Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lighneallem4a Structured version   Visualization version   GIF version

Theorem lighneallem4a 47609
Description: Lemma 1 for lighneallem4 47611. (Contributed by AV, 16-Aug-2021.)
Assertion
Ref Expression
lighneallem4a ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3) ∧ 𝑆 = (((𝐴𝑀) + 1) / (𝐴 + 1))) → 2 ≤ 𝑆)

Proof of Theorem lighneallem4a
StepHypRef Expression
1 2re 12260 . . . . . . . 8 2 ∈ ℝ
21a1i 11 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 2 ∈ ℝ)
3 eluzelre 12804 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
4 peano2re 11347 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
53, 4syl 17 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → (𝐴 + 1) ∈ ℝ)
62, 5remulcld 11204 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (2 · (𝐴 + 1)) ∈ ℝ)
76adantr 480 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2 · (𝐴 + 1)) ∈ ℝ)
8 eluzge2nn0 12851 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ0)
98adantr 480 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 𝐴 ∈ ℕ0)
10 eluz3nn 12848 . . . . . . . . 9 (𝑀 ∈ (ℤ‘3) → 𝑀 ∈ ℕ)
1110nnnn0d 12503 . . . . . . . 8 (𝑀 ∈ (ℤ‘3) → 𝑀 ∈ ℕ0)
1211adantl 481 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 𝑀 ∈ ℕ0)
139, 12nn0expcld 14211 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝐴𝑀) ∈ ℕ0)
1413nn0red 12504 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝐴𝑀) ∈ ℝ)
15 peano2re 11347 . . . . . 6 ((𝐴𝑀) ∈ ℝ → ((𝐴𝑀) + 1) ∈ ℝ)
1614, 15syl 17 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → ((𝐴𝑀) + 1) ∈ ℝ)
172, 3remulcld 11204 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (2 · 𝐴) ∈ ℝ)
182, 17remulcld 11204 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → (2 · (2 · 𝐴)) ∈ ℝ)
1918adantr 480 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2 · (2 · 𝐴)) ∈ ℝ)
20 1red 11175 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 1 ∈ ℝ)
21 eluz2nn 12847 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)
2221nnge1d 12234 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 1 ≤ 𝐴)
2320, 3, 3, 22leadd2dd 11793 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → (𝐴 + 1) ≤ (𝐴 + 𝐴))
24 eluzelcn 12805 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℂ)
25242timesd 12425 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → (2 · 𝐴) = (𝐴 + 𝐴))
2623, 25breqtrrd 5135 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (𝐴 + 1) ≤ (2 · 𝐴))
2726adantr 480 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝐴 + 1) ≤ (2 · 𝐴))
28 2pos 12289 . . . . . . . . . . . 12 0 < 2
291, 28pm3.2i 470 . . . . . . . . . . 11 (2 ∈ ℝ ∧ 0 < 2)
3029a1i 11 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → (2 ∈ ℝ ∧ 0 < 2))
315, 17, 303jca 1128 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → ((𝐴 + 1) ∈ ℝ ∧ (2 · 𝐴) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)))
3231adantr 480 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → ((𝐴 + 1) ∈ ℝ ∧ (2 · 𝐴) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)))
33 lemul2 12035 . . . . . . . 8 (((𝐴 + 1) ∈ ℝ ∧ (2 · 𝐴) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝐴 + 1) ≤ (2 · 𝐴) ↔ (2 · (𝐴 + 1)) ≤ (2 · (2 · 𝐴))))
3432, 33syl 17 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → ((𝐴 + 1) ≤ (2 · 𝐴) ↔ (2 · (𝐴 + 1)) ≤ (2 · (2 · 𝐴))))
3527, 34mpbid 232 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2 · (𝐴 + 1)) ≤ (2 · (2 · 𝐴)))
36 2cn 12261 . . . . . . . . 9 2 ∈ ℂ
3736a1i 11 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 2 ∈ ℂ)
3824adantr 480 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 𝐴 ∈ ℂ)
3937, 37, 38mulassd 11197 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → ((2 · 2) · 𝐴) = (2 · (2 · 𝐴)))
40 sq2 14162 . . . . . . . . . . . 12 (2↑2) = 4
41 4re 12270 . . . . . . . . . . . 12 4 ∈ ℝ
4240, 41eqeltri 2824 . . . . . . . . . . 11 (2↑2) ∈ ℝ
4342a1i 11 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2↑2) ∈ ℝ)
44 nn0sqcl 14054 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0 → (𝐴↑2) ∈ ℕ0)
458, 44syl 17 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → (𝐴↑2) ∈ ℕ0)
4645nn0red 12504 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → (𝐴↑2) ∈ ℝ)
4746adantr 480 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝐴↑2) ∈ ℝ)
48 nnm1nn0 12483 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
4910, 48syl 17 . . . . . . . . . . . . 13 (𝑀 ∈ (ℤ‘3) → (𝑀 − 1) ∈ ℕ0)
5049adantl 481 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝑀 − 1) ∈ ℕ0)
519, 50nn0expcld 14211 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝐴↑(𝑀 − 1)) ∈ ℕ0)
5251nn0red 12504 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝐴↑(𝑀 − 1)) ∈ ℝ)
53 2nn0 12459 . . . . . . . . . . . . . 14 2 ∈ ℕ0
5453a1i 11 . . . . . . . . . . . . 13 (𝐴 ∈ (ℤ‘2) → 2 ∈ ℕ0)
552, 3, 543jca 1128 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → (2 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 2 ∈ ℕ0))
5655adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 2 ∈ ℕ0))
57 0le2 12288 . . . . . . . . . . . 12 0 ≤ 2
5857a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 0 ≤ 2)
59 eluzle 12806 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → 2 ≤ 𝐴)
6059adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 2 ≤ 𝐴)
61 leexp1a 14140 . . . . . . . . . . 11 (((2 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 2 ∈ ℕ0) ∧ (0 ≤ 2 ∧ 2 ≤ 𝐴)) → (2↑2) ≤ (𝐴↑2))
6256, 58, 60, 61syl12anc 836 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2↑2) ≤ (𝐴↑2))
63 2p1e3 12323 . . . . . . . . . . . . . 14 (2 + 1) = 3
64 eluzle 12806 . . . . . . . . . . . . . 14 (𝑀 ∈ (ℤ‘3) → 3 ≤ 𝑀)
6563, 64eqbrtrid 5142 . . . . . . . . . . . . 13 (𝑀 ∈ (ℤ‘3) → (2 + 1) ≤ 𝑀)
66 1red 11175 . . . . . . . . . . . . . 14 (𝑀 ∈ (ℤ‘3) → 1 ∈ ℝ)
67 eluzelre 12804 . . . . . . . . . . . . . 14 (𝑀 ∈ (ℤ‘3) → 𝑀 ∈ ℝ)
68 leaddsub 11654 . . . . . . . . . . . . . 14 ((2 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((2 + 1) ≤ 𝑀 ↔ 2 ≤ (𝑀 − 1)))
691, 66, 67, 68mp3an2i 1468 . . . . . . . . . . . . 13 (𝑀 ∈ (ℤ‘3) → ((2 + 1) ≤ 𝑀 ↔ 2 ≤ (𝑀 − 1)))
7065, 69mpbid 232 . . . . . . . . . . . 12 (𝑀 ∈ (ℤ‘3) → 2 ≤ (𝑀 − 1))
7170adantl 481 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 2 ≤ (𝑀 − 1))
723adantr 480 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 𝐴 ∈ ℝ)
73 2z 12565 . . . . . . . . . . . . 13 2 ∈ ℤ
7473a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 2 ∈ ℤ)
75 eluzelz 12803 . . . . . . . . . . . . . 14 (𝑀 ∈ (ℤ‘3) → 𝑀 ∈ ℤ)
76 peano2zm 12576 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
7775, 76syl 17 . . . . . . . . . . . . 13 (𝑀 ∈ (ℤ‘3) → (𝑀 − 1) ∈ ℤ)
7877adantl 481 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝑀 − 1) ∈ ℤ)
79 eluz2gt1 12879 . . . . . . . . . . . . 13 (𝐴 ∈ (ℤ‘2) → 1 < 𝐴)
8079adantr 480 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 1 < 𝐴)
8172, 74, 78, 80leexp2d 14217 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2 ≤ (𝑀 − 1) ↔ (𝐴↑2) ≤ (𝐴↑(𝑀 − 1))))
8271, 81mpbid 232 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝐴↑2) ≤ (𝐴↑(𝑀 − 1)))
8343, 47, 52, 62, 82letrd 11331 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2↑2) ≤ (𝐴↑(𝑀 − 1)))
8436sqvali 14145 . . . . . . . . . . 11 (2↑2) = (2 · 2)
8584eqcomi 2738 . . . . . . . . . 10 (2 · 2) = (2↑2)
8685a1i 11 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2 · 2) = (2↑2))
87 eluz2n0 12852 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → 𝐴 ≠ 0)
8887adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 𝐴 ≠ 0)
8975adantl 481 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 𝑀 ∈ ℤ)
9038, 88, 89expm1d 14121 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝐴↑(𝑀 − 1)) = ((𝐴𝑀) / 𝐴))
9190eqcomd 2735 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → ((𝐴𝑀) / 𝐴) = (𝐴↑(𝑀 − 1)))
9283, 86, 913brtr4d 5139 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2 · 2) ≤ ((𝐴𝑀) / 𝐴))
931, 1remulcli 11190 . . . . . . . . 9 (2 · 2) ∈ ℝ
9421nngt0d 12235 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 0 < 𝐴)
953, 94jca 511 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
9695adantr 480 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
97 lemuldiv 12063 . . . . . . . . 9 (((2 · 2) ∈ ℝ ∧ (𝐴𝑀) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (((2 · 2) · 𝐴) ≤ (𝐴𝑀) ↔ (2 · 2) ≤ ((𝐴𝑀) / 𝐴)))
9893, 14, 96, 97mp3an2i 1468 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (((2 · 2) · 𝐴) ≤ (𝐴𝑀) ↔ (2 · 2) ≤ ((𝐴𝑀) / 𝐴)))
9992, 98mpbird 257 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → ((2 · 2) · 𝐴) ≤ (𝐴𝑀))
10039, 99eqbrtrrd 5131 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2 · (2 · 𝐴)) ≤ (𝐴𝑀))
1017, 19, 14, 35, 100letrd 11331 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2 · (𝐴 + 1)) ≤ (𝐴𝑀))
10214lep1d 12114 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝐴𝑀) ≤ ((𝐴𝑀) + 1))
1037, 14, 16, 101, 102letrd 11331 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2 · (𝐴 + 1)) ≤ ((𝐴𝑀) + 1))
104 nnnn0 12449 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0)
105 nn0p1gt0 12471 . . . . . . . 8 (𝐴 ∈ ℕ0 → 0 < (𝐴 + 1))
10621, 104, 1053syl 18 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 0 < (𝐴 + 1))
1075, 106jca 511 . . . . . 6 (𝐴 ∈ (ℤ‘2) → ((𝐴 + 1) ∈ ℝ ∧ 0 < (𝐴 + 1)))
108107adantr 480 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → ((𝐴 + 1) ∈ ℝ ∧ 0 < (𝐴 + 1)))
109 lemuldiv 12063 . . . . 5 ((2 ∈ ℝ ∧ ((𝐴𝑀) + 1) ∈ ℝ ∧ ((𝐴 + 1) ∈ ℝ ∧ 0 < (𝐴 + 1))) → ((2 · (𝐴 + 1)) ≤ ((𝐴𝑀) + 1) ↔ 2 ≤ (((𝐴𝑀) + 1) / (𝐴 + 1))))
1101, 16, 108, 109mp3an2i 1468 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → ((2 · (𝐴 + 1)) ≤ ((𝐴𝑀) + 1) ↔ 2 ≤ (((𝐴𝑀) + 1) / (𝐴 + 1))))
111103, 110mpbid 232 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 2 ≤ (((𝐴𝑀) + 1) / (𝐴 + 1)))
1121113adant3 1132 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3) ∧ 𝑆 = (((𝐴𝑀) + 1) / (𝐴 + 1))) → 2 ≤ (((𝐴𝑀) + 1) / (𝐴 + 1)))
113 breq2 5111 . . 3 (𝑆 = (((𝐴𝑀) + 1) / (𝐴 + 1)) → (2 ≤ 𝑆 ↔ 2 ≤ (((𝐴𝑀) + 1) / (𝐴 + 1))))
1141133ad2ant3 1135 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3) ∧ 𝑆 = (((𝐴𝑀) + 1) / (𝐴 + 1))) → (2 ≤ 𝑆 ↔ 2 ≤ (((𝐴𝑀) + 1) / (𝐴 + 1))))
115112, 114mpbird 257 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3) ∧ 𝑆 = (((𝐴𝑀) + 1) / (𝐴 + 1))) → 2 ≤ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  cn 12186  2c2 12241  3c3 12242  4c4 12243  0cn0 12442  cz 12529  cuz 12793  cexp 14026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-seq 13967  df-exp 14027
This theorem is referenced by:  lighneallem4b  47610
  Copyright terms: Public domain W3C validator