MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efif1o Structured version   Visualization version   GIF version

Theorem efif1o 25124
Description: The exponential function of an imaginary number maps any open-below, closed-above interval of length one-to-one onto the unit circle. (Contributed by Paul Chapman, 16-Mar-2008.) (Revised by Mario Carneiro, 13-May-2014.)
Hypotheses
Ref Expression
efif1o.1 𝐹 = (𝑤𝐷 ↦ (exp‘(i · 𝑤)))
efif1o.2 𝐶 = (abs “ {1})
efif1o.3 𝐷 = (𝐴(,](𝐴 + (2 · π)))
Assertion
Ref Expression
efif1o (𝐴 ∈ ℝ → 𝐹:𝐷1-1-onto𝐶)
Distinct variable groups:   𝑤,𝐴   𝑤,𝐶   𝑤,𝐷
Allowed substitution hint:   𝐹(𝑤)

Proof of Theorem efif1o
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efif1o.1 . 2 𝐹 = (𝑤𝐷 ↦ (exp‘(i · 𝑤)))
2 efif1o.2 . 2 𝐶 = (abs “ {1})
3 efif1o.3 . . 3 𝐷 = (𝐴(,](𝐴 + (2 · π)))
4 rexr 10681 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
5 2re 11705 . . . . . . . 8 2 ∈ ℝ
6 pire 25038 . . . . . . . 8 π ∈ ℝ
75, 6remulcli 10651 . . . . . . 7 (2 · π) ∈ ℝ
8 readdcl 10614 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (2 · π) ∈ ℝ) → (𝐴 + (2 · π)) ∈ ℝ)
97, 8mpan2 689 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 + (2 · π)) ∈ ℝ)
10 elioc2 12793 . . . . . 6 ((𝐴 ∈ ℝ* ∧ (𝐴 + (2 · π)) ∈ ℝ) → (𝑥 ∈ (𝐴(,](𝐴 + (2 · π))) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 ≤ (𝐴 + (2 · π)))))
114, 9, 10syl2anc 586 . . . . 5 (𝐴 ∈ ℝ → (𝑥 ∈ (𝐴(,](𝐴 + (2 · π))) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 ≤ (𝐴 + (2 · π)))))
12 simp1 1132 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 ≤ (𝐴 + (2 · π))) → 𝑥 ∈ ℝ)
1311, 12syl6bi 255 . . . 4 (𝐴 ∈ ℝ → (𝑥 ∈ (𝐴(,](𝐴 + (2 · π))) → 𝑥 ∈ ℝ))
1413ssrdv 3973 . . 3 (𝐴 ∈ ℝ → (𝐴(,](𝐴 + (2 · π))) ⊆ ℝ)
153, 14eqsstrid 4015 . 2 (𝐴 ∈ ℝ → 𝐷 ⊆ ℝ)
163efif1olem1 25120 . 2 ((𝐴 ∈ ℝ ∧ (𝑥𝐷𝑦𝐷)) → (abs‘(𝑥𝑦)) < (2 · π))
173efif1olem2 25121 . 2 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ∃𝑦𝐷 ((𝑧𝑦) / (2 · π)) ∈ ℤ)
18 eqid 2821 . 2 (sin ↾ (-(π / 2)[,](π / 2))) = (sin ↾ (-(π / 2)[,](π / 2)))
191, 2, 15, 16, 17, 18efif1olem4 25123 1 (𝐴 ∈ ℝ → 𝐹:𝐷1-1-onto𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  w3a 1083   = wceq 1533  wcel 2110  {csn 4561   class class class wbr 5059  cmpt 5139  ccnv 5549  cres 5552  cima 5553  1-1-ontowf1o 6349  cfv 6350  (class class class)co 7150  cr 10530  1c1 10532  ici 10533   + caddc 10534   · cmul 10536  *cxr 10668   < clt 10669  cle 10670  -cneg 10865   / cdiv 11291  2c2 11686  (,]cioc 12733  [,]cicc 12735  abscabs 14587  expce 15409  sincsin 15411  πcpi 15414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-iin 4915  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-ioc 12737  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-fl 13156  df-mod 13232  df-seq 13364  df-exp 13424  df-fac 13628  df-bc 13657  df-hash 13685  df-shft 14420  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-limsup 14822  df-clim 14839  df-rlim 14840  df-sum 15037  df-ef 15415  df-sin 15417  df-cos 15418  df-pi 15420  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-hom 16583  df-cco 16584  df-rest 16690  df-topn 16691  df-0g 16709  df-gsum 16710  df-topgen 16711  df-pt 16712  df-prds 16715  df-xrs 16769  df-qtop 16774  df-imas 16775  df-xps 16777  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-mulg 18219  df-cntz 18441  df-cmn 18902  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-fbas 20536  df-fg 20537  df-cnfld 20540  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-cld 21621  df-ntr 21622  df-cls 21623  df-nei 21700  df-lp 21738  df-perf 21739  df-cn 21829  df-cnp 21830  df-haus 21917  df-tx 22164  df-hmeo 22357  df-fil 22448  df-fm 22540  df-flim 22541  df-flf 22542  df-xms 22924  df-ms 22925  df-tms 22926  df-cncf 23480  df-limc 24458  df-dv 24459
This theorem is referenced by:  efifo  25125
  Copyright terms: Public domain W3C validator