Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssrankr1 | Structured version Visualization version GIF version |
Description: A relationship between an ordinal number less than or equal to a rank, and the cumulative hierarchy of sets 𝑅1. Proposition 9.15(3) of [TakeutiZaring] p. 79. (Contributed by NM, 8-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
rankid.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
ssrankr1 | ⊢ (𝐵 ∈ On → (𝐵 ⊆ (rank‘𝐴) ↔ ¬ 𝐴 ∈ (𝑅1‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankid.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | unir1 9288 | . . . 4 ⊢ ∪ (𝑅1 “ On) = V | |
3 | 1, 2 | eleqtrri 2851 | . . 3 ⊢ 𝐴 ∈ ∪ (𝑅1 “ On) |
4 | r1fnon 9242 | . . . . . 6 ⊢ 𝑅1 Fn On | |
5 | fndm 6441 | . . . . . 6 ⊢ (𝑅1 Fn On → dom 𝑅1 = On) | |
6 | 4, 5 | ax-mp 5 | . . . . 5 ⊢ dom 𝑅1 = On |
7 | 6 | eleq2i 2843 | . . . 4 ⊢ (𝐵 ∈ dom 𝑅1 ↔ 𝐵 ∈ On) |
8 | 7 | biimpri 231 | . . 3 ⊢ (𝐵 ∈ On → 𝐵 ∈ dom 𝑅1) |
9 | rankr1clem 9295 | . . 3 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (¬ 𝐴 ∈ (𝑅1‘𝐵) ↔ 𝐵 ⊆ (rank‘𝐴))) | |
10 | 3, 8, 9 | sylancr 590 | . 2 ⊢ (𝐵 ∈ On → (¬ 𝐴 ∈ (𝑅1‘𝐵) ↔ 𝐵 ⊆ (rank‘𝐴))) |
11 | 10 | bicomd 226 | 1 ⊢ (𝐵 ∈ On → (𝐵 ⊆ (rank‘𝐴) ↔ ¬ 𝐴 ∈ (𝑅1‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ⊆ wss 3860 ∪ cuni 4801 dom cdm 5528 “ cima 5531 Oncon0 6174 Fn wfn 6335 ‘cfv 6340 𝑅1cr1 9237 rankcrnk 9238 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-reg 9102 ax-inf2 9150 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-om 7586 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-r1 9239 df-rank 9240 |
This theorem is referenced by: rankr1a 9311 |
Copyright terms: Public domain | W3C validator |