![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rankssb | Structured version Visualization version GIF version |
Description: The subset relation is inherited by the rank function. Exercise 1 of [TakeutiZaring] p. 80. (Contributed by NM, 25-Nov-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
rankssb | ⊢ (𝐵 ∈ ∪ (𝑅1 “ On) → (𝐴 ⊆ 𝐵 → (rank‘𝐴) ⊆ (rank‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . 4 ⊢ ((𝐵 ∈ ∪ (𝑅1 “ On) ∧ 𝐴 ⊆ 𝐵) → 𝐴 ⊆ 𝐵) | |
2 | r1rankidb 9827 | . . . . 5 ⊢ (𝐵 ∈ ∪ (𝑅1 “ On) → 𝐵 ⊆ (𝑅1‘(rank‘𝐵))) | |
3 | 2 | adantr 480 | . . . 4 ⊢ ((𝐵 ∈ ∪ (𝑅1 “ On) ∧ 𝐴 ⊆ 𝐵) → 𝐵 ⊆ (𝑅1‘(rank‘𝐵))) |
4 | 1, 3 | sstrd 3990 | . . 3 ⊢ ((𝐵 ∈ ∪ (𝑅1 “ On) ∧ 𝐴 ⊆ 𝐵) → 𝐴 ⊆ (𝑅1‘(rank‘𝐵))) |
5 | sswf 9831 | . . . 4 ⊢ ((𝐵 ∈ ∪ (𝑅1 “ On) ∧ 𝐴 ⊆ 𝐵) → 𝐴 ∈ ∪ (𝑅1 “ On)) | |
6 | rankdmr1 9824 | . . . 4 ⊢ (rank‘𝐵) ∈ dom 𝑅1 | |
7 | rankr1bg 9826 | . . . 4 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ (rank‘𝐵) ∈ dom 𝑅1) → (𝐴 ⊆ (𝑅1‘(rank‘𝐵)) ↔ (rank‘𝐴) ⊆ (rank‘𝐵))) | |
8 | 5, 6, 7 | sylancl 585 | . . 3 ⊢ ((𝐵 ∈ ∪ (𝑅1 “ On) ∧ 𝐴 ⊆ 𝐵) → (𝐴 ⊆ (𝑅1‘(rank‘𝐵)) ↔ (rank‘𝐴) ⊆ (rank‘𝐵))) |
9 | 4, 8 | mpbid 231 | . 2 ⊢ ((𝐵 ∈ ∪ (𝑅1 “ On) ∧ 𝐴 ⊆ 𝐵) → (rank‘𝐴) ⊆ (rank‘𝐵)) |
10 | 9 | ex 412 | 1 ⊢ (𝐵 ∈ ∪ (𝑅1 “ On) → (𝐴 ⊆ 𝐵 → (rank‘𝐴) ⊆ (rank‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2099 ⊆ wss 3947 ∪ cuni 4908 dom cdm 5678 “ cima 5681 Oncon0 6369 ‘cfv 6548 𝑅1cr1 9785 rankcrnk 9786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-om 7871 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-r1 9787 df-rank 9788 |
This theorem is referenced by: rankss 9872 rankunb 9873 rankuni2b 9876 rankr1id 9885 |
Copyright terms: Public domain | W3C validator |