| Step | Hyp | Ref
| Expression |
| 1 | | r1wf 35100 |
. . . 4
⊢
(𝑅1‘∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥)) ∈ ∪
(𝑅1 “ On) |
| 2 | | rankon 9685 |
. . . . . . . . . . 11
⊢
(rank‘𝑥)
∈ On |
| 3 | 2 | onsuci 7769 |
. . . . . . . . . 10
⊢ suc
(rank‘𝑥) ∈
On |
| 4 | 3 | rgenw 3051 |
. . . . . . . . . . 11
⊢
∀𝑥 ∈
𝐴 suc (rank‘𝑥) ∈ On |
| 5 | | iunon 8259 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ ∀𝑥 ∈ 𝐴 suc (rank‘𝑥) ∈ On) → ∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥) ∈ On) |
| 6 | 4, 5 | mpan2 691 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥) ∈ On) |
| 7 | | r1ord3 9672 |
. . . . . . . . . 10
⊢ ((suc
(rank‘𝑥) ∈ On
∧ ∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥) ∈ On) → (suc (rank‘𝑥) ⊆ ∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥) → (𝑅1‘suc
(rank‘𝑥)) ⊆
(𝑅1‘∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥)))) |
| 8 | 3, 6, 7 | sylancr 587 |
. . . . . . . . 9
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (suc
(rank‘𝑥) ⊆
∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥) → (𝑅1‘suc
(rank‘𝑥)) ⊆
(𝑅1‘∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥)))) |
| 9 | | ssiun2 4996 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐴 → suc (rank‘𝑥) ⊆ ∪
𝑥 ∈ 𝐴 suc (rank‘𝑥)) |
| 10 | 8, 9 | impel 505 |
. . . . . . . 8
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝑥 ∈ 𝐴) → (𝑅1‘suc
(rank‘𝑥)) ⊆
(𝑅1‘∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥))) |
| 11 | | elwf 35101 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ∪
(𝑅1 “ On)) |
| 12 | | rankidb 9690 |
. . . . . . . . 9
⊢ (𝑥 ∈ ∪ (𝑅1 “ On) → 𝑥 ∈
(𝑅1‘suc (rank‘𝑥))) |
| 13 | 11, 12 | syl 17 |
. . . . . . . 8
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ (𝑅1‘suc
(rank‘𝑥))) |
| 14 | 10, 13 | sseldd 3935 |
. . . . . . 7
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ (𝑅1‘∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥))) |
| 15 | 14 | ex 412 |
. . . . . 6
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (𝑥 ∈ 𝐴 → 𝑥 ∈ (𝑅1‘∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥)))) |
| 16 | 15 | alrimiv 1928 |
. . . . 5
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ (𝑅1‘∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥)))) |
| 17 | | nfcv 2894 |
. . . . . 6
⊢
Ⅎ𝑥𝐴 |
| 18 | | nfcv 2894 |
. . . . . . 7
⊢
Ⅎ𝑥𝑅1 |
| 19 | | nfiu1 4977 |
. . . . . . 7
⊢
Ⅎ𝑥∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥) |
| 20 | 18, 19 | nffv 6832 |
. . . . . 6
⊢
Ⅎ𝑥(𝑅1‘∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥)) |
| 21 | 17, 20 | dfssf 3925 |
. . . . 5
⊢ (𝐴 ⊆
(𝑅1‘∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥)) ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ (𝑅1‘∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥)))) |
| 22 | 16, 21 | sylibr 234 |
. . . 4
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ⊆
(𝑅1‘∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥))) |
| 23 | | rankssb 9738 |
. . . 4
⊢
((𝑅1‘∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥)) ∈ ∪
(𝑅1 “ On) → (𝐴 ⊆
(𝑅1‘∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥)) → (rank‘𝐴) ⊆
(rank‘(𝑅1‘∪
𝑥 ∈ 𝐴 suc (rank‘𝑥))))) |
| 24 | 1, 22, 23 | mpsyl 68 |
. . 3
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) →
(rank‘𝐴) ⊆
(rank‘(𝑅1‘∪
𝑥 ∈ 𝐴 suc (rank‘𝑥)))) |
| 25 | | r1ord3 9672 |
. . . . . . 7
⊢
((∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥) ∈ On ∧ 𝑦 ∈ On) → (∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥) ⊆ 𝑦 → (𝑅1‘∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥)) ⊆ (𝑅1‘𝑦))) |
| 26 | 6, 25 | sylan 580 |
. . . . . 6
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝑦 ∈ On) → (∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥) ⊆ 𝑦 → (𝑅1‘∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥)) ⊆ (𝑅1‘𝑦))) |
| 27 | 26 | ss2rabdv 4026 |
. . . . 5
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → {𝑦 ∈ On ∣ ∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥) ⊆ 𝑦} ⊆ {𝑦 ∈ On ∣
(𝑅1‘∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥)) ⊆ (𝑅1‘𝑦)}) |
| 28 | | intss 4919 |
. . . . 5
⊢ ({𝑦 ∈ On ∣ ∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥) ⊆ 𝑦} ⊆ {𝑦 ∈ On ∣
(𝑅1‘∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥)) ⊆ (𝑅1‘𝑦)} → ∩ {𝑦
∈ On ∣ (𝑅1‘∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥)) ⊆ (𝑅1‘𝑦)} ⊆ ∩ {𝑦
∈ On ∣ ∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥) ⊆ 𝑦}) |
| 29 | 27, 28 | syl 17 |
. . . 4
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ∩ {𝑦
∈ On ∣ (𝑅1‘∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥)) ⊆ (𝑅1‘𝑦)} ⊆ ∩ {𝑦
∈ On ∣ ∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥) ⊆ 𝑦}) |
| 30 | | rankval2b 35103 |
. . . . 5
⊢
((𝑅1‘∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥)) ∈ ∪
(𝑅1 “ On) →
(rank‘(𝑅1‘∪
𝑥 ∈ 𝐴 suc (rank‘𝑥))) = ∩ {𝑦 ∈ On ∣
(𝑅1‘∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥)) ⊆ (𝑅1‘𝑦)}) |
| 31 | 1, 30 | mp1i 13 |
. . . 4
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) →
(rank‘(𝑅1‘∪
𝑥 ∈ 𝐴 suc (rank‘𝑥))) = ∩ {𝑦 ∈ On ∣
(𝑅1‘∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥)) ⊆ (𝑅1‘𝑦)}) |
| 32 | | intmin 4918 |
. . . . . 6
⊢ (∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥) ∈ On → ∩ {𝑦
∈ On ∣ ∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥) ⊆ 𝑦} = ∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥)) |
| 33 | 6, 32 | syl 17 |
. . . . 5
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ∩ {𝑦
∈ On ∣ ∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥) ⊆ 𝑦} = ∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥)) |
| 34 | 33 | eqcomd 2737 |
. . . 4
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥) = ∩ {𝑦 ∈ On ∣ ∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥) ⊆ 𝑦}) |
| 35 | 29, 31, 34 | 3sstr4d 3990 |
. . 3
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) →
(rank‘(𝑅1‘∪
𝑥 ∈ 𝐴 suc (rank‘𝑥))) ⊆ ∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥)) |
| 36 | 24, 35 | sstrd 3945 |
. 2
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) →
(rank‘𝐴) ⊆
∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥)) |
| 37 | | rankelb 9714 |
. . . . 5
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (𝑥 ∈ 𝐴 → (rank‘𝑥) ∈ (rank‘𝐴))) |
| 38 | | rankon 9685 |
. . . . . 6
⊢
(rank‘𝐴)
∈ On |
| 39 | 2, 38 | onsucssi 7771 |
. . . . 5
⊢
((rank‘𝑥)
∈ (rank‘𝐴)
↔ suc (rank‘𝑥)
⊆ (rank‘𝐴)) |
| 40 | 37, 39 | imbitrdi 251 |
. . . 4
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (𝑥 ∈ 𝐴 → suc (rank‘𝑥) ⊆ (rank‘𝐴))) |
| 41 | 40 | ralrimiv 3123 |
. . 3
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ∀𝑥 ∈ 𝐴 suc (rank‘𝑥) ⊆ (rank‘𝐴)) |
| 42 | | iunss 4994 |
. . 3
⊢ (∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥) ⊆ (rank‘𝐴) ↔ ∀𝑥 ∈ 𝐴 suc (rank‘𝑥) ⊆ (rank‘𝐴)) |
| 43 | 41, 42 | sylibr 234 |
. 2
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥) ⊆ (rank‘𝐴)) |
| 44 | 36, 43 | eqssd 3952 |
1
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) →
(rank‘𝐴) = ∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥)) |