Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pl42lem1N Structured version   Visualization version   GIF version

Theorem pl42lem1N 38839
Description: Lemma for pl42N 38843. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pl42lem.b 𝐵 = (Base‘𝐾)
pl42lem.l = (le‘𝐾)
pl42lem.j = (join‘𝐾)
pl42lem.m = (meet‘𝐾)
pl42lem.o = (oc‘𝐾)
pl42lem.f 𝐹 = (pmap‘𝐾)
pl42lem.p + = (+𝑃𝐾)
Assertion
Ref Expression
pl42lem1N (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → ((𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊)) → (𝐹‘((((𝑋 𝑌) 𝑍) 𝑊) 𝑉)) = (((((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) + (𝐹𝑊)) ∩ (𝐹𝑉))))

Proof of Theorem pl42lem1N
StepHypRef Expression
1 simp11 1204 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → 𝐾 ∈ HL)
21hllatd 38223 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → 𝐾 ∈ Lat)
3 simp12 1205 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → 𝑋𝐵)
4 simp13 1206 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → 𝑌𝐵)
5 pl42lem.b . . . . . . . 8 𝐵 = (Base‘𝐾)
6 pl42lem.j . . . . . . . 8 = (join‘𝐾)
75, 6latjcl 18389 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
82, 3, 4, 7syl3anc 1372 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → (𝑋 𝑌) ∈ 𝐵)
9 simp21 1207 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → 𝑍𝐵)
10 pl42lem.m . . . . . . 7 = (meet‘𝐾)
115, 10latmcl 18390 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵) → ((𝑋 𝑌) 𝑍) ∈ 𝐵)
122, 8, 9, 11syl3anc 1372 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → ((𝑋 𝑌) 𝑍) ∈ 𝐵)
13 simp22 1208 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → 𝑊𝐵)
145, 6latjcl 18389 . . . . 5 ((𝐾 ∈ Lat ∧ ((𝑋 𝑌) 𝑍) ∈ 𝐵𝑊𝐵) → (((𝑋 𝑌) 𝑍) 𝑊) ∈ 𝐵)
152, 12, 13, 14syl3anc 1372 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → (((𝑋 𝑌) 𝑍) 𝑊) ∈ 𝐵)
16 simp23 1209 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → 𝑉𝐵)
17 eqid 2733 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
18 pl42lem.f . . . . 5 𝐹 = (pmap‘𝐾)
195, 10, 17, 18pmapmeet 38633 . . . 4 ((𝐾 ∈ HL ∧ (((𝑋 𝑌) 𝑍) 𝑊) ∈ 𝐵𝑉𝐵) → (𝐹‘((((𝑋 𝑌) 𝑍) 𝑊) 𝑉)) = ((𝐹‘(((𝑋 𝑌) 𝑍) 𝑊)) ∩ (𝐹𝑉)))
201, 15, 16, 19syl3anc 1372 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → (𝐹‘((((𝑋 𝑌) 𝑍) 𝑊) 𝑉)) = ((𝐹‘(((𝑋 𝑌) 𝑍) 𝑊)) ∩ (𝐹𝑉)))
21 pl42lem.l . . . . . . 7 = (le‘𝐾)
22 hlop 38221 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ OP)
231, 22syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → 𝐾 ∈ OP)
24 pl42lem.o . . . . . . . . 9 = (oc‘𝐾)
255, 24opoccl 38053 . . . . . . . 8 ((𝐾 ∈ OP ∧ 𝑊𝐵) → ( 𝑊) ∈ 𝐵)
2623, 13, 25syl2anc 585 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → ( 𝑊) ∈ 𝐵)
275, 21, 10latmle2 18415 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵) → ((𝑋 𝑌) 𝑍) 𝑍)
282, 8, 9, 27syl3anc 1372 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → ((𝑋 𝑌) 𝑍) 𝑍)
29 simp3r 1203 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → 𝑍 ( 𝑊))
305, 21, 2, 12, 9, 26, 28, 29lattrd 18396 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → ((𝑋 𝑌) 𝑍) ( 𝑊))
31 pl42lem.p . . . . . . 7 + = (+𝑃𝐾)
325, 21, 6, 18, 24, 31pmapojoinN 38828 . . . . . 6 (((𝐾 ∈ HL ∧ ((𝑋 𝑌) 𝑍) ∈ 𝐵𝑊𝐵) ∧ ((𝑋 𝑌) 𝑍) ( 𝑊)) → (𝐹‘(((𝑋 𝑌) 𝑍) 𝑊)) = ((𝐹‘((𝑋 𝑌) 𝑍)) + (𝐹𝑊)))
331, 12, 13, 30, 32syl31anc 1374 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → (𝐹‘(((𝑋 𝑌) 𝑍) 𝑊)) = ((𝐹‘((𝑋 𝑌) 𝑍)) + (𝐹𝑊)))
345, 10, 17, 18pmapmeet 38633 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵) → (𝐹‘((𝑋 𝑌) 𝑍)) = ((𝐹‘(𝑋 𝑌)) ∩ (𝐹𝑍)))
351, 8, 9, 34syl3anc 1372 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → (𝐹‘((𝑋 𝑌) 𝑍)) = ((𝐹‘(𝑋 𝑌)) ∩ (𝐹𝑍)))
36 simp3l 1202 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → 𝑋 ( 𝑌))
375, 21, 6, 18, 24, 31pmapojoinN 38828 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 ( 𝑌)) → (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))
381, 3, 4, 36, 37syl31anc 1374 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))
3938ineq1d 4211 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → ((𝐹‘(𝑋 𝑌)) ∩ (𝐹𝑍)) = (((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)))
4035, 39eqtrd 2773 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → (𝐹‘((𝑋 𝑌) 𝑍)) = (((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)))
4140oveq1d 7421 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → ((𝐹‘((𝑋 𝑌) 𝑍)) + (𝐹𝑊)) = ((((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) + (𝐹𝑊)))
4233, 41eqtrd 2773 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → (𝐹‘(((𝑋 𝑌) 𝑍) 𝑊)) = ((((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) + (𝐹𝑊)))
4342ineq1d 4211 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → ((𝐹‘(((𝑋 𝑌) 𝑍) 𝑊)) ∩ (𝐹𝑉)) = (((((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) + (𝐹𝑊)) ∩ (𝐹𝑉)))
4420, 43eqtrd 2773 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → (𝐹‘((((𝑋 𝑌) 𝑍) 𝑊) 𝑉)) = (((((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) + (𝐹𝑊)) ∩ (𝐹𝑉)))
45443expia 1122 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → ((𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊)) → (𝐹‘((((𝑋 𝑌) 𝑍) 𝑊) 𝑉)) = (((((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) + (𝐹𝑊)) ∩ (𝐹𝑉))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  cin 3947   class class class wbr 5148  cfv 6541  (class class class)co 7406  Basecbs 17141  lecple 17201  occoc 17202  joincjn 18261  meetcmee 18262  Latclat 18381  OPcops 38031  Atomscatm 38122  HLchlt 38209  pmapcpmap 38357  +𝑃cpadd 38655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-1st 7972  df-2nd 7973  df-proset 18245  df-poset 18263  df-plt 18280  df-lub 18296  df-glb 18297  df-join 18298  df-meet 18299  df-p0 18375  df-p1 18376  df-lat 18382  df-clat 18449  df-oposet 38035  df-ol 38037  df-oml 38038  df-covers 38125  df-ats 38126  df-atl 38157  df-cvlat 38181  df-hlat 38210  df-psubsp 38363  df-pmap 38364  df-padd 38656  df-polarityN 38763  df-psubclN 38795
This theorem is referenced by:  pl42lem4N  38842
  Copyright terms: Public domain W3C validator