| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sin4lt0 | Structured version Visualization version GIF version | ||
| Description: The sine of 4 is negative. (Contributed by Paul Chapman, 19-Jan-2008.) |
| Ref | Expression |
|---|---|
| sin4lt0 | ⊢ (sin‘4) < 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2t2e4 12291 | . . . 4 ⊢ (2 · 2) = 4 | |
| 2 | 1 | fveq2i 6831 | . . 3 ⊢ (sin‘(2 · 2)) = (sin‘4) |
| 3 | 2cn 12207 | . . . 4 ⊢ 2 ∈ ℂ | |
| 4 | sin2t 16088 | . . . 4 ⊢ (2 ∈ ℂ → (sin‘(2 · 2)) = (2 · ((sin‘2) · (cos‘2)))) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (sin‘(2 · 2)) = (2 · ((sin‘2) · (cos‘2))) |
| 6 | 2, 5 | eqtr3i 2758 | . 2 ⊢ (sin‘4) = (2 · ((sin‘2) · (cos‘2))) |
| 7 | sincos2sgn 16105 | . . . . . . 7 ⊢ (0 < (sin‘2) ∧ (cos‘2) < 0) | |
| 8 | 7 | simpri 485 | . . . . . 6 ⊢ (cos‘2) < 0 |
| 9 | 2re 12206 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
| 10 | recoscl 16052 | . . . . . . . 8 ⊢ (2 ∈ ℝ → (cos‘2) ∈ ℝ) | |
| 11 | 9, 10 | ax-mp 5 | . . . . . . 7 ⊢ (cos‘2) ∈ ℝ |
| 12 | 0re 11121 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
| 13 | resincl 16051 | . . . . . . . . 9 ⊢ (2 ∈ ℝ → (sin‘2) ∈ ℝ) | |
| 14 | 9, 13 | ax-mp 5 | . . . . . . . 8 ⊢ (sin‘2) ∈ ℝ |
| 15 | 7 | simpli 483 | . . . . . . . 8 ⊢ 0 < (sin‘2) |
| 16 | 14, 15 | pm3.2i 470 | . . . . . . 7 ⊢ ((sin‘2) ∈ ℝ ∧ 0 < (sin‘2)) |
| 17 | ltmul2 11979 | . . . . . . 7 ⊢ (((cos‘2) ∈ ℝ ∧ 0 ∈ ℝ ∧ ((sin‘2) ∈ ℝ ∧ 0 < (sin‘2))) → ((cos‘2) < 0 ↔ ((sin‘2) · (cos‘2)) < ((sin‘2) · 0))) | |
| 18 | 11, 12, 16, 17 | mp3an 1463 | . . . . . 6 ⊢ ((cos‘2) < 0 ↔ ((sin‘2) · (cos‘2)) < ((sin‘2) · 0)) |
| 19 | 8, 18 | mpbi 230 | . . . . 5 ⊢ ((sin‘2) · (cos‘2)) < ((sin‘2) · 0) |
| 20 | 14 | recni 11133 | . . . . . 6 ⊢ (sin‘2) ∈ ℂ |
| 21 | 20 | mul01i 11310 | . . . . 5 ⊢ ((sin‘2) · 0) = 0 |
| 22 | 19, 21 | breqtri 5118 | . . . 4 ⊢ ((sin‘2) · (cos‘2)) < 0 |
| 23 | 14, 11 | remulcli 11135 | . . . . 5 ⊢ ((sin‘2) · (cos‘2)) ∈ ℝ |
| 24 | 2pos 12235 | . . . . . 6 ⊢ 0 < 2 | |
| 25 | 9, 24 | pm3.2i 470 | . . . . 5 ⊢ (2 ∈ ℝ ∧ 0 < 2) |
| 26 | ltmul2 11979 | . . . . 5 ⊢ ((((sin‘2) · (cos‘2)) ∈ ℝ ∧ 0 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((sin‘2) · (cos‘2)) < 0 ↔ (2 · ((sin‘2) · (cos‘2))) < (2 · 0))) | |
| 27 | 23, 12, 25, 26 | mp3an 1463 | . . . 4 ⊢ (((sin‘2) · (cos‘2)) < 0 ↔ (2 · ((sin‘2) · (cos‘2))) < (2 · 0)) |
| 28 | 22, 27 | mpbi 230 | . . 3 ⊢ (2 · ((sin‘2) · (cos‘2))) < (2 · 0) |
| 29 | 3 | mul01i 11310 | . . 3 ⊢ (2 · 0) = 0 |
| 30 | 28, 29 | breqtri 5118 | . 2 ⊢ (2 · ((sin‘2) · (cos‘2))) < 0 |
| 31 | 6, 30 | eqbrtri 5114 | 1 ⊢ (sin‘4) < 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 class class class wbr 5093 ‘cfv 6486 (class class class)co 7352 ℂcc 11011 ℝcr 11012 0cc0 11013 · cmul 11018 < clt 11153 2c2 12187 4c4 12189 sincsin 15972 cosccos 15973 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9333 df-inf 9334 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-uz 12739 df-rp 12893 df-ioc 13252 df-ico 13253 df-fz 13410 df-fzo 13557 df-fl 13698 df-seq 13911 df-exp 13971 df-fac 14183 df-bc 14212 df-hash 14240 df-shft 14976 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-limsup 15380 df-clim 15397 df-rlim 15398 df-sum 15596 df-ef 15976 df-sin 15978 df-cos 15979 |
| This theorem is referenced by: pilem3 26391 sinnpoly 47015 |
| Copyright terms: Public domain | W3C validator |