Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lighneallem4a Structured version   Visualization version   GIF version

Theorem lighneallem4a 47707
Description: Lemma 1 for lighneallem4 47709. (Contributed by AV, 16-Aug-2021.)
Assertion
Ref Expression
lighneallem4a ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3) ∧ 𝑆 = (((𝐴𝑀) + 1) / (𝐴 + 1))) → 2 ≤ 𝑆)

Proof of Theorem lighneallem4a
StepHypRef Expression
1 2re 12199 . . . . . . . 8 2 ∈ ℝ
21a1i 11 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 2 ∈ ℝ)
3 eluzelre 12743 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
4 peano2re 11286 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
53, 4syl 17 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → (𝐴 + 1) ∈ ℝ)
62, 5remulcld 11142 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (2 · (𝐴 + 1)) ∈ ℝ)
76adantr 480 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2 · (𝐴 + 1)) ∈ ℝ)
8 eluzge2nn0 12790 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ0)
98adantr 480 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 𝐴 ∈ ℕ0)
10 eluz3nn 12787 . . . . . . . . 9 (𝑀 ∈ (ℤ‘3) → 𝑀 ∈ ℕ)
1110nnnn0d 12442 . . . . . . . 8 (𝑀 ∈ (ℤ‘3) → 𝑀 ∈ ℕ0)
1211adantl 481 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 𝑀 ∈ ℕ0)
139, 12nn0expcld 14153 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝐴𝑀) ∈ ℕ0)
1413nn0red 12443 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝐴𝑀) ∈ ℝ)
15 peano2re 11286 . . . . . 6 ((𝐴𝑀) ∈ ℝ → ((𝐴𝑀) + 1) ∈ ℝ)
1614, 15syl 17 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → ((𝐴𝑀) + 1) ∈ ℝ)
172, 3remulcld 11142 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (2 · 𝐴) ∈ ℝ)
182, 17remulcld 11142 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → (2 · (2 · 𝐴)) ∈ ℝ)
1918adantr 480 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2 · (2 · 𝐴)) ∈ ℝ)
20 1red 11113 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 1 ∈ ℝ)
21 eluz2nn 12786 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)
2221nnge1d 12173 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 1 ≤ 𝐴)
2320, 3, 3, 22leadd2dd 11732 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → (𝐴 + 1) ≤ (𝐴 + 𝐴))
24 eluzelcn 12744 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℂ)
25242timesd 12364 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → (2 · 𝐴) = (𝐴 + 𝐴))
2623, 25breqtrrd 5117 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (𝐴 + 1) ≤ (2 · 𝐴))
2726adantr 480 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝐴 + 1) ≤ (2 · 𝐴))
28 2pos 12228 . . . . . . . . . . . 12 0 < 2
291, 28pm3.2i 470 . . . . . . . . . . 11 (2 ∈ ℝ ∧ 0 < 2)
3029a1i 11 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → (2 ∈ ℝ ∧ 0 < 2))
315, 17, 303jca 1128 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → ((𝐴 + 1) ∈ ℝ ∧ (2 · 𝐴) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)))
3231adantr 480 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → ((𝐴 + 1) ∈ ℝ ∧ (2 · 𝐴) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)))
33 lemul2 11974 . . . . . . . 8 (((𝐴 + 1) ∈ ℝ ∧ (2 · 𝐴) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝐴 + 1) ≤ (2 · 𝐴) ↔ (2 · (𝐴 + 1)) ≤ (2 · (2 · 𝐴))))
3432, 33syl 17 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → ((𝐴 + 1) ≤ (2 · 𝐴) ↔ (2 · (𝐴 + 1)) ≤ (2 · (2 · 𝐴))))
3527, 34mpbid 232 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2 · (𝐴 + 1)) ≤ (2 · (2 · 𝐴)))
36 2cn 12200 . . . . . . . . 9 2 ∈ ℂ
3736a1i 11 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 2 ∈ ℂ)
3824adantr 480 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 𝐴 ∈ ℂ)
3937, 37, 38mulassd 11135 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → ((2 · 2) · 𝐴) = (2 · (2 · 𝐴)))
40 sq2 14104 . . . . . . . . . . . 12 (2↑2) = 4
41 4re 12209 . . . . . . . . . . . 12 4 ∈ ℝ
4240, 41eqeltri 2827 . . . . . . . . . . 11 (2↑2) ∈ ℝ
4342a1i 11 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2↑2) ∈ ℝ)
44 nn0sqcl 13996 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0 → (𝐴↑2) ∈ ℕ0)
458, 44syl 17 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → (𝐴↑2) ∈ ℕ0)
4645nn0red 12443 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → (𝐴↑2) ∈ ℝ)
4746adantr 480 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝐴↑2) ∈ ℝ)
48 nnm1nn0 12422 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
4910, 48syl 17 . . . . . . . . . . . . 13 (𝑀 ∈ (ℤ‘3) → (𝑀 − 1) ∈ ℕ0)
5049adantl 481 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝑀 − 1) ∈ ℕ0)
519, 50nn0expcld 14153 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝐴↑(𝑀 − 1)) ∈ ℕ0)
5251nn0red 12443 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝐴↑(𝑀 − 1)) ∈ ℝ)
53 2nn0 12398 . . . . . . . . . . . . . 14 2 ∈ ℕ0
5453a1i 11 . . . . . . . . . . . . 13 (𝐴 ∈ (ℤ‘2) → 2 ∈ ℕ0)
552, 3, 543jca 1128 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → (2 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 2 ∈ ℕ0))
5655adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 2 ∈ ℕ0))
57 0le2 12227 . . . . . . . . . . . 12 0 ≤ 2
5857a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 0 ≤ 2)
59 eluzle 12745 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → 2 ≤ 𝐴)
6059adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 2 ≤ 𝐴)
61 leexp1a 14082 . . . . . . . . . . 11 (((2 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 2 ∈ ℕ0) ∧ (0 ≤ 2 ∧ 2 ≤ 𝐴)) → (2↑2) ≤ (𝐴↑2))
6256, 58, 60, 61syl12anc 836 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2↑2) ≤ (𝐴↑2))
63 2p1e3 12262 . . . . . . . . . . . . . 14 (2 + 1) = 3
64 eluzle 12745 . . . . . . . . . . . . . 14 (𝑀 ∈ (ℤ‘3) → 3 ≤ 𝑀)
6563, 64eqbrtrid 5124 . . . . . . . . . . . . 13 (𝑀 ∈ (ℤ‘3) → (2 + 1) ≤ 𝑀)
66 1red 11113 . . . . . . . . . . . . . 14 (𝑀 ∈ (ℤ‘3) → 1 ∈ ℝ)
67 eluzelre 12743 . . . . . . . . . . . . . 14 (𝑀 ∈ (ℤ‘3) → 𝑀 ∈ ℝ)
68 leaddsub 11593 . . . . . . . . . . . . . 14 ((2 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((2 + 1) ≤ 𝑀 ↔ 2 ≤ (𝑀 − 1)))
691, 66, 67, 68mp3an2i 1468 . . . . . . . . . . . . 13 (𝑀 ∈ (ℤ‘3) → ((2 + 1) ≤ 𝑀 ↔ 2 ≤ (𝑀 − 1)))
7065, 69mpbid 232 . . . . . . . . . . . 12 (𝑀 ∈ (ℤ‘3) → 2 ≤ (𝑀 − 1))
7170adantl 481 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 2 ≤ (𝑀 − 1))
723adantr 480 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 𝐴 ∈ ℝ)
73 2z 12504 . . . . . . . . . . . . 13 2 ∈ ℤ
7473a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 2 ∈ ℤ)
75 eluzelz 12742 . . . . . . . . . . . . . 14 (𝑀 ∈ (ℤ‘3) → 𝑀 ∈ ℤ)
76 peano2zm 12515 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
7775, 76syl 17 . . . . . . . . . . . . 13 (𝑀 ∈ (ℤ‘3) → (𝑀 − 1) ∈ ℤ)
7877adantl 481 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝑀 − 1) ∈ ℤ)
79 eluz2gt1 12818 . . . . . . . . . . . . 13 (𝐴 ∈ (ℤ‘2) → 1 < 𝐴)
8079adantr 480 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 1 < 𝐴)
8172, 74, 78, 80leexp2d 14159 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2 ≤ (𝑀 − 1) ↔ (𝐴↑2) ≤ (𝐴↑(𝑀 − 1))))
8271, 81mpbid 232 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝐴↑2) ≤ (𝐴↑(𝑀 − 1)))
8343, 47, 52, 62, 82letrd 11270 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2↑2) ≤ (𝐴↑(𝑀 − 1)))
8436sqvali 14087 . . . . . . . . . . 11 (2↑2) = (2 · 2)
8584eqcomi 2740 . . . . . . . . . 10 (2 · 2) = (2↑2)
8685a1i 11 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2 · 2) = (2↑2))
87 eluz2n0 12791 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → 𝐴 ≠ 0)
8887adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 𝐴 ≠ 0)
8975adantl 481 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 𝑀 ∈ ℤ)
9038, 88, 89expm1d 14063 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝐴↑(𝑀 − 1)) = ((𝐴𝑀) / 𝐴))
9190eqcomd 2737 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → ((𝐴𝑀) / 𝐴) = (𝐴↑(𝑀 − 1)))
9283, 86, 913brtr4d 5121 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2 · 2) ≤ ((𝐴𝑀) / 𝐴))
931, 1remulcli 11128 . . . . . . . . 9 (2 · 2) ∈ ℝ
9421nngt0d 12174 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 0 < 𝐴)
953, 94jca 511 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
9695adantr 480 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
97 lemuldiv 12002 . . . . . . . . 9 (((2 · 2) ∈ ℝ ∧ (𝐴𝑀) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (((2 · 2) · 𝐴) ≤ (𝐴𝑀) ↔ (2 · 2) ≤ ((𝐴𝑀) / 𝐴)))
9893, 14, 96, 97mp3an2i 1468 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (((2 · 2) · 𝐴) ≤ (𝐴𝑀) ↔ (2 · 2) ≤ ((𝐴𝑀) / 𝐴)))
9992, 98mpbird 257 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → ((2 · 2) · 𝐴) ≤ (𝐴𝑀))
10039, 99eqbrtrrd 5113 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2 · (2 · 𝐴)) ≤ (𝐴𝑀))
1017, 19, 14, 35, 100letrd 11270 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2 · (𝐴 + 1)) ≤ (𝐴𝑀))
10214lep1d 12053 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝐴𝑀) ≤ ((𝐴𝑀) + 1))
1037, 14, 16, 101, 102letrd 11270 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2 · (𝐴 + 1)) ≤ ((𝐴𝑀) + 1))
104 nnnn0 12388 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0)
105 nn0p1gt0 12410 . . . . . . . 8 (𝐴 ∈ ℕ0 → 0 < (𝐴 + 1))
10621, 104, 1053syl 18 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 0 < (𝐴 + 1))
1075, 106jca 511 . . . . . 6 (𝐴 ∈ (ℤ‘2) → ((𝐴 + 1) ∈ ℝ ∧ 0 < (𝐴 + 1)))
108107adantr 480 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → ((𝐴 + 1) ∈ ℝ ∧ 0 < (𝐴 + 1)))
109 lemuldiv 12002 . . . . 5 ((2 ∈ ℝ ∧ ((𝐴𝑀) + 1) ∈ ℝ ∧ ((𝐴 + 1) ∈ ℝ ∧ 0 < (𝐴 + 1))) → ((2 · (𝐴 + 1)) ≤ ((𝐴𝑀) + 1) ↔ 2 ≤ (((𝐴𝑀) + 1) / (𝐴 + 1))))
1101, 16, 108, 109mp3an2i 1468 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → ((2 · (𝐴 + 1)) ≤ ((𝐴𝑀) + 1) ↔ 2 ≤ (((𝐴𝑀) + 1) / (𝐴 + 1))))
111103, 110mpbid 232 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 2 ≤ (((𝐴𝑀) + 1) / (𝐴 + 1)))
1121113adant3 1132 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3) ∧ 𝑆 = (((𝐴𝑀) + 1) / (𝐴 + 1))) → 2 ≤ (((𝐴𝑀) + 1) / (𝐴 + 1)))
113 breq2 5093 . . 3 (𝑆 = (((𝐴𝑀) + 1) / (𝐴 + 1)) → (2 ≤ 𝑆 ↔ 2 ≤ (((𝐴𝑀) + 1) / (𝐴 + 1))))
1141133ad2ant3 1135 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3) ∧ 𝑆 = (((𝐴𝑀) + 1) / (𝐴 + 1))) → (2 ≤ 𝑆 ↔ 2 ≤ (((𝐴𝑀) + 1) / (𝐴 + 1))))
115112, 114mpbird 257 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3) ∧ 𝑆 = (((𝐴𝑀) + 1) / (𝐴 + 1))) → 2 ≤ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5089  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011   < clt 11146  cle 11147  cmin 11344   / cdiv 11774  cn 12125  2c2 12180  3c3 12181  4c4 12182  0cn0 12381  cz 12468  cuz 12732  cexp 13968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-seq 13909  df-exp 13969
This theorem is referenced by:  lighneallem4b  47708
  Copyright terms: Public domain W3C validator