| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssrankr1 | Structured version Visualization version GIF version | ||
| Description: A relationship between an ordinal number less than or equal to a rank, and the cumulative hierarchy of sets 𝑅1. Proposition 9.15(3) of [TakeutiZaring] p. 79. (Contributed by NM, 8-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| rankid.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| ssrankr1 | ⊢ (𝐵 ∈ On → (𝐵 ⊆ (rank‘𝐴) ↔ ¬ 𝐴 ∈ (𝑅1‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankid.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | unir1 9766 | . . . 4 ⊢ ∪ (𝑅1 “ On) = V | |
| 3 | 1, 2 | eleqtrri 2827 | . . 3 ⊢ 𝐴 ∈ ∪ (𝑅1 “ On) |
| 4 | r1fnon 9720 | . . . . . 6 ⊢ 𝑅1 Fn On | |
| 5 | fndm 6621 | . . . . . 6 ⊢ (𝑅1 Fn On → dom 𝑅1 = On) | |
| 6 | 4, 5 | ax-mp 5 | . . . . 5 ⊢ dom 𝑅1 = On |
| 7 | 6 | eleq2i 2820 | . . . 4 ⊢ (𝐵 ∈ dom 𝑅1 ↔ 𝐵 ∈ On) |
| 8 | 7 | biimpri 228 | . . 3 ⊢ (𝐵 ∈ On → 𝐵 ∈ dom 𝑅1) |
| 9 | rankr1clem 9773 | . . 3 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (¬ 𝐴 ∈ (𝑅1‘𝐵) ↔ 𝐵 ⊆ (rank‘𝐴))) | |
| 10 | 3, 8, 9 | sylancr 587 | . 2 ⊢ (𝐵 ∈ On → (¬ 𝐴 ∈ (𝑅1‘𝐵) ↔ 𝐵 ⊆ (rank‘𝐴))) |
| 11 | 10 | bicomd 223 | 1 ⊢ (𝐵 ∈ On → (𝐵 ⊆ (rank‘𝐴) ↔ ¬ 𝐴 ∈ (𝑅1‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 ∪ cuni 4871 dom cdm 5638 “ cima 5641 Oncon0 6332 Fn wfn 6506 ‘cfv 6511 𝑅1cr1 9715 rankcrnk 9716 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-reg 9545 ax-inf2 9594 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-r1 9717 df-rank 9718 |
| This theorem is referenced by: rankr1a 9789 onvf1odlem4 35093 |
| Copyright terms: Public domain | W3C validator |