Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lighneallem4a Structured version   Visualization version   GIF version

Theorem lighneallem4a 45790
Description: Lemma 1 for lighneallem4 45792. (Contributed by AV, 16-Aug-2021.)
Assertion
Ref Expression
lighneallem4a ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3) ∧ 𝑆 = (((𝐴𝑀) + 1) / (𝐴 + 1))) → 2 ≤ 𝑆)

Proof of Theorem lighneallem4a
StepHypRef Expression
1 2re 12227 . . . . . . . 8 2 ∈ ℝ
21a1i 11 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 2 ∈ ℝ)
3 eluzelre 12774 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
4 peano2re 11328 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
53, 4syl 17 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → (𝐴 + 1) ∈ ℝ)
62, 5remulcld 11185 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (2 · (𝐴 + 1)) ∈ ℝ)
76adantr 481 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2 · (𝐴 + 1)) ∈ ℝ)
8 eluzge2nn0 12812 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ0)
98adantr 481 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 𝐴 ∈ ℕ0)
10 eluzge3nn 12815 . . . . . . . . 9 (𝑀 ∈ (ℤ‘3) → 𝑀 ∈ ℕ)
1110nnnn0d 12473 . . . . . . . 8 (𝑀 ∈ (ℤ‘3) → 𝑀 ∈ ℕ0)
1211adantl 482 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 𝑀 ∈ ℕ0)
139, 12nn0expcld 14149 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝐴𝑀) ∈ ℕ0)
1413nn0red 12474 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝐴𝑀) ∈ ℝ)
15 peano2re 11328 . . . . . 6 ((𝐴𝑀) ∈ ℝ → ((𝐴𝑀) + 1) ∈ ℝ)
1614, 15syl 17 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → ((𝐴𝑀) + 1) ∈ ℝ)
172, 3remulcld 11185 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (2 · 𝐴) ∈ ℝ)
182, 17remulcld 11185 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → (2 · (2 · 𝐴)) ∈ ℝ)
1918adantr 481 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2 · (2 · 𝐴)) ∈ ℝ)
20 1red 11156 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 1 ∈ ℝ)
21 eluz2nn 12809 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)
2221nnge1d 12201 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 1 ≤ 𝐴)
2320, 3, 3, 22leadd2dd 11770 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → (𝐴 + 1) ≤ (𝐴 + 𝐴))
24 eluzelcn 12775 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℂ)
25242timesd 12396 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → (2 · 𝐴) = (𝐴 + 𝐴))
2623, 25breqtrrd 5133 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (𝐴 + 1) ≤ (2 · 𝐴))
2726adantr 481 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝐴 + 1) ≤ (2 · 𝐴))
28 2pos 12256 . . . . . . . . . . . 12 0 < 2
291, 28pm3.2i 471 . . . . . . . . . . 11 (2 ∈ ℝ ∧ 0 < 2)
3029a1i 11 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → (2 ∈ ℝ ∧ 0 < 2))
315, 17, 303jca 1128 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → ((𝐴 + 1) ∈ ℝ ∧ (2 · 𝐴) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)))
3231adantr 481 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → ((𝐴 + 1) ∈ ℝ ∧ (2 · 𝐴) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)))
33 lemul2 12008 . . . . . . . 8 (((𝐴 + 1) ∈ ℝ ∧ (2 · 𝐴) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝐴 + 1) ≤ (2 · 𝐴) ↔ (2 · (𝐴 + 1)) ≤ (2 · (2 · 𝐴))))
3432, 33syl 17 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → ((𝐴 + 1) ≤ (2 · 𝐴) ↔ (2 · (𝐴 + 1)) ≤ (2 · (2 · 𝐴))))
3527, 34mpbid 231 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2 · (𝐴 + 1)) ≤ (2 · (2 · 𝐴)))
36 2cn 12228 . . . . . . . . 9 2 ∈ ℂ
3736a1i 11 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 2 ∈ ℂ)
3824adantr 481 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 𝐴 ∈ ℂ)
3937, 37, 38mulassd 11178 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → ((2 · 2) · 𝐴) = (2 · (2 · 𝐴)))
40 sq2 14101 . . . . . . . . . . . 12 (2↑2) = 4
41 4re 12237 . . . . . . . . . . . 12 4 ∈ ℝ
4240, 41eqeltri 2834 . . . . . . . . . . 11 (2↑2) ∈ ℝ
4342a1i 11 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2↑2) ∈ ℝ)
44 nn0sqcl 13995 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0 → (𝐴↑2) ∈ ℕ0)
458, 44syl 17 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → (𝐴↑2) ∈ ℕ0)
4645nn0red 12474 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → (𝐴↑2) ∈ ℝ)
4746adantr 481 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝐴↑2) ∈ ℝ)
48 nnm1nn0 12454 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
4910, 48syl 17 . . . . . . . . . . . . 13 (𝑀 ∈ (ℤ‘3) → (𝑀 − 1) ∈ ℕ0)
5049adantl 482 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝑀 − 1) ∈ ℕ0)
519, 50nn0expcld 14149 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝐴↑(𝑀 − 1)) ∈ ℕ0)
5251nn0red 12474 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝐴↑(𝑀 − 1)) ∈ ℝ)
53 2nn0 12430 . . . . . . . . . . . . . 14 2 ∈ ℕ0
5453a1i 11 . . . . . . . . . . . . 13 (𝐴 ∈ (ℤ‘2) → 2 ∈ ℕ0)
552, 3, 543jca 1128 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → (2 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 2 ∈ ℕ0))
5655adantr 481 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 2 ∈ ℕ0))
57 0le2 12255 . . . . . . . . . . . 12 0 ≤ 2
5857a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 0 ≤ 2)
59 eluzle 12776 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → 2 ≤ 𝐴)
6059adantr 481 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 2 ≤ 𝐴)
61 leexp1a 14080 . . . . . . . . . . 11 (((2 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 2 ∈ ℕ0) ∧ (0 ≤ 2 ∧ 2 ≤ 𝐴)) → (2↑2) ≤ (𝐴↑2))
6256, 58, 60, 61syl12anc 835 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2↑2) ≤ (𝐴↑2))
63 2p1e3 12295 . . . . . . . . . . . . . 14 (2 + 1) = 3
64 eluzle 12776 . . . . . . . . . . . . . 14 (𝑀 ∈ (ℤ‘3) → 3 ≤ 𝑀)
6563, 64eqbrtrid 5140 . . . . . . . . . . . . 13 (𝑀 ∈ (ℤ‘3) → (2 + 1) ≤ 𝑀)
66 1red 11156 . . . . . . . . . . . . . 14 (𝑀 ∈ (ℤ‘3) → 1 ∈ ℝ)
67 eluzelre 12774 . . . . . . . . . . . . . 14 (𝑀 ∈ (ℤ‘3) → 𝑀 ∈ ℝ)
68 leaddsub 11631 . . . . . . . . . . . . . 14 ((2 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((2 + 1) ≤ 𝑀 ↔ 2 ≤ (𝑀 − 1)))
691, 66, 67, 68mp3an2i 1466 . . . . . . . . . . . . 13 (𝑀 ∈ (ℤ‘3) → ((2 + 1) ≤ 𝑀 ↔ 2 ≤ (𝑀 − 1)))
7065, 69mpbid 231 . . . . . . . . . . . 12 (𝑀 ∈ (ℤ‘3) → 2 ≤ (𝑀 − 1))
7170adantl 482 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 2 ≤ (𝑀 − 1))
723adantr 481 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 𝐴 ∈ ℝ)
73 2z 12535 . . . . . . . . . . . . 13 2 ∈ ℤ
7473a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 2 ∈ ℤ)
75 eluzelz 12773 . . . . . . . . . . . . . 14 (𝑀 ∈ (ℤ‘3) → 𝑀 ∈ ℤ)
76 peano2zm 12546 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
7775, 76syl 17 . . . . . . . . . . . . 13 (𝑀 ∈ (ℤ‘3) → (𝑀 − 1) ∈ ℤ)
7877adantl 482 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝑀 − 1) ∈ ℤ)
79 eluz2gt1 12845 . . . . . . . . . . . . 13 (𝐴 ∈ (ℤ‘2) → 1 < 𝐴)
8079adantr 481 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 1 < 𝐴)
8172, 74, 78, 80leexp2d 14155 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2 ≤ (𝑀 − 1) ↔ (𝐴↑2) ≤ (𝐴↑(𝑀 − 1))))
8271, 81mpbid 231 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝐴↑2) ≤ (𝐴↑(𝑀 − 1)))
8343, 47, 52, 62, 82letrd 11312 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2↑2) ≤ (𝐴↑(𝑀 − 1)))
8436sqvali 14084 . . . . . . . . . . 11 (2↑2) = (2 · 2)
8584eqcomi 2745 . . . . . . . . . 10 (2 · 2) = (2↑2)
8685a1i 11 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2 · 2) = (2↑2))
87 eluz2n0 12813 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → 𝐴 ≠ 0)
8887adantr 481 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 𝐴 ≠ 0)
8975adantl 482 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 𝑀 ∈ ℤ)
9038, 88, 89expm1d 14061 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝐴↑(𝑀 − 1)) = ((𝐴𝑀) / 𝐴))
9190eqcomd 2742 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → ((𝐴𝑀) / 𝐴) = (𝐴↑(𝑀 − 1)))
9283, 86, 913brtr4d 5137 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2 · 2) ≤ ((𝐴𝑀) / 𝐴))
931, 1remulcli 11171 . . . . . . . . 9 (2 · 2) ∈ ℝ
9421nngt0d 12202 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 0 < 𝐴)
953, 94jca 512 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
9695adantr 481 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
97 lemuldiv 12035 . . . . . . . . 9 (((2 · 2) ∈ ℝ ∧ (𝐴𝑀) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (((2 · 2) · 𝐴) ≤ (𝐴𝑀) ↔ (2 · 2) ≤ ((𝐴𝑀) / 𝐴)))
9893, 14, 96, 97mp3an2i 1466 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (((2 · 2) · 𝐴) ≤ (𝐴𝑀) ↔ (2 · 2) ≤ ((𝐴𝑀) / 𝐴)))
9992, 98mpbird 256 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → ((2 · 2) · 𝐴) ≤ (𝐴𝑀))
10039, 99eqbrtrrd 5129 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2 · (2 · 𝐴)) ≤ (𝐴𝑀))
1017, 19, 14, 35, 100letrd 11312 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2 · (𝐴 + 1)) ≤ (𝐴𝑀))
10214lep1d 12086 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝐴𝑀) ≤ ((𝐴𝑀) + 1))
1037, 14, 16, 101, 102letrd 11312 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2 · (𝐴 + 1)) ≤ ((𝐴𝑀) + 1))
104 nnnn0 12420 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0)
105 nn0p1gt0 12442 . . . . . . . 8 (𝐴 ∈ ℕ0 → 0 < (𝐴 + 1))
10621, 104, 1053syl 18 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 0 < (𝐴 + 1))
1075, 106jca 512 . . . . . 6 (𝐴 ∈ (ℤ‘2) → ((𝐴 + 1) ∈ ℝ ∧ 0 < (𝐴 + 1)))
108107adantr 481 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → ((𝐴 + 1) ∈ ℝ ∧ 0 < (𝐴 + 1)))
109 lemuldiv 12035 . . . . 5 ((2 ∈ ℝ ∧ ((𝐴𝑀) + 1) ∈ ℝ ∧ ((𝐴 + 1) ∈ ℝ ∧ 0 < (𝐴 + 1))) → ((2 · (𝐴 + 1)) ≤ ((𝐴𝑀) + 1) ↔ 2 ≤ (((𝐴𝑀) + 1) / (𝐴 + 1))))
1101, 16, 108, 109mp3an2i 1466 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → ((2 · (𝐴 + 1)) ≤ ((𝐴𝑀) + 1) ↔ 2 ≤ (((𝐴𝑀) + 1) / (𝐴 + 1))))
111103, 110mpbid 231 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 2 ≤ (((𝐴𝑀) + 1) / (𝐴 + 1)))
1121113adant3 1132 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3) ∧ 𝑆 = (((𝐴𝑀) + 1) / (𝐴 + 1))) → 2 ≤ (((𝐴𝑀) + 1) / (𝐴 + 1)))
113 breq2 5109 . . 3 (𝑆 = (((𝐴𝑀) + 1) / (𝐴 + 1)) → (2 ≤ 𝑆 ↔ 2 ≤ (((𝐴𝑀) + 1) / (𝐴 + 1))))
1141133ad2ant3 1135 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3) ∧ 𝑆 = (((𝐴𝑀) + 1) / (𝐴 + 1))) → (2 ≤ 𝑆 ↔ 2 ≤ (((𝐴𝑀) + 1) / (𝐴 + 1))))
115112, 114mpbird 256 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3) ∧ 𝑆 = (((𝐴𝑀) + 1) / (𝐴 + 1))) → 2 ≤ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943   class class class wbr 5105  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  cn 12153  2c2 12208  3c3 12209  4c4 12210  0cn0 12413  cz 12499  cuz 12763  cexp 13967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-seq 13907  df-exp 13968
This theorem is referenced by:  lighneallem4b  45791
  Copyright terms: Public domain W3C validator