![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rankssb | Structured version Visualization version GIF version |
Description: The subset relation is inherited by the rank function. Exercise 1 of [TakeutiZaring] p. 80. (Contributed by NM, 25-Nov-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
rankssb | β’ (π΅ β βͺ (π 1 β On) β (π΄ β π΅ β (rankβπ΄) β (rankβπ΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . 4 β’ ((π΅ β βͺ (π 1 β On) β§ π΄ β π΅) β π΄ β π΅) | |
2 | r1rankidb 9802 | . . . . 5 β’ (π΅ β βͺ (π 1 β On) β π΅ β (π 1β(rankβπ΅))) | |
3 | 2 | adantr 480 | . . . 4 β’ ((π΅ β βͺ (π 1 β On) β§ π΄ β π΅) β π΅ β (π 1β(rankβπ΅))) |
4 | 1, 3 | sstrd 3992 | . . 3 β’ ((π΅ β βͺ (π 1 β On) β§ π΄ β π΅) β π΄ β (π 1β(rankβπ΅))) |
5 | sswf 9806 | . . . 4 β’ ((π΅ β βͺ (π 1 β On) β§ π΄ β π΅) β π΄ β βͺ (π 1 β On)) | |
6 | rankdmr1 9799 | . . . 4 β’ (rankβπ΅) β dom π 1 | |
7 | rankr1bg 9801 | . . . 4 β’ ((π΄ β βͺ (π 1 β On) β§ (rankβπ΅) β dom π 1) β (π΄ β (π 1β(rankβπ΅)) β (rankβπ΄) β (rankβπ΅))) | |
8 | 5, 6, 7 | sylancl 585 | . . 3 β’ ((π΅ β βͺ (π 1 β On) β§ π΄ β π΅) β (π΄ β (π 1β(rankβπ΅)) β (rankβπ΄) β (rankβπ΅))) |
9 | 4, 8 | mpbid 231 | . 2 β’ ((π΅ β βͺ (π 1 β On) β§ π΄ β π΅) β (rankβπ΄) β (rankβπ΅)) |
10 | 9 | ex 412 | 1 β’ (π΅ β βͺ (π 1 β On) β (π΄ β π΅ β (rankβπ΄) β (rankβπ΅))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 β wcel 2105 β wss 3948 βͺ cuni 4908 dom cdm 5676 β cima 5679 Oncon0 6364 βcfv 6543 π 1cr1 9760 rankcrnk 9761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-om 7859 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-r1 9762 df-rank 9763 |
This theorem is referenced by: rankss 9847 rankunb 9848 rankuni2b 9851 rankr1id 9860 |
Copyright terms: Public domain | W3C validator |