![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pmtrdifel | Structured version Visualization version GIF version |
Description: A transposition of elements of a set without a special element corresponds to a transposition of elements of the set. (Contributed by AV, 15-Jan-2019.) |
Ref | Expression |
---|---|
pmtrdifel.t | ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) |
pmtrdifel.r | ⊢ 𝑅 = ran (pmTrsp‘𝑁) |
Ref | Expression |
---|---|
pmtrdifel | ⊢ ∀𝑡 ∈ 𝑇 ∃𝑟 ∈ 𝑅 ∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡‘𝑥) = (𝑟‘𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmtrdifel.t | . . . 4 ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) | |
2 | pmtrdifel.r | . . . 4 ⊢ 𝑅 = ran (pmTrsp‘𝑁) | |
3 | eqid 2733 | . . . 4 ⊢ ((pmTrsp‘𝑁)‘dom (𝑡 ∖ I )) = ((pmTrsp‘𝑁)‘dom (𝑡 ∖ I )) | |
4 | 1, 2, 3 | pmtrdifellem1 19266 | . . 3 ⊢ (𝑡 ∈ 𝑇 → ((pmTrsp‘𝑁)‘dom (𝑡 ∖ I )) ∈ 𝑅) |
5 | 1, 2, 3 | pmtrdifellem3 19268 | . . 3 ⊢ (𝑡 ∈ 𝑇 → ∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡‘𝑥) = (((pmTrsp‘𝑁)‘dom (𝑡 ∖ I ))‘𝑥)) |
6 | fveq1 6845 | . . . . . 6 ⊢ (𝑟 = ((pmTrsp‘𝑁)‘dom (𝑡 ∖ I )) → (𝑟‘𝑥) = (((pmTrsp‘𝑁)‘dom (𝑡 ∖ I ))‘𝑥)) | |
7 | 6 | eqeq2d 2744 | . . . . 5 ⊢ (𝑟 = ((pmTrsp‘𝑁)‘dom (𝑡 ∖ I )) → ((𝑡‘𝑥) = (𝑟‘𝑥) ↔ (𝑡‘𝑥) = (((pmTrsp‘𝑁)‘dom (𝑡 ∖ I ))‘𝑥))) |
8 | 7 | ralbidv 3171 | . . . 4 ⊢ (𝑟 = ((pmTrsp‘𝑁)‘dom (𝑡 ∖ I )) → (∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡‘𝑥) = (𝑟‘𝑥) ↔ ∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡‘𝑥) = (((pmTrsp‘𝑁)‘dom (𝑡 ∖ I ))‘𝑥))) |
9 | 8 | rspcev 3583 | . . 3 ⊢ ((((pmTrsp‘𝑁)‘dom (𝑡 ∖ I )) ∈ 𝑅 ∧ ∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡‘𝑥) = (((pmTrsp‘𝑁)‘dom (𝑡 ∖ I ))‘𝑥)) → ∃𝑟 ∈ 𝑅 ∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡‘𝑥) = (𝑟‘𝑥)) |
10 | 4, 5, 9 | syl2anc 585 | . 2 ⊢ (𝑡 ∈ 𝑇 → ∃𝑟 ∈ 𝑅 ∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡‘𝑥) = (𝑟‘𝑥)) |
11 | 10 | rgen 3063 | 1 ⊢ ∀𝑡 ∈ 𝑇 ∃𝑟 ∈ 𝑅 ∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡‘𝑥) = (𝑟‘𝑥) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2107 ∀wral 3061 ∃wrex 3070 ∖ cdif 3911 {csn 4590 I cid 5534 dom cdm 5637 ran crn 5638 ‘cfv 6500 pmTrspcpmtr 19231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5246 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-om 7807 df-1o 8416 df-2o 8417 df-er 8654 df-en 8890 df-dom 8891 df-sdom 8892 df-fin 8893 df-pmtr 19232 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |