MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrdifwrdellem3 Structured version   Visualization version   GIF version

Theorem pmtrdifwrdellem3 19091
Description: Lemma 3 for pmtrdifwrdel 19093. (Contributed by AV, 15-Jan-2019.)
Hypotheses
Ref Expression
pmtrdifel.t 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
pmtrdifel.r 𝑅 = ran (pmTrsp‘𝑁)
pmtrdifwrdel.0 𝑈 = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑊𝑥) ∖ I )))
Assertion
Ref Expression
pmtrdifwrdellem3 (𝑊 ∈ Word 𝑇 → ∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑇   𝑥,𝑅   𝑥,𝑊   𝑇,𝑖,𝑛   𝑖,𝑊,𝑛   𝑥,𝑖
Allowed substitution hints:   𝑅(𝑖,𝑛)   𝑈(𝑥,𝑖,𝑛)   𝐾(𝑥,𝑖,𝑛)   𝑁(𝑖,𝑛)

Proof of Theorem pmtrdifwrdellem3
StepHypRef Expression
1 wrdsymbcl 14230 . . . 4 ((𝑊 ∈ Word 𝑇𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊𝑖) ∈ 𝑇)
2 pmtrdifel.t . . . . 5 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
3 pmtrdifel.r . . . . 5 𝑅 = ran (pmTrsp‘𝑁)
4 eqid 2738 . . . . 5 ((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I )) = ((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I ))
52, 3, 4pmtrdifellem3 19086 . . . 4 ((𝑊𝑖) ∈ 𝑇 → ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = (((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I ))‘𝑛))
61, 5syl 17 . . 3 ((𝑊 ∈ Word 𝑇𝑖 ∈ (0..^(♯‘𝑊))) → ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = (((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I ))‘𝑛))
7 pmtrdifwrdel.0 . . . . . . 7 𝑈 = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑊𝑥) ∖ I )))
8 fveq2 6774 . . . . . . . . . 10 (𝑥 = 𝑖 → (𝑊𝑥) = (𝑊𝑖))
98difeq1d 4056 . . . . . . . . 9 (𝑥 = 𝑖 → ((𝑊𝑥) ∖ I ) = ((𝑊𝑖) ∖ I ))
109dmeqd 5814 . . . . . . . 8 (𝑥 = 𝑖 → dom ((𝑊𝑥) ∖ I ) = dom ((𝑊𝑖) ∖ I ))
1110fveq2d 6778 . . . . . . 7 (𝑥 = 𝑖 → ((pmTrsp‘𝑁)‘dom ((𝑊𝑥) ∖ I )) = ((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I )))
12 simpr 485 . . . . . . 7 ((𝑊 ∈ Word 𝑇𝑖 ∈ (0..^(♯‘𝑊))) → 𝑖 ∈ (0..^(♯‘𝑊)))
13 fvexd 6789 . . . . . . 7 ((𝑊 ∈ Word 𝑇𝑖 ∈ (0..^(♯‘𝑊))) → ((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I )) ∈ V)
147, 11, 12, 13fvmptd3 6898 . . . . . 6 ((𝑊 ∈ Word 𝑇𝑖 ∈ (0..^(♯‘𝑊))) → (𝑈𝑖) = ((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I )))
1514fveq1d 6776 . . . . 5 ((𝑊 ∈ Word 𝑇𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑈𝑖)‘𝑛) = (((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I ))‘𝑛))
1615eqeq2d 2749 . . . 4 ((𝑊 ∈ Word 𝑇𝑖 ∈ (0..^(♯‘𝑊))) → (((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) ↔ ((𝑊𝑖)‘𝑛) = (((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I ))‘𝑛)))
1716ralbidv 3112 . . 3 ((𝑊 ∈ Word 𝑇𝑖 ∈ (0..^(♯‘𝑊))) → (∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) ↔ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = (((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I ))‘𝑛)))
186, 17mpbird 256 . 2 ((𝑊 ∈ Word 𝑇𝑖 ∈ (0..^(♯‘𝑊))) → ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))
1918ralrimiva 3103 1 (𝑊 ∈ Word 𝑇 → ∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  cdif 3884  {csn 4561  cmpt 5157   I cid 5488  dom cdm 5589  ran crn 5590  cfv 6433  (class class class)co 7275  0cc0 10871  ..^cfzo 13382  chash 14044  Word cword 14217  pmTrspcpmtr 19049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-pmtr 19050
This theorem is referenced by:  pmtrdifwrdel  19093  pmtrdifwrdel2  19094
  Copyright terms: Public domain W3C validator