MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrdifel Structured version   Visualization version   GIF version

Theorem pmtrdifel 19417
Description: A transposition of elements of a set without a special element corresponds to a transposition of elements of the set. (Contributed by AV, 15-Jan-2019.)
Hypotheses
Ref Expression
pmtrdifel.t 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
pmtrdifel.r 𝑅 = ran (pmTrsp‘𝑁)
Assertion
Ref Expression
pmtrdifel 𝑡𝑇𝑟𝑅𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡𝑥) = (𝑟𝑥)
Distinct variable groups:   𝑡,𝑟,𝑥   𝐾,𝑟   𝑁,𝑟,𝑥   𝑅,𝑟   𝑥,𝑇
Allowed substitution hints:   𝑅(𝑥,𝑡)   𝑇(𝑡,𝑟)   𝐾(𝑥,𝑡)   𝑁(𝑡)

Proof of Theorem pmtrdifel
StepHypRef Expression
1 pmtrdifel.t . . . 4 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
2 pmtrdifel.r . . . 4 𝑅 = ran (pmTrsp‘𝑁)
3 eqid 2730 . . . 4 ((pmTrsp‘𝑁)‘dom (𝑡 ∖ I )) = ((pmTrsp‘𝑁)‘dom (𝑡 ∖ I ))
41, 2, 3pmtrdifellem1 19413 . . 3 (𝑡𝑇 → ((pmTrsp‘𝑁)‘dom (𝑡 ∖ I )) ∈ 𝑅)
51, 2, 3pmtrdifellem3 19415 . . 3 (𝑡𝑇 → ∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡𝑥) = (((pmTrsp‘𝑁)‘dom (𝑡 ∖ I ))‘𝑥))
6 fveq1 6860 . . . . . 6 (𝑟 = ((pmTrsp‘𝑁)‘dom (𝑡 ∖ I )) → (𝑟𝑥) = (((pmTrsp‘𝑁)‘dom (𝑡 ∖ I ))‘𝑥))
76eqeq2d 2741 . . . . 5 (𝑟 = ((pmTrsp‘𝑁)‘dom (𝑡 ∖ I )) → ((𝑡𝑥) = (𝑟𝑥) ↔ (𝑡𝑥) = (((pmTrsp‘𝑁)‘dom (𝑡 ∖ I ))‘𝑥)))
87ralbidv 3157 . . . 4 (𝑟 = ((pmTrsp‘𝑁)‘dom (𝑡 ∖ I )) → (∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡𝑥) = (𝑟𝑥) ↔ ∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡𝑥) = (((pmTrsp‘𝑁)‘dom (𝑡 ∖ I ))‘𝑥)))
98rspcev 3591 . . 3 ((((pmTrsp‘𝑁)‘dom (𝑡 ∖ I )) ∈ 𝑅 ∧ ∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡𝑥) = (((pmTrsp‘𝑁)‘dom (𝑡 ∖ I ))‘𝑥)) → ∃𝑟𝑅𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡𝑥) = (𝑟𝑥))
104, 5, 9syl2anc 584 . 2 (𝑡𝑇 → ∃𝑟𝑅𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡𝑥) = (𝑟𝑥))
1110rgen 3047 1 𝑡𝑇𝑟𝑅𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡𝑥) = (𝑟𝑥)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  wral 3045  wrex 3054  cdif 3914  {csn 4592   I cid 5535  dom cdm 5641  ran crn 5642  cfv 6514  pmTrspcpmtr 19378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-om 7846  df-1o 8437  df-2o 8438  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pmtr 19379
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator