MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrdifwrdellem3 Structured version   Visualization version   GIF version

Theorem pmtrdifwrdellem3 19432
Description: Lemma 3 for pmtrdifwrdel 19434. (Contributed by AV, 15-Jan-2019.)
Hypotheses
Ref Expression
pmtrdifel.t 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
pmtrdifel.r 𝑅 = ran (pmTrsp‘𝑁)
pmtrdifwrdel.0 𝑈 = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑊𝑥) ∖ I )))
Assertion
Ref Expression
pmtrdifwrdellem3 (𝑊 ∈ Word 𝑇 → ∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑇   𝑥,𝑅   𝑥,𝑊   𝑇,𝑖,𝑛   𝑖,𝑊,𝑛   𝑥,𝑖
Allowed substitution hints:   𝑅(𝑖,𝑛)   𝑈(𝑥,𝑖,𝑛)   𝐾(𝑥,𝑖,𝑛)   𝑁(𝑖,𝑛)

Proof of Theorem pmtrdifwrdellem3
StepHypRef Expression
1 wrdsymbcl 14504 . . . 4 ((𝑊 ∈ Word 𝑇𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊𝑖) ∈ 𝑇)
2 pmtrdifel.t . . . . 5 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
3 pmtrdifel.r . . . . 5 𝑅 = ran (pmTrsp‘𝑁)
4 eqid 2728 . . . . 5 ((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I )) = ((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I ))
52, 3, 4pmtrdifellem3 19427 . . . 4 ((𝑊𝑖) ∈ 𝑇 → ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = (((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I ))‘𝑛))
61, 5syl 17 . . 3 ((𝑊 ∈ Word 𝑇𝑖 ∈ (0..^(♯‘𝑊))) → ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = (((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I ))‘𝑛))
7 pmtrdifwrdel.0 . . . . . . 7 𝑈 = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑊𝑥) ∖ I )))
8 fveq2 6892 . . . . . . . . . 10 (𝑥 = 𝑖 → (𝑊𝑥) = (𝑊𝑖))
98difeq1d 4118 . . . . . . . . 9 (𝑥 = 𝑖 → ((𝑊𝑥) ∖ I ) = ((𝑊𝑖) ∖ I ))
109dmeqd 5903 . . . . . . . 8 (𝑥 = 𝑖 → dom ((𝑊𝑥) ∖ I ) = dom ((𝑊𝑖) ∖ I ))
1110fveq2d 6896 . . . . . . 7 (𝑥 = 𝑖 → ((pmTrsp‘𝑁)‘dom ((𝑊𝑥) ∖ I )) = ((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I )))
12 simpr 484 . . . . . . 7 ((𝑊 ∈ Word 𝑇𝑖 ∈ (0..^(♯‘𝑊))) → 𝑖 ∈ (0..^(♯‘𝑊)))
13 fvexd 6907 . . . . . . 7 ((𝑊 ∈ Word 𝑇𝑖 ∈ (0..^(♯‘𝑊))) → ((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I )) ∈ V)
147, 11, 12, 13fvmptd3 7023 . . . . . 6 ((𝑊 ∈ Word 𝑇𝑖 ∈ (0..^(♯‘𝑊))) → (𝑈𝑖) = ((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I )))
1514fveq1d 6894 . . . . 5 ((𝑊 ∈ Word 𝑇𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑈𝑖)‘𝑛) = (((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I ))‘𝑛))
1615eqeq2d 2739 . . . 4 ((𝑊 ∈ Word 𝑇𝑖 ∈ (0..^(♯‘𝑊))) → (((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) ↔ ((𝑊𝑖)‘𝑛) = (((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I ))‘𝑛)))
1716ralbidv 3173 . . 3 ((𝑊 ∈ Word 𝑇𝑖 ∈ (0..^(♯‘𝑊))) → (∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) ↔ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = (((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I ))‘𝑛)))
186, 17mpbird 257 . 2 ((𝑊 ∈ Word 𝑇𝑖 ∈ (0..^(♯‘𝑊))) → ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))
1918ralrimiva 3142 1 (𝑊 ∈ Word 𝑇 → ∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wral 3057  Vcvv 3470  cdif 3942  {csn 4625  cmpt 5226   I cid 5570  dom cdm 5673  ran crn 5674  cfv 6543  (class class class)co 7415  0cc0 11133  ..^cfzo 13654  chash 14316  Word cword 14491  pmTrspcpmtr 19390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7866  df-1st 7988  df-2nd 7989  df-frecs 8281  df-wrecs 8312  df-recs 8386  df-rdg 8425  df-1o 8481  df-2o 8482  df-er 8719  df-en 8959  df-dom 8960  df-sdom 8961  df-fin 8962  df-card 9957  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-nn 12238  df-n0 12498  df-z 12584  df-uz 12848  df-fz 13512  df-fzo 13655  df-hash 14317  df-word 14492  df-pmtr 19391
This theorem is referenced by:  pmtrdifwrdel  19434  pmtrdifwrdel2  19435
  Copyright terms: Public domain W3C validator