| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pmtrdifel | Structured version Visualization version GIF version | ||
| Description: A transposition of elements of a set without a special element corresponds to a transposition of elements of the set. (Contributed by AV, 15-Jan-2019.) |
| Ref | Expression |
|---|---|
| pmtrdifel.t | ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) |
| pmtrdifel.r | ⊢ 𝑅 = ran (pmTrsp‘𝑁) |
| Ref | Expression |
|---|---|
| pmtrdifel | ⊢ ∀𝑡 ∈ 𝑇 ∃𝑟 ∈ 𝑅 ∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡‘𝑥) = (𝑟‘𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrdifel.t | . . . 4 ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) | |
| 2 | pmtrdifel.r | . . . 4 ⊢ 𝑅 = ran (pmTrsp‘𝑁) | |
| 3 | eqid 2737 | . . . 4 ⊢ ((pmTrsp‘𝑁)‘dom (𝑡 ∖ I )) = ((pmTrsp‘𝑁)‘dom (𝑡 ∖ I )) | |
| 4 | 1, 2, 3 | pmtrdifellem1 19494 | . . 3 ⊢ (𝑡 ∈ 𝑇 → ((pmTrsp‘𝑁)‘dom (𝑡 ∖ I )) ∈ 𝑅) |
| 5 | 1, 2, 3 | pmtrdifellem3 19496 | . . 3 ⊢ (𝑡 ∈ 𝑇 → ∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡‘𝑥) = (((pmTrsp‘𝑁)‘dom (𝑡 ∖ I ))‘𝑥)) |
| 6 | fveq1 6905 | . . . . . 6 ⊢ (𝑟 = ((pmTrsp‘𝑁)‘dom (𝑡 ∖ I )) → (𝑟‘𝑥) = (((pmTrsp‘𝑁)‘dom (𝑡 ∖ I ))‘𝑥)) | |
| 7 | 6 | eqeq2d 2748 | . . . . 5 ⊢ (𝑟 = ((pmTrsp‘𝑁)‘dom (𝑡 ∖ I )) → ((𝑡‘𝑥) = (𝑟‘𝑥) ↔ (𝑡‘𝑥) = (((pmTrsp‘𝑁)‘dom (𝑡 ∖ I ))‘𝑥))) |
| 8 | 7 | ralbidv 3178 | . . . 4 ⊢ (𝑟 = ((pmTrsp‘𝑁)‘dom (𝑡 ∖ I )) → (∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡‘𝑥) = (𝑟‘𝑥) ↔ ∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡‘𝑥) = (((pmTrsp‘𝑁)‘dom (𝑡 ∖ I ))‘𝑥))) |
| 9 | 8 | rspcev 3622 | . . 3 ⊢ ((((pmTrsp‘𝑁)‘dom (𝑡 ∖ I )) ∈ 𝑅 ∧ ∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡‘𝑥) = (((pmTrsp‘𝑁)‘dom (𝑡 ∖ I ))‘𝑥)) → ∃𝑟 ∈ 𝑅 ∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡‘𝑥) = (𝑟‘𝑥)) |
| 10 | 4, 5, 9 | syl2anc 584 | . 2 ⊢ (𝑡 ∈ 𝑇 → ∃𝑟 ∈ 𝑅 ∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡‘𝑥) = (𝑟‘𝑥)) |
| 11 | 10 | rgen 3063 | 1 ⊢ ∀𝑡 ∈ 𝑇 ∃𝑟 ∈ 𝑅 ∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡‘𝑥) = (𝑟‘𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 ∖ cdif 3948 {csn 4626 I cid 5577 dom cdm 5685 ran crn 5686 ‘cfv 6561 pmTrspcpmtr 19459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-om 7888 df-1o 8506 df-2o 8507 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-pmtr 19460 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |