Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rankval4b Structured version   Visualization version   GIF version

Theorem rankval4b 35104
Description: The rank of a set is the supremum of the successors of the ranks of its members. Exercise 9.1 of [Jech] p. 72. Also a special case of Theorem 7V(b) of [Enderton] p. 204. This variant of rankval4 9757 does not use Regularity, and so requires the assumption that 𝐴 is in the range of 𝑅1. (Contributed by BTernaryTau, 19-Jan-2026.)
Assertion
Ref Expression
rankval4b (𝐴 (𝑅1 “ On) → (rank‘𝐴) = 𝑥𝐴 suc (rank‘𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem rankval4b
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 r1wf 35100 . . . 4 (𝑅1 𝑥𝐴 suc (rank‘𝑥)) ∈ (𝑅1 “ On)
2 rankon 9685 . . . . . . . . . . 11 (rank‘𝑥) ∈ On
32onsuci 7769 . . . . . . . . . 10 suc (rank‘𝑥) ∈ On
43rgenw 3051 . . . . . . . . . . 11 𝑥𝐴 suc (rank‘𝑥) ∈ On
5 iunon 8259 . . . . . . . . . . 11 ((𝐴 (𝑅1 “ On) ∧ ∀𝑥𝐴 suc (rank‘𝑥) ∈ On) → 𝑥𝐴 suc (rank‘𝑥) ∈ On)
64, 5mpan2 691 . . . . . . . . . 10 (𝐴 (𝑅1 “ On) → 𝑥𝐴 suc (rank‘𝑥) ∈ On)
7 r1ord3 9672 . . . . . . . . . 10 ((suc (rank‘𝑥) ∈ On ∧ 𝑥𝐴 suc (rank‘𝑥) ∈ On) → (suc (rank‘𝑥) ⊆ 𝑥𝐴 suc (rank‘𝑥) → (𝑅1‘suc (rank‘𝑥)) ⊆ (𝑅1 𝑥𝐴 suc (rank‘𝑥))))
83, 6, 7sylancr 587 . . . . . . . . 9 (𝐴 (𝑅1 “ On) → (suc (rank‘𝑥) ⊆ 𝑥𝐴 suc (rank‘𝑥) → (𝑅1‘suc (rank‘𝑥)) ⊆ (𝑅1 𝑥𝐴 suc (rank‘𝑥))))
9 ssiun2 4996 . . . . . . . . 9 (𝑥𝐴 → suc (rank‘𝑥) ⊆ 𝑥𝐴 suc (rank‘𝑥))
108, 9impel 505 . . . . . . . 8 ((𝐴 (𝑅1 “ On) ∧ 𝑥𝐴) → (𝑅1‘suc (rank‘𝑥)) ⊆ (𝑅1 𝑥𝐴 suc (rank‘𝑥)))
11 elwf 35101 . . . . . . . . 9 ((𝐴 (𝑅1 “ On) ∧ 𝑥𝐴) → 𝑥 (𝑅1 “ On))
12 rankidb 9690 . . . . . . . . 9 (𝑥 (𝑅1 “ On) → 𝑥 ∈ (𝑅1‘suc (rank‘𝑥)))
1311, 12syl 17 . . . . . . . 8 ((𝐴 (𝑅1 “ On) ∧ 𝑥𝐴) → 𝑥 ∈ (𝑅1‘suc (rank‘𝑥)))
1410, 13sseldd 3935 . . . . . . 7 ((𝐴 (𝑅1 “ On) ∧ 𝑥𝐴) → 𝑥 ∈ (𝑅1 𝑥𝐴 suc (rank‘𝑥)))
1514ex 412 . . . . . 6 (𝐴 (𝑅1 “ On) → (𝑥𝐴𝑥 ∈ (𝑅1 𝑥𝐴 suc (rank‘𝑥))))
1615alrimiv 1928 . . . . 5 (𝐴 (𝑅1 “ On) → ∀𝑥(𝑥𝐴𝑥 ∈ (𝑅1 𝑥𝐴 suc (rank‘𝑥))))
17 nfcv 2894 . . . . . 6 𝑥𝐴
18 nfcv 2894 . . . . . . 7 𝑥𝑅1
19 nfiu1 4977 . . . . . . 7 𝑥 𝑥𝐴 suc (rank‘𝑥)
2018, 19nffv 6832 . . . . . 6 𝑥(𝑅1 𝑥𝐴 suc (rank‘𝑥))
2117, 20dfssf 3925 . . . . 5 (𝐴 ⊆ (𝑅1 𝑥𝐴 suc (rank‘𝑥)) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝑅1 𝑥𝐴 suc (rank‘𝑥))))
2216, 21sylibr 234 . . . 4 (𝐴 (𝑅1 “ On) → 𝐴 ⊆ (𝑅1 𝑥𝐴 suc (rank‘𝑥)))
23 rankssb 9738 . . . 4 ((𝑅1 𝑥𝐴 suc (rank‘𝑥)) ∈ (𝑅1 “ On) → (𝐴 ⊆ (𝑅1 𝑥𝐴 suc (rank‘𝑥)) → (rank‘𝐴) ⊆ (rank‘(𝑅1 𝑥𝐴 suc (rank‘𝑥)))))
241, 22, 23mpsyl 68 . . 3 (𝐴 (𝑅1 “ On) → (rank‘𝐴) ⊆ (rank‘(𝑅1 𝑥𝐴 suc (rank‘𝑥))))
25 r1ord3 9672 . . . . . . 7 (( 𝑥𝐴 suc (rank‘𝑥) ∈ On ∧ 𝑦 ∈ On) → ( 𝑥𝐴 suc (rank‘𝑥) ⊆ 𝑦 → (𝑅1 𝑥𝐴 suc (rank‘𝑥)) ⊆ (𝑅1𝑦)))
266, 25sylan 580 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ 𝑦 ∈ On) → ( 𝑥𝐴 suc (rank‘𝑥) ⊆ 𝑦 → (𝑅1 𝑥𝐴 suc (rank‘𝑥)) ⊆ (𝑅1𝑦)))
2726ss2rabdv 4026 . . . . 5 (𝐴 (𝑅1 “ On) → {𝑦 ∈ On ∣ 𝑥𝐴 suc (rank‘𝑥) ⊆ 𝑦} ⊆ {𝑦 ∈ On ∣ (𝑅1 𝑥𝐴 suc (rank‘𝑥)) ⊆ (𝑅1𝑦)})
28 intss 4919 . . . . 5 ({𝑦 ∈ On ∣ 𝑥𝐴 suc (rank‘𝑥) ⊆ 𝑦} ⊆ {𝑦 ∈ On ∣ (𝑅1 𝑥𝐴 suc (rank‘𝑥)) ⊆ (𝑅1𝑦)} → {𝑦 ∈ On ∣ (𝑅1 𝑥𝐴 suc (rank‘𝑥)) ⊆ (𝑅1𝑦)} ⊆ {𝑦 ∈ On ∣ 𝑥𝐴 suc (rank‘𝑥) ⊆ 𝑦})
2927, 28syl 17 . . . 4 (𝐴 (𝑅1 “ On) → {𝑦 ∈ On ∣ (𝑅1 𝑥𝐴 suc (rank‘𝑥)) ⊆ (𝑅1𝑦)} ⊆ {𝑦 ∈ On ∣ 𝑥𝐴 suc (rank‘𝑥) ⊆ 𝑦})
30 rankval2b 35103 . . . . 5 ((𝑅1 𝑥𝐴 suc (rank‘𝑥)) ∈ (𝑅1 “ On) → (rank‘(𝑅1 𝑥𝐴 suc (rank‘𝑥))) = {𝑦 ∈ On ∣ (𝑅1 𝑥𝐴 suc (rank‘𝑥)) ⊆ (𝑅1𝑦)})
311, 30mp1i 13 . . . 4 (𝐴 (𝑅1 “ On) → (rank‘(𝑅1 𝑥𝐴 suc (rank‘𝑥))) = {𝑦 ∈ On ∣ (𝑅1 𝑥𝐴 suc (rank‘𝑥)) ⊆ (𝑅1𝑦)})
32 intmin 4918 . . . . . 6 ( 𝑥𝐴 suc (rank‘𝑥) ∈ On → {𝑦 ∈ On ∣ 𝑥𝐴 suc (rank‘𝑥) ⊆ 𝑦} = 𝑥𝐴 suc (rank‘𝑥))
336, 32syl 17 . . . . 5 (𝐴 (𝑅1 “ On) → {𝑦 ∈ On ∣ 𝑥𝐴 suc (rank‘𝑥) ⊆ 𝑦} = 𝑥𝐴 suc (rank‘𝑥))
3433eqcomd 2737 . . . 4 (𝐴 (𝑅1 “ On) → 𝑥𝐴 suc (rank‘𝑥) = {𝑦 ∈ On ∣ 𝑥𝐴 suc (rank‘𝑥) ⊆ 𝑦})
3529, 31, 343sstr4d 3990 . . 3 (𝐴 (𝑅1 “ On) → (rank‘(𝑅1 𝑥𝐴 suc (rank‘𝑥))) ⊆ 𝑥𝐴 suc (rank‘𝑥))
3624, 35sstrd 3945 . 2 (𝐴 (𝑅1 “ On) → (rank‘𝐴) ⊆ 𝑥𝐴 suc (rank‘𝑥))
37 rankelb 9714 . . . . 5 (𝐴 (𝑅1 “ On) → (𝑥𝐴 → (rank‘𝑥) ∈ (rank‘𝐴)))
38 rankon 9685 . . . . . 6 (rank‘𝐴) ∈ On
392, 38onsucssi 7771 . . . . 5 ((rank‘𝑥) ∈ (rank‘𝐴) ↔ suc (rank‘𝑥) ⊆ (rank‘𝐴))
4037, 39imbitrdi 251 . . . 4 (𝐴 (𝑅1 “ On) → (𝑥𝐴 → suc (rank‘𝑥) ⊆ (rank‘𝐴)))
4140ralrimiv 3123 . . 3 (𝐴 (𝑅1 “ On) → ∀𝑥𝐴 suc (rank‘𝑥) ⊆ (rank‘𝐴))
42 iunss 4994 . . 3 ( 𝑥𝐴 suc (rank‘𝑥) ⊆ (rank‘𝐴) ↔ ∀𝑥𝐴 suc (rank‘𝑥) ⊆ (rank‘𝐴))
4341, 42sylibr 234 . 2 (𝐴 (𝑅1 “ On) → 𝑥𝐴 suc (rank‘𝑥) ⊆ (rank‘𝐴))
4436, 43eqssd 3952 1 (𝐴 (𝑅1 “ On) → (rank‘𝐴) = 𝑥𝐴 suc (rank‘𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1539   = wceq 1541  wcel 2111  wral 3047  {crab 3395  wss 3902   cuni 4859   cint 4897   ciun 4941  cima 5619  Oncon0 6306  suc csuc 6308  cfv 6481  𝑅1cr1 9652  rankcrnk 9653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-r1 9654  df-rank 9655
This theorem is referenced by:  rankfilimbi  35105
  Copyright terms: Public domain W3C validator