MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankonid Structured version   Visualization version   GIF version

Theorem rankonid 9250
Description: The rank of an ordinal number is itself. Proposition 9.18 of [TakeutiZaring] p. 79 and its converse. (Contributed by NM, 14-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankonid (𝐴 ∈ dom 𝑅1 ↔ (rank‘𝐴) = 𝐴)

Proof of Theorem rankonid
StepHypRef Expression
1 rankonidlem 9249 . . 3 (𝐴 ∈ dom 𝑅1 → (𝐴 (𝑅1 “ On) ∧ (rank‘𝐴) = 𝐴))
21simprd 498 . 2 (𝐴 ∈ dom 𝑅1 → (rank‘𝐴) = 𝐴)
3 id 22 . . 3 ((rank‘𝐴) = 𝐴 → (rank‘𝐴) = 𝐴)
4 rankdmr1 9222 . . 3 (rank‘𝐴) ∈ dom 𝑅1
53, 4eqeltrrdi 2920 . 2 ((rank‘𝐴) = 𝐴𝐴 ∈ dom 𝑅1)
62, 5impbii 211 1 (𝐴 ∈ dom 𝑅1 ↔ (rank‘𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 208   = wceq 1531  wcel 2108   cuni 4830  dom cdm 5548  cima 5551  Oncon0 6184  cfv 6348  𝑅1cr1 9183  rankcrnk 9184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-om 7573  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-r1 9185  df-rank 9186
This theorem is referenced by:  rankeq0b  9281  rankr1id  9283  rankcf  10191  r1tskina  10196  rankeq1o  33625  hfninf  33640
  Copyright terms: Public domain W3C validator