Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hfpw Structured version   Visualization version   GIF version

Theorem hfpw 36145
Description: The power class of an HF set is hereditarily finite. (Contributed by Scott Fenton, 16-Jul-2015.)
Assertion
Ref Expression
hfpw (𝐴 ∈ Hf → 𝒫 𝐴 ∈ Hf )

Proof of Theorem hfpw
StepHypRef Expression
1 rankpwg 36129 . . 3 (𝐴 ∈ Hf → (rank‘𝒫 𝐴) = suc (rank‘𝐴))
2 elhf2g 36136 . . . . 5 (𝐴 ∈ Hf → (𝐴 ∈ Hf ↔ (rank‘𝐴) ∈ ω))
32ibi 267 . . . 4 (𝐴 ∈ Hf → (rank‘𝐴) ∈ ω)
4 peano2 7894 . . . 4 ((rank‘𝐴) ∈ ω → suc (rank‘𝐴) ∈ ω)
53, 4syl 17 . . 3 (𝐴 ∈ Hf → suc (rank‘𝐴) ∈ ω)
61, 5eqeltrd 2833 . 2 (𝐴 ∈ Hf → (rank‘𝒫 𝐴) ∈ ω)
7 pwexg 5358 . . 3 (𝐴 ∈ Hf → 𝒫 𝐴 ∈ V)
8 elhf2g 36136 . . 3 (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∈ Hf ↔ (rank‘𝒫 𝐴) ∈ ω))
97, 8syl 17 . 2 (𝐴 ∈ Hf → (𝒫 𝐴 ∈ Hf ↔ (rank‘𝒫 𝐴) ∈ ω))
106, 9mpbird 257 1 (𝐴 ∈ Hf → 𝒫 𝐴 ∈ Hf )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2107  Vcvv 3463  𝒫 cpw 4580  suc csuc 6365  cfv 6541  ωcom 7869  rankcrnk 9785   Hf chf 36132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-reg 9614  ax-inf2 9663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-om 7870  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-r1 9786  df-rank 9787  df-hf 36133
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator