MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrdifel Structured version   Visualization version   GIF version

Theorem pmtrdifel 19003
Description: A transposition of elements of a set without a special element corresponds to a transposition of elements of the set. (Contributed by AV, 15-Jan-2019.)
Hypotheses
Ref Expression
pmtrdifel.t 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
pmtrdifel.r 𝑅 = ran (pmTrsp‘𝑁)
Assertion
Ref Expression
pmtrdifel 𝑡𝑇𝑟𝑅𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡𝑥) = (𝑟𝑥)
Distinct variable groups:   𝑡,𝑟,𝑥   𝐾,𝑟   𝑁,𝑟,𝑥   𝑅,𝑟   𝑥,𝑇
Allowed substitution hints:   𝑅(𝑥,𝑡)   𝑇(𝑡,𝑟)   𝐾(𝑥,𝑡)   𝑁(𝑡)

Proof of Theorem pmtrdifel
StepHypRef Expression
1 pmtrdifel.t . . . 4 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
2 pmtrdifel.r . . . 4 𝑅 = ran (pmTrsp‘𝑁)
3 eqid 2738 . . . 4 ((pmTrsp‘𝑁)‘dom (𝑡 ∖ I )) = ((pmTrsp‘𝑁)‘dom (𝑡 ∖ I ))
41, 2, 3pmtrdifellem1 18999 . . 3 (𝑡𝑇 → ((pmTrsp‘𝑁)‘dom (𝑡 ∖ I )) ∈ 𝑅)
51, 2, 3pmtrdifellem3 19001 . . 3 (𝑡𝑇 → ∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡𝑥) = (((pmTrsp‘𝑁)‘dom (𝑡 ∖ I ))‘𝑥))
6 fveq1 6755 . . . . . 6 (𝑟 = ((pmTrsp‘𝑁)‘dom (𝑡 ∖ I )) → (𝑟𝑥) = (((pmTrsp‘𝑁)‘dom (𝑡 ∖ I ))‘𝑥))
76eqeq2d 2749 . . . . 5 (𝑟 = ((pmTrsp‘𝑁)‘dom (𝑡 ∖ I )) → ((𝑡𝑥) = (𝑟𝑥) ↔ (𝑡𝑥) = (((pmTrsp‘𝑁)‘dom (𝑡 ∖ I ))‘𝑥)))
87ralbidv 3120 . . . 4 (𝑟 = ((pmTrsp‘𝑁)‘dom (𝑡 ∖ I )) → (∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡𝑥) = (𝑟𝑥) ↔ ∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡𝑥) = (((pmTrsp‘𝑁)‘dom (𝑡 ∖ I ))‘𝑥)))
98rspcev 3552 . . 3 ((((pmTrsp‘𝑁)‘dom (𝑡 ∖ I )) ∈ 𝑅 ∧ ∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡𝑥) = (((pmTrsp‘𝑁)‘dom (𝑡 ∖ I ))‘𝑥)) → ∃𝑟𝑅𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡𝑥) = (𝑟𝑥))
104, 5, 9syl2anc 583 . 2 (𝑡𝑇 → ∃𝑟𝑅𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡𝑥) = (𝑟𝑥))
1110rgen 3073 1 𝑡𝑇𝑟𝑅𝑥 ∈ (𝑁 ∖ {𝐾})(𝑡𝑥) = (𝑟𝑥)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  wral 3063  wrex 3064  cdif 3880  {csn 4558   I cid 5479  dom cdm 5580  ran crn 5581  cfv 6418  pmTrspcpmtr 18964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1o 8267  df-2o 8268  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pmtr 18965
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator