|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ssrankr1 | Structured version Visualization version GIF version | ||
| Description: A relationship between an ordinal number less than or equal to a rank, and the cumulative hierarchy of sets 𝑅1. Proposition 9.15(3) of [TakeutiZaring] p. 79. (Contributed by NM, 8-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) | 
| Ref | Expression | 
|---|---|
| rankid.1 | ⊢ 𝐴 ∈ V | 
| Ref | Expression | 
|---|---|
| ssrankr1 | ⊢ (𝐵 ∈ On → (𝐵 ⊆ (rank‘𝐴) ↔ ¬ 𝐴 ∈ (𝑅1‘𝐵))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rankid.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | unir1 9853 | . . . 4 ⊢ ∪ (𝑅1 “ On) = V | |
| 3 | 1, 2 | eleqtrri 2840 | . . 3 ⊢ 𝐴 ∈ ∪ (𝑅1 “ On) | 
| 4 | r1fnon 9807 | . . . . . 6 ⊢ 𝑅1 Fn On | |
| 5 | fndm 6671 | . . . . . 6 ⊢ (𝑅1 Fn On → dom 𝑅1 = On) | |
| 6 | 4, 5 | ax-mp 5 | . . . . 5 ⊢ dom 𝑅1 = On | 
| 7 | 6 | eleq2i 2833 | . . . 4 ⊢ (𝐵 ∈ dom 𝑅1 ↔ 𝐵 ∈ On) | 
| 8 | 7 | biimpri 228 | . . 3 ⊢ (𝐵 ∈ On → 𝐵 ∈ dom 𝑅1) | 
| 9 | rankr1clem 9860 | . . 3 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (¬ 𝐴 ∈ (𝑅1‘𝐵) ↔ 𝐵 ⊆ (rank‘𝐴))) | |
| 10 | 3, 8, 9 | sylancr 587 | . 2 ⊢ (𝐵 ∈ On → (¬ 𝐴 ∈ (𝑅1‘𝐵) ↔ 𝐵 ⊆ (rank‘𝐴))) | 
| 11 | 10 | bicomd 223 | 1 ⊢ (𝐵 ∈ On → (𝐵 ⊆ (rank‘𝐴) ↔ ¬ 𝐴 ∈ (𝑅1‘𝐵))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 Vcvv 3480 ⊆ wss 3951 ∪ cuni 4907 dom cdm 5685 “ cima 5688 Oncon0 6384 Fn wfn 6556 ‘cfv 6561 𝑅1cr1 9802 rankcrnk 9803 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-reg 9632 ax-inf2 9681 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-r1 9804 df-rank 9805 | 
| This theorem is referenced by: rankr1a 9876 | 
| Copyright terms: Public domain | W3C validator |