜π‘Œ) ∧ 𝑍 ≀ ( βŠ₯ β€˜π‘Š))) β†’ ((𝑋 ∨ π‘Œ) ∧ 𝑍) ≀ 𝑍)
29 simp3r 1201 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡 ∧ 𝑉 ∈ 𝐡) ∧ (𝑋 ≀ ( βŠ₯ β€˜π‘Œ) ∧ 𝑍 ≀ ( βŠ₯ β€˜π‘Š))) β†’ 𝑍 ≀ ( βŠ₯ β€˜π‘Š))
305, 21, 2, 12, 9, 26, 28, 29lattrd 18404 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡 ∧ 𝑉 ∈ 𝐡) ∧ (𝑋 ≀ ( βŠ₯ β€˜π‘Œ) ∧ 𝑍 ≀ ( βŠ₯ β€˜π‘Š))) β†’ ((𝑋 ∨ π‘Œ) ∧ 𝑍) ≀ ( βŠ₯ β€˜π‘Š))
31 pl42lem.p . . . . . . 7 + = (+π‘ƒβ€˜πΎ)
325, 21, 6, 18, 24, 31pmapojoinN 39143 . . . . . 6 (((𝐾 ∈ HL ∧ ((𝑋 ∨ π‘Œ) ∧ 𝑍) ∈ 𝐡 ∧ π‘Š ∈ 𝐡) ∧ ((𝑋 ∨ π‘Œ) ∧ 𝑍) ≀ ( βŠ₯ β€˜π‘Š)) β†’ (πΉβ€˜(((𝑋 ∨ π‘Œ) ∧ 𝑍) ∨ π‘Š)) = ((πΉβ€˜((𝑋 ∨ π‘Œ) ∧ 𝑍)) + (πΉβ€˜π‘Š)))
331, 12, 13, 30, 32syl31anc 1372 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡 ∧ 𝑉 ∈ 𝐡) ∧ (𝑋 ≀ ( βŠ₯ β€˜π‘Œ) ∧ 𝑍 ≀ ( βŠ₯ β€˜π‘Š))) β†’ (πΉβ€˜(((𝑋 ∨ π‘Œ) ∧ 𝑍) ∨ π‘Š)) = ((πΉβ€˜((𝑋 ∨ π‘Œ) ∧ 𝑍)) + (πΉβ€˜π‘Š)))
345, 10, 17, 18pmapmeet 38948 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋 ∨ π‘Œ) ∈ 𝐡 ∧ 𝑍 ∈ 𝐡) β†’ (πΉβ€˜((𝑋 ∨ π‘Œ) ∧ 𝑍)) = ((πΉβ€˜(𝑋 ∨ π‘Œ)) ∩ (πΉβ€˜π‘)))
351, 8, 9, 34syl3anc 1370 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡 ∧ 𝑉 ∈ 𝐡) ∧ (𝑋 ≀ ( βŠ₯ β€˜π‘Œ) ∧ 𝑍 ≀ ( βŠ₯ β€˜π‘Š))) β†’ (πΉβ€˜((𝑋 ∨ π‘Œ) ∧ 𝑍)) = ((πΉβ€˜(𝑋 ∨ π‘Œ)) ∩ (πΉβ€˜π‘)))
36 simp3l 1200 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡 ∧ 𝑉 ∈ 𝐡) ∧ (𝑋 ≀ ( βŠ₯ β€˜π‘Œ) ∧ 𝑍 ≀ ( βŠ₯ β€˜π‘Š))) β†’ 𝑋 ≀ ( βŠ₯ β€˜π‘Œ))
375, 21, 6, 18, 24, 31pmapojoinN 39143 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 ≀ ( βŠ₯ β€˜π‘Œ)) β†’ (πΉβ€˜(𝑋 ∨ π‘Œ)) = ((πΉβ€˜π‘‹) + (πΉβ€˜π‘Œ)))
381, 3, 4, 36, 37syl31anc 1372 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡 ∧ 𝑉 ∈ 𝐡) ∧ (𝑋 ≀ ( βŠ₯ β€˜π‘Œ) ∧ 𝑍 ≀ ( βŠ₯ β€˜π‘Š))) β†’ (πΉβ€˜(𝑋 ∨ π‘Œ)) = ((πΉβ€˜π‘‹) + (πΉβ€˜π‘Œ)))
3938ineq1d 4212 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡 ∧ 𝑉 ∈ 𝐡) ∧ (𝑋 ≀ ( βŠ₯ β€˜π‘Œ) ∧ 𝑍 ≀ ( βŠ₯ β€˜π‘Š))) β†’ ((πΉβ€˜(𝑋 ∨ π‘Œ)) ∩ (πΉβ€˜π‘)) = (((πΉβ€˜π‘‹) + (πΉβ€˜π‘Œ)) ∩ (πΉβ€˜π‘)))
4035, 39eqtrd 2771 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡 ∧ 𝑉 ∈ 𝐡) ∧ (𝑋 ≀ ( βŠ₯ β€˜π‘Œ) ∧ 𝑍 ≀ ( βŠ₯ β€˜π‘Š))) β†’ (πΉβ€˜((𝑋 ∨ π‘Œ) ∧ 𝑍)) = (((πΉβ€˜π‘‹) + (πΉβ€˜π‘Œ)) ∩ (πΉβ€˜π‘)))
4140oveq1d 7427 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡 ∧ 𝑉 ∈ 𝐡) ∧ (𝑋 ≀ ( βŠ₯ β€˜π‘Œ) ∧ 𝑍 ≀ ( βŠ₯ β€˜π‘Š))) β†’ ((πΉβ€˜((𝑋 ∨ π‘Œ) ∧ 𝑍)) + (πΉβ€˜π‘Š)) = ((((πΉβ€˜π‘‹) + (πΉβ€˜π‘Œ)) ∩ (πΉβ€˜π‘)) + (πΉβ€˜π‘Š)))
4233, 41eqtrd 2771 . . . 4 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡 ∧ 𝑉 ∈ 𝐡) ∧ (𝑋 ≀ ( βŠ₯ β€˜π‘Œ) ∧ 𝑍 ≀ ( βŠ₯ β€˜π‘Š))) β†’ (πΉβ€˜(((𝑋 ∨ π‘Œ) ∧ 𝑍) ∨ π‘Š)) = ((((πΉβ€˜π‘‹) + (πΉβ€˜π‘Œ)) ∩ (πΉβ€˜π‘)) + (πΉβ€˜π‘Š)))
4342ineq1d 4212 . . 3 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡 ∧ 𝑉 ∈ 𝐡) ∧ (𝑋 ≀ ( βŠ₯ β€˜π‘Œ) ∧ 𝑍 ≀ ( βŠ₯ β€˜π‘Š))) β†’ ((πΉβ€˜(((𝑋 ∨ π‘Œ) ∧ 𝑍) ∨ π‘Š)) ∩ (πΉβ€˜π‘‰)) = (((((πΉβ€˜π‘‹) + (πΉβ€˜π‘Œ)) ∩ (πΉβ€˜π‘)) + (πΉβ€˜π‘Š)) ∩ (πΉβ€˜π‘‰)))
4420, 43eqtrd 2771 . 2 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡 ∧ 𝑉 ∈ 𝐡) ∧ (𝑋 ≀ ( βŠ₯ β€˜π‘Œ) ∧ 𝑍 ≀ ( βŠ₯ β€˜π‘Š))) β†’ (πΉβ€˜((((𝑋 ∨ π‘Œ) ∧ 𝑍) ∨ π‘Š) ∧ 𝑉)) = (((((πΉβ€˜π‘‹) + (πΉβ€˜π‘Œ)) ∩ (πΉβ€˜π‘)) + (πΉβ€˜π‘Š)) ∩ (πΉβ€˜π‘‰)))
45443expia 1120 1 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡 ∧ 𝑉 ∈ 𝐡)) β†’ ((𝑋 ≀ ( βŠ₯ β€˜π‘Œ) ∧ 𝑍 ≀ ( βŠ₯ β€˜π‘Š)) β†’ (πΉβ€˜((((𝑋 ∨ π‘Œ) ∧ 𝑍) ∨ π‘Š) ∧ 𝑉)) = (((((πΉβ€˜π‘‹) + (πΉβ€˜π‘Œ)) ∩ (πΉβ€˜π‘)) + (πΉβ€˜π‘Š)) ∩ (πΉβ€˜π‘‰))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105   ∩ cin 3948   class class class wbr 5149  β€˜cfv 6544  (class class class)co 7412  Basecbs 17149  lecple 17209  occoc 17210  joincjn 18269  meetcmee 18270  Latclat 18389  OPcops 38346  Atomscatm 38437  HLchlt 38524  pmapcpmap 38672  +𝑃cpadd 38970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7978  df-2nd 7979  df-proset 18253  df-poset 18271  df-plt 18288  df-lub 18304  df-glb 18305  df-join 18306  df-meet 18307  df-p0 18383  df-p1 18384  df-lat 18390  df-clat 18457  df-oposet 38350  df-ol 38352  df-oml 38353  df-covers 38440  df-ats 38441  df-atl 38472  df-cvlat 38496  df-hlat 38525  df-psubsp 38678  df-pmap 38679  df-padd 38971  df-polarityN 39078  df-psubclN 39110
This theorem is referenced by:  pl42lem4N  39157
  Copyright terms: Public domain W3C validator