MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrdifel Structured version   Visualization version   GIF version

Theorem pmtrdifel 19513
Description: A transposition of elements of a set without a special element corresponds to a transposition of elements of the set. (Contributed by AV, 15-Jan-2019.)
Hypotheses
Ref Expression
pmtrdifel.t 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
pmtrdifel.r 𝑅 = ran (pmTrsp‘𝑁)
Assertion
Ref Expression
pmtrdifel 𝑡𝑇𝑟𝑅𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡𝑥) = (𝑟𝑥)
Distinct variable groups:   𝑡,𝑟,𝑥   𝐾,𝑟   𝑁,𝑟,𝑥   𝑅,𝑟   𝑥,𝑇
Allowed substitution hints:   𝑅(𝑥,𝑡)   𝑇(𝑡,𝑟)   𝐾(𝑥,𝑡)   𝑁(𝑡)

Proof of Theorem pmtrdifel
StepHypRef Expression
1 pmtrdifel.t . . . 4 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
2 pmtrdifel.r . . . 4 𝑅 = ran (pmTrsp‘𝑁)
3 eqid 2735 . . . 4 ((pmTrsp‘𝑁)‘dom (𝑡 ∖ I )) = ((pmTrsp‘𝑁)‘dom (𝑡 ∖ I ))
41, 2, 3pmtrdifellem1 19509 . . 3 (𝑡𝑇 → ((pmTrsp‘𝑁)‘dom (𝑡 ∖ I )) ∈ 𝑅)
51, 2, 3pmtrdifellem3 19511 . . 3 (𝑡𝑇 → ∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡𝑥) = (((pmTrsp‘𝑁)‘dom (𝑡 ∖ I ))‘𝑥))
6 fveq1 6906 . . . . . 6 (𝑟 = ((pmTrsp‘𝑁)‘dom (𝑡 ∖ I )) → (𝑟𝑥) = (((pmTrsp‘𝑁)‘dom (𝑡 ∖ I ))‘𝑥))
76eqeq2d 2746 . . . . 5 (𝑟 = ((pmTrsp‘𝑁)‘dom (𝑡 ∖ I )) → ((𝑡𝑥) = (𝑟𝑥) ↔ (𝑡𝑥) = (((pmTrsp‘𝑁)‘dom (𝑡 ∖ I ))‘𝑥)))
87ralbidv 3176 . . . 4 (𝑟 = ((pmTrsp‘𝑁)‘dom (𝑡 ∖ I )) → (∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡𝑥) = (𝑟𝑥) ↔ ∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡𝑥) = (((pmTrsp‘𝑁)‘dom (𝑡 ∖ I ))‘𝑥)))
98rspcev 3622 . . 3 ((((pmTrsp‘𝑁)‘dom (𝑡 ∖ I )) ∈ 𝑅 ∧ ∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡𝑥) = (((pmTrsp‘𝑁)‘dom (𝑡 ∖ I ))‘𝑥)) → ∃𝑟𝑅𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡𝑥) = (𝑟𝑥))
104, 5, 9syl2anc 584 . 2 (𝑡𝑇 → ∃𝑟𝑅𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡𝑥) = (𝑟𝑥))
1110rgen 3061 1 𝑡𝑇𝑟𝑅𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡𝑥) = (𝑟𝑥)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2106  wral 3059  wrex 3068  cdif 3960  {csn 4631   I cid 5582  dom cdm 5689  ran crn 5690  cfv 6563  pmTrspcpmtr 19474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-om 7888  df-1o 8505  df-2o 8506  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-pmtr 19475
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator