![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pmtrdifwrdellem3 | Structured version Visualization version GIF version |
Description: Lemma 3 for pmtrdifwrdel 19518. (Contributed by AV, 15-Jan-2019.) |
Ref | Expression |
---|---|
pmtrdifel.t | ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) |
pmtrdifel.r | ⊢ 𝑅 = ran (pmTrsp‘𝑁) |
pmtrdifwrdel.0 | ⊢ 𝑈 = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑥) ∖ I ))) |
Ref | Expression |
---|---|
pmtrdifwrdellem3 | ⊢ (𝑊 ∈ Word 𝑇 → ∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wrdsymbcl 14562 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑇 ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊‘𝑖) ∈ 𝑇) | |
2 | pmtrdifel.t | . . . . 5 ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) | |
3 | pmtrdifel.r | . . . . 5 ⊢ 𝑅 = ran (pmTrsp‘𝑁) | |
4 | eqid 2735 | . . . . 5 ⊢ ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I )) = ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I )) | |
5 | 2, 3, 4 | pmtrdifellem3 19511 | . . . 4 ⊢ ((𝑊‘𝑖) ∈ 𝑇 → ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = (((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I ))‘𝑛)) |
6 | 1, 5 | syl 17 | . . 3 ⊢ ((𝑊 ∈ Word 𝑇 ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = (((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I ))‘𝑛)) |
7 | pmtrdifwrdel.0 | . . . . . . 7 ⊢ 𝑈 = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑥) ∖ I ))) | |
8 | fveq2 6907 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑖 → (𝑊‘𝑥) = (𝑊‘𝑖)) | |
9 | 8 | difeq1d 4135 | . . . . . . . . 9 ⊢ (𝑥 = 𝑖 → ((𝑊‘𝑥) ∖ I ) = ((𝑊‘𝑖) ∖ I )) |
10 | 9 | dmeqd 5919 | . . . . . . . 8 ⊢ (𝑥 = 𝑖 → dom ((𝑊‘𝑥) ∖ I ) = dom ((𝑊‘𝑖) ∖ I )) |
11 | 10 | fveq2d 6911 | . . . . . . 7 ⊢ (𝑥 = 𝑖 → ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑥) ∖ I )) = ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I ))) |
12 | simpr 484 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝑇 ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑖 ∈ (0..^(♯‘𝑊))) | |
13 | fvexd 6922 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝑇 ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I )) ∈ V) | |
14 | 7, 11, 12, 13 | fvmptd3 7039 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝑇 ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑈‘𝑖) = ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I ))) |
15 | 14 | fveq1d 6909 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑇 ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑈‘𝑖)‘𝑛) = (((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I ))‘𝑛)) |
16 | 15 | eqeq2d 2746 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑇 ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛) ↔ ((𝑊‘𝑖)‘𝑛) = (((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I ))‘𝑛))) |
17 | 16 | ralbidv 3176 | . . 3 ⊢ ((𝑊 ∈ Word 𝑇 ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛) ↔ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = (((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I ))‘𝑛))) |
18 | 6, 17 | mpbird 257 | . 2 ⊢ ((𝑊 ∈ Word 𝑇 ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)) |
19 | 18 | ralrimiva 3144 | 1 ⊢ (𝑊 ∈ Word 𝑇 → ∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 Vcvv 3478 ∖ cdif 3960 {csn 4631 ↦ cmpt 5231 I cid 5582 dom cdm 5689 ran crn 5690 ‘cfv 6563 (class class class)co 7431 0cc0 11153 ..^cfzo 13691 ♯chash 14366 Word cword 14549 pmTrspcpmtr 19474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-fzo 13692 df-hash 14367 df-word 14550 df-pmtr 19475 |
This theorem is referenced by: pmtrdifwrdel 19518 pmtrdifwrdel2 19519 |
Copyright terms: Public domain | W3C validator |