MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrdifwrdellem3 Structured version   Visualization version   GIF version

Theorem pmtrdifwrdellem3 19525
Description: Lemma 3 for pmtrdifwrdel 19527. (Contributed by AV, 15-Jan-2019.)
Hypotheses
Ref Expression
pmtrdifel.t 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
pmtrdifel.r 𝑅 = ran (pmTrsp‘𝑁)
pmtrdifwrdel.0 𝑈 = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑊𝑥) ∖ I )))
Assertion
Ref Expression
pmtrdifwrdellem3 (𝑊 ∈ Word 𝑇 → ∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑇   𝑥,𝑅   𝑥,𝑊   𝑇,𝑖,𝑛   𝑖,𝑊,𝑛   𝑥,𝑖
Allowed substitution hints:   𝑅(𝑖,𝑛)   𝑈(𝑥,𝑖,𝑛)   𝐾(𝑥,𝑖,𝑛)   𝑁(𝑖,𝑛)

Proof of Theorem pmtrdifwrdellem3
StepHypRef Expression
1 wrdsymbcl 14575 . . . 4 ((𝑊 ∈ Word 𝑇𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊𝑖) ∈ 𝑇)
2 pmtrdifel.t . . . . 5 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
3 pmtrdifel.r . . . . 5 𝑅 = ran (pmTrsp‘𝑁)
4 eqid 2740 . . . . 5 ((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I )) = ((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I ))
52, 3, 4pmtrdifellem3 19520 . . . 4 ((𝑊𝑖) ∈ 𝑇 → ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = (((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I ))‘𝑛))
61, 5syl 17 . . 3 ((𝑊 ∈ Word 𝑇𝑖 ∈ (0..^(♯‘𝑊))) → ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = (((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I ))‘𝑛))
7 pmtrdifwrdel.0 . . . . . . 7 𝑈 = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑊𝑥) ∖ I )))
8 fveq2 6920 . . . . . . . . . 10 (𝑥 = 𝑖 → (𝑊𝑥) = (𝑊𝑖))
98difeq1d 4148 . . . . . . . . 9 (𝑥 = 𝑖 → ((𝑊𝑥) ∖ I ) = ((𝑊𝑖) ∖ I ))
109dmeqd 5930 . . . . . . . 8 (𝑥 = 𝑖 → dom ((𝑊𝑥) ∖ I ) = dom ((𝑊𝑖) ∖ I ))
1110fveq2d 6924 . . . . . . 7 (𝑥 = 𝑖 → ((pmTrsp‘𝑁)‘dom ((𝑊𝑥) ∖ I )) = ((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I )))
12 simpr 484 . . . . . . 7 ((𝑊 ∈ Word 𝑇𝑖 ∈ (0..^(♯‘𝑊))) → 𝑖 ∈ (0..^(♯‘𝑊)))
13 fvexd 6935 . . . . . . 7 ((𝑊 ∈ Word 𝑇𝑖 ∈ (0..^(♯‘𝑊))) → ((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I )) ∈ V)
147, 11, 12, 13fvmptd3 7052 . . . . . 6 ((𝑊 ∈ Word 𝑇𝑖 ∈ (0..^(♯‘𝑊))) → (𝑈𝑖) = ((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I )))
1514fveq1d 6922 . . . . 5 ((𝑊 ∈ Word 𝑇𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑈𝑖)‘𝑛) = (((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I ))‘𝑛))
1615eqeq2d 2751 . . . 4 ((𝑊 ∈ Word 𝑇𝑖 ∈ (0..^(♯‘𝑊))) → (((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) ↔ ((𝑊𝑖)‘𝑛) = (((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I ))‘𝑛)))
1716ralbidv 3184 . . 3 ((𝑊 ∈ Word 𝑇𝑖 ∈ (0..^(♯‘𝑊))) → (∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) ↔ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = (((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I ))‘𝑛)))
186, 17mpbird 257 . 2 ((𝑊 ∈ Word 𝑇𝑖 ∈ (0..^(♯‘𝑊))) → ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))
1918ralrimiva 3152 1 (𝑊 ∈ Word 𝑇 → ∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  cdif 3973  {csn 4648  cmpt 5249   I cid 5592  dom cdm 5700  ran crn 5701  cfv 6573  (class class class)co 7448  0cc0 11184  ..^cfzo 13711  chash 14379  Word cword 14562  pmTrspcpmtr 19483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-pmtr 19484
This theorem is referenced by:  pmtrdifwrdel  19527  pmtrdifwrdel2  19528
  Copyright terms: Public domain W3C validator