Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hfpw Structured version   Visualization version   GIF version

Theorem hfpw 36163
Description: The power class of an HF set is hereditarily finite. (Contributed by Scott Fenton, 16-Jul-2015.)
Assertion
Ref Expression
hfpw (𝐴 ∈ Hf → 𝒫 𝐴 ∈ Hf )

Proof of Theorem hfpw
StepHypRef Expression
1 rankpwg 36147 . . 3 (𝐴 ∈ Hf → (rank‘𝒫 𝐴) = suc (rank‘𝐴))
2 elhf2g 36154 . . . . 5 (𝐴 ∈ Hf → (𝐴 ∈ Hf ↔ (rank‘𝐴) ∈ ω))
32ibi 267 . . . 4 (𝐴 ∈ Hf → (rank‘𝐴) ∈ ω)
4 peano2 7823 . . . 4 ((rank‘𝐴) ∈ ω → suc (rank‘𝐴) ∈ ω)
53, 4syl 17 . . 3 (𝐴 ∈ Hf → suc (rank‘𝐴) ∈ ω)
61, 5eqeltrd 2828 . 2 (𝐴 ∈ Hf → (rank‘𝒫 𝐴) ∈ ω)
7 pwexg 5317 . . 3 (𝐴 ∈ Hf → 𝒫 𝐴 ∈ V)
8 elhf2g 36154 . . 3 (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∈ Hf ↔ (rank‘𝒫 𝐴) ∈ ω))
97, 8syl 17 . 2 (𝐴 ∈ Hf → (𝒫 𝐴 ∈ Hf ↔ (rank‘𝒫 𝐴) ∈ ω))
106, 9mpbird 257 1 (𝐴 ∈ Hf → 𝒫 𝐴 ∈ Hf )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  Vcvv 3436  𝒫 cpw 4551  suc csuc 6309  cfv 6482  ωcom 7799  rankcrnk 9659   Hf chf 36150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-reg 9484  ax-inf2 9537
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-r1 9660  df-rank 9661  df-hf 36151
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator