| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rankval2b | Structured version Visualization version GIF version | ||
| Description: Value of an alternate definition of the rank function. Definition of [BellMachover] p. 478. This variant of rankval2 9708 does not use Regularity, and so requires the assumption that 𝐴 is in the range of 𝑅1. (Contributed by BTernaryTau, 19-Jan-2026.) |
| Ref | Expression |
|---|---|
| rankval2b | ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (𝑅1‘𝑥)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankvalb 9687 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}) | |
| 2 | r1suc 9660 | . . . . . 6 ⊢ (𝑥 ∈ On → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1‘𝑥)) | |
| 3 | 2 | eleq2d 2817 | . . . . 5 ⊢ (𝑥 ∈ On → (𝐴 ∈ (𝑅1‘suc 𝑥) ↔ 𝐴 ∈ 𝒫 (𝑅1‘𝑥))) |
| 4 | fvex 6835 | . . . . . 6 ⊢ (𝑅1‘𝑥) ∈ V | |
| 5 | 4 | elpw2 5272 | . . . . 5 ⊢ (𝐴 ∈ 𝒫 (𝑅1‘𝑥) ↔ 𝐴 ⊆ (𝑅1‘𝑥)) |
| 6 | 3, 5 | bitrdi 287 | . . . 4 ⊢ (𝑥 ∈ On → (𝐴 ∈ (𝑅1‘suc 𝑥) ↔ 𝐴 ⊆ (𝑅1‘𝑥))) |
| 7 | 6 | rabbiia 3399 | . . 3 ⊢ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} = {𝑥 ∈ On ∣ 𝐴 ⊆ (𝑅1‘𝑥)} |
| 8 | 7 | inteqi 4901 | . 2 ⊢ ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} = ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (𝑅1‘𝑥)} |
| 9 | 1, 8 | eqtrdi 2782 | 1 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (𝑅1‘𝑥)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {crab 3395 ⊆ wss 3902 𝒫 cpw 4550 ∪ cuni 4859 ∩ cint 4897 “ cima 5619 Oncon0 6306 suc csuc 6308 ‘cfv 6481 𝑅1cr1 9652 rankcrnk 9653 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-r1 9654 df-rank 9655 |
| This theorem is referenced by: rankval4b 35104 |
| Copyright terms: Public domain | W3C validator |