MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrdifel Structured version   Visualization version   GIF version

Theorem pmtrdifel 19378
Description: A transposition of elements of a set without a special element corresponds to a transposition of elements of the set. (Contributed by AV, 15-Jan-2019.)
Hypotheses
Ref Expression
pmtrdifel.t 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
pmtrdifel.r 𝑅 = ran (pmTrsp‘𝑁)
Assertion
Ref Expression
pmtrdifel 𝑡𝑇𝑟𝑅𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡𝑥) = (𝑟𝑥)
Distinct variable groups:   𝑡,𝑟,𝑥   𝐾,𝑟   𝑁,𝑟,𝑥   𝑅,𝑟   𝑥,𝑇
Allowed substitution hints:   𝑅(𝑥,𝑡)   𝑇(𝑡,𝑟)   𝐾(𝑥,𝑡)   𝑁(𝑡)

Proof of Theorem pmtrdifel
StepHypRef Expression
1 pmtrdifel.t . . . 4 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
2 pmtrdifel.r . . . 4 𝑅 = ran (pmTrsp‘𝑁)
3 eqid 2729 . . . 4 ((pmTrsp‘𝑁)‘dom (𝑡 ∖ I )) = ((pmTrsp‘𝑁)‘dom (𝑡 ∖ I ))
41, 2, 3pmtrdifellem1 19374 . . 3 (𝑡𝑇 → ((pmTrsp‘𝑁)‘dom (𝑡 ∖ I )) ∈ 𝑅)
51, 2, 3pmtrdifellem3 19376 . . 3 (𝑡𝑇 → ∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡𝑥) = (((pmTrsp‘𝑁)‘dom (𝑡 ∖ I ))‘𝑥))
6 fveq1 6825 . . . . . 6 (𝑟 = ((pmTrsp‘𝑁)‘dom (𝑡 ∖ I )) → (𝑟𝑥) = (((pmTrsp‘𝑁)‘dom (𝑡 ∖ I ))‘𝑥))
76eqeq2d 2740 . . . . 5 (𝑟 = ((pmTrsp‘𝑁)‘dom (𝑡 ∖ I )) → ((𝑡𝑥) = (𝑟𝑥) ↔ (𝑡𝑥) = (((pmTrsp‘𝑁)‘dom (𝑡 ∖ I ))‘𝑥)))
87ralbidv 3152 . . . 4 (𝑟 = ((pmTrsp‘𝑁)‘dom (𝑡 ∖ I )) → (∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡𝑥) = (𝑟𝑥) ↔ ∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡𝑥) = (((pmTrsp‘𝑁)‘dom (𝑡 ∖ I ))‘𝑥)))
98rspcev 3579 . . 3 ((((pmTrsp‘𝑁)‘dom (𝑡 ∖ I )) ∈ 𝑅 ∧ ∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡𝑥) = (((pmTrsp‘𝑁)‘dom (𝑡 ∖ I ))‘𝑥)) → ∃𝑟𝑅𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡𝑥) = (𝑟𝑥))
104, 5, 9syl2anc 584 . 2 (𝑡𝑇 → ∃𝑟𝑅𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡𝑥) = (𝑟𝑥))
1110rgen 3046 1 𝑡𝑇𝑟𝑅𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡𝑥) = (𝑟𝑥)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cdif 3902  {csn 4579   I cid 5517  dom cdm 5623  ran crn 5624  cfv 6486  pmTrspcpmtr 19339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-om 7807  df-1o 8395  df-2o 8396  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pmtr 19340
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator