| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssrankr1 | Structured version Visualization version GIF version | ||
| Description: A relationship between an ordinal number less than or equal to a rank, and the cumulative hierarchy of sets 𝑅1. Proposition 9.15(3) of [TakeutiZaring] p. 79. (Contributed by NM, 8-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| rankid.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| ssrankr1 | ⊢ (𝐵 ∈ On → (𝐵 ⊆ (rank‘𝐴) ↔ ¬ 𝐴 ∈ (𝑅1‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankid.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | unir1 9835 | . . . 4 ⊢ ∪ (𝑅1 “ On) = V | |
| 3 | 1, 2 | eleqtrri 2832 | . . 3 ⊢ 𝐴 ∈ ∪ (𝑅1 “ On) |
| 4 | r1fnon 9789 | . . . . . 6 ⊢ 𝑅1 Fn On | |
| 5 | fndm 6651 | . . . . . 6 ⊢ (𝑅1 Fn On → dom 𝑅1 = On) | |
| 6 | 4, 5 | ax-mp 5 | . . . . 5 ⊢ dom 𝑅1 = On |
| 7 | 6 | eleq2i 2825 | . . . 4 ⊢ (𝐵 ∈ dom 𝑅1 ↔ 𝐵 ∈ On) |
| 8 | 7 | biimpri 228 | . . 3 ⊢ (𝐵 ∈ On → 𝐵 ∈ dom 𝑅1) |
| 9 | rankr1clem 9842 | . . 3 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (¬ 𝐴 ∈ (𝑅1‘𝐵) ↔ 𝐵 ⊆ (rank‘𝐴))) | |
| 10 | 3, 8, 9 | sylancr 587 | . 2 ⊢ (𝐵 ∈ On → (¬ 𝐴 ∈ (𝑅1‘𝐵) ↔ 𝐵 ⊆ (rank‘𝐴))) |
| 11 | 10 | bicomd 223 | 1 ⊢ (𝐵 ∈ On → (𝐵 ⊆ (rank‘𝐴) ↔ ¬ 𝐴 ∈ (𝑅1‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ⊆ wss 3931 ∪ cuni 4887 dom cdm 5665 “ cima 5668 Oncon0 6363 Fn wfn 6536 ‘cfv 6541 𝑅1cr1 9784 rankcrnk 9785 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-reg 9614 ax-inf2 9663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-r1 9786 df-rank 9787 |
| This theorem is referenced by: rankr1a 9858 |
| Copyright terms: Public domain | W3C validator |