|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > pmtrdifwrdellem3 | Structured version Visualization version GIF version | ||
| Description: Lemma 3 for pmtrdifwrdel 19503. (Contributed by AV, 15-Jan-2019.) | 
| Ref | Expression | 
|---|---|
| pmtrdifel.t | ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) | 
| pmtrdifel.r | ⊢ 𝑅 = ran (pmTrsp‘𝑁) | 
| pmtrdifwrdel.0 | ⊢ 𝑈 = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑥) ∖ I ))) | 
| Ref | Expression | 
|---|---|
| pmtrdifwrdellem3 | ⊢ (𝑊 ∈ Word 𝑇 → ∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | wrdsymbcl 14565 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑇 ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊‘𝑖) ∈ 𝑇) | |
| 2 | pmtrdifel.t | . . . . 5 ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) | |
| 3 | pmtrdifel.r | . . . . 5 ⊢ 𝑅 = ran (pmTrsp‘𝑁) | |
| 4 | eqid 2737 | . . . . 5 ⊢ ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I )) = ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I )) | |
| 5 | 2, 3, 4 | pmtrdifellem3 19496 | . . . 4 ⊢ ((𝑊‘𝑖) ∈ 𝑇 → ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = (((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I ))‘𝑛)) | 
| 6 | 1, 5 | syl 17 | . . 3 ⊢ ((𝑊 ∈ Word 𝑇 ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = (((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I ))‘𝑛)) | 
| 7 | pmtrdifwrdel.0 | . . . . . . 7 ⊢ 𝑈 = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑥) ∖ I ))) | |
| 8 | fveq2 6906 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑖 → (𝑊‘𝑥) = (𝑊‘𝑖)) | |
| 9 | 8 | difeq1d 4125 | . . . . . . . . 9 ⊢ (𝑥 = 𝑖 → ((𝑊‘𝑥) ∖ I ) = ((𝑊‘𝑖) ∖ I )) | 
| 10 | 9 | dmeqd 5916 | . . . . . . . 8 ⊢ (𝑥 = 𝑖 → dom ((𝑊‘𝑥) ∖ I ) = dom ((𝑊‘𝑖) ∖ I )) | 
| 11 | 10 | fveq2d 6910 | . . . . . . 7 ⊢ (𝑥 = 𝑖 → ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑥) ∖ I )) = ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I ))) | 
| 12 | simpr 484 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝑇 ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑖 ∈ (0..^(♯‘𝑊))) | |
| 13 | fvexd 6921 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝑇 ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I )) ∈ V) | |
| 14 | 7, 11, 12, 13 | fvmptd3 7039 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝑇 ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑈‘𝑖) = ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I ))) | 
| 15 | 14 | fveq1d 6908 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑇 ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑈‘𝑖)‘𝑛) = (((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I ))‘𝑛)) | 
| 16 | 15 | eqeq2d 2748 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑇 ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛) ↔ ((𝑊‘𝑖)‘𝑛) = (((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I ))‘𝑛))) | 
| 17 | 16 | ralbidv 3178 | . . 3 ⊢ ((𝑊 ∈ Word 𝑇 ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛) ↔ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = (((pmTrsp‘𝑁)‘dom ((𝑊‘𝑖) ∖ I ))‘𝑛))) | 
| 18 | 6, 17 | mpbird 257 | . 2 ⊢ ((𝑊 ∈ Word 𝑇 ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)) | 
| 19 | 18 | ralrimiva 3146 | 1 ⊢ (𝑊 ∈ Word 𝑇 → ∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 Vcvv 3480 ∖ cdif 3948 {csn 4626 ↦ cmpt 5225 I cid 5577 dom cdm 5685 ran crn 5686 ‘cfv 6561 (class class class)co 7431 0cc0 11155 ..^cfzo 13694 ♯chash 14369 Word cword 14552 pmTrspcpmtr 19459 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-n0 12527 df-z 12614 df-uz 12879 df-fz 13548 df-fzo 13695 df-hash 14370 df-word 14553 df-pmtr 19460 | 
| This theorem is referenced by: pmtrdifwrdel 19503 pmtrdifwrdel2 19504 | 
| Copyright terms: Public domain | W3C validator |