MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrdifel Structured version   Visualization version   GIF version

Theorem pmtrdifel 19498
Description: A transposition of elements of a set without a special element corresponds to a transposition of elements of the set. (Contributed by AV, 15-Jan-2019.)
Hypotheses
Ref Expression
pmtrdifel.t 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
pmtrdifel.r 𝑅 = ran (pmTrsp‘𝑁)
Assertion
Ref Expression
pmtrdifel 𝑡𝑇𝑟𝑅𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡𝑥) = (𝑟𝑥)
Distinct variable groups:   𝑡,𝑟,𝑥   𝐾,𝑟   𝑁,𝑟,𝑥   𝑅,𝑟   𝑥,𝑇
Allowed substitution hints:   𝑅(𝑥,𝑡)   𝑇(𝑡,𝑟)   𝐾(𝑥,𝑡)   𝑁(𝑡)

Proof of Theorem pmtrdifel
StepHypRef Expression
1 pmtrdifel.t . . . 4 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
2 pmtrdifel.r . . . 4 𝑅 = ran (pmTrsp‘𝑁)
3 eqid 2737 . . . 4 ((pmTrsp‘𝑁)‘dom (𝑡 ∖ I )) = ((pmTrsp‘𝑁)‘dom (𝑡 ∖ I ))
41, 2, 3pmtrdifellem1 19494 . . 3 (𝑡𝑇 → ((pmTrsp‘𝑁)‘dom (𝑡 ∖ I )) ∈ 𝑅)
51, 2, 3pmtrdifellem3 19496 . . 3 (𝑡𝑇 → ∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡𝑥) = (((pmTrsp‘𝑁)‘dom (𝑡 ∖ I ))‘𝑥))
6 fveq1 6905 . . . . . 6 (𝑟 = ((pmTrsp‘𝑁)‘dom (𝑡 ∖ I )) → (𝑟𝑥) = (((pmTrsp‘𝑁)‘dom (𝑡 ∖ I ))‘𝑥))
76eqeq2d 2748 . . . . 5 (𝑟 = ((pmTrsp‘𝑁)‘dom (𝑡 ∖ I )) → ((𝑡𝑥) = (𝑟𝑥) ↔ (𝑡𝑥) = (((pmTrsp‘𝑁)‘dom (𝑡 ∖ I ))‘𝑥)))
87ralbidv 3178 . . . 4 (𝑟 = ((pmTrsp‘𝑁)‘dom (𝑡 ∖ I )) → (∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡𝑥) = (𝑟𝑥) ↔ ∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡𝑥) = (((pmTrsp‘𝑁)‘dom (𝑡 ∖ I ))‘𝑥)))
98rspcev 3622 . . 3 ((((pmTrsp‘𝑁)‘dom (𝑡 ∖ I )) ∈ 𝑅 ∧ ∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡𝑥) = (((pmTrsp‘𝑁)‘dom (𝑡 ∖ I ))‘𝑥)) → ∃𝑟𝑅𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡𝑥) = (𝑟𝑥))
104, 5, 9syl2anc 584 . 2 (𝑡𝑇 → ∃𝑟𝑅𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡𝑥) = (𝑟𝑥))
1110rgen 3063 1 𝑡𝑇𝑟𝑅𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡𝑥) = (𝑟𝑥)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  wral 3061  wrex 3070  cdif 3948  {csn 4626   I cid 5577  dom cdm 5685  ran crn 5686  cfv 6561  pmTrspcpmtr 19459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-om 7888  df-1o 8506  df-2o 8507  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-pmtr 19460
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator