MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankssb Structured version   Visualization version   GIF version

Theorem rankssb 9008
Description: The subset relation is inherited by the rank function. Exercise 1 of [TakeutiZaring] p. 80. (Contributed by NM, 25-Nov-2003.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankssb (𝐵 (𝑅1 “ On) → (𝐴𝐵 → (rank‘𝐴) ⊆ (rank‘𝐵)))

Proof of Theorem rankssb
StepHypRef Expression
1 simpr 479 . . . 4 ((𝐵 (𝑅1 “ On) ∧ 𝐴𝐵) → 𝐴𝐵)
2 r1rankidb 8964 . . . . 5 (𝐵 (𝑅1 “ On) → 𝐵 ⊆ (𝑅1‘(rank‘𝐵)))
32adantr 474 . . . 4 ((𝐵 (𝑅1 “ On) ∧ 𝐴𝐵) → 𝐵 ⊆ (𝑅1‘(rank‘𝐵)))
41, 3sstrd 3831 . . 3 ((𝐵 (𝑅1 “ On) ∧ 𝐴𝐵) → 𝐴 ⊆ (𝑅1‘(rank‘𝐵)))
5 sswf 8968 . . . 4 ((𝐵 (𝑅1 “ On) ∧ 𝐴𝐵) → 𝐴 (𝑅1 “ On))
6 rankdmr1 8961 . . . 4 (rank‘𝐵) ∈ dom 𝑅1
7 rankr1bg 8963 . . . 4 ((𝐴 (𝑅1 “ On) ∧ (rank‘𝐵) ∈ dom 𝑅1) → (𝐴 ⊆ (𝑅1‘(rank‘𝐵)) ↔ (rank‘𝐴) ⊆ (rank‘𝐵)))
85, 6, 7sylancl 580 . . 3 ((𝐵 (𝑅1 “ On) ∧ 𝐴𝐵) → (𝐴 ⊆ (𝑅1‘(rank‘𝐵)) ↔ (rank‘𝐴) ⊆ (rank‘𝐵)))
94, 8mpbid 224 . 2 ((𝐵 (𝑅1 “ On) ∧ 𝐴𝐵) → (rank‘𝐴) ⊆ (rank‘𝐵))
109ex 403 1 (𝐵 (𝑅1 “ On) → (𝐴𝐵 → (rank‘𝐴) ⊆ (rank‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wcel 2107  wss 3792   cuni 4671  dom cdm 5355  cima 5358  Oncon0 5976  cfv 6135  𝑅1cr1 8922  rankcrnk 8923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-om 7344  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-r1 8924  df-rank 8925
This theorem is referenced by:  rankss  9009  rankunb  9010  rankuni2b  9013  rankr1id  9022
  Copyright terms: Public domain W3C validator