Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sin4lt0 | Structured version Visualization version GIF version |
Description: The sine of 4 is negative. (Contributed by Paul Chapman, 19-Jan-2008.) |
Ref | Expression |
---|---|
sin4lt0 | ⊢ (sin‘4) < 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2t2e4 12230 | . . . 4 ⊢ (2 · 2) = 4 | |
2 | 1 | fveq2i 6822 | . . 3 ⊢ (sin‘(2 · 2)) = (sin‘4) |
3 | 2cn 12141 | . . . 4 ⊢ 2 ∈ ℂ | |
4 | sin2t 15977 | . . . 4 ⊢ (2 ∈ ℂ → (sin‘(2 · 2)) = (2 · ((sin‘2) · (cos‘2)))) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (sin‘(2 · 2)) = (2 · ((sin‘2) · (cos‘2))) |
6 | 2, 5 | eqtr3i 2766 | . 2 ⊢ (sin‘4) = (2 · ((sin‘2) · (cos‘2))) |
7 | sincos2sgn 15994 | . . . . . . 7 ⊢ (0 < (sin‘2) ∧ (cos‘2) < 0) | |
8 | 7 | simpri 486 | . . . . . 6 ⊢ (cos‘2) < 0 |
9 | 2re 12140 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
10 | recoscl 15941 | . . . . . . . 8 ⊢ (2 ∈ ℝ → (cos‘2) ∈ ℝ) | |
11 | 9, 10 | ax-mp 5 | . . . . . . 7 ⊢ (cos‘2) ∈ ℝ |
12 | 0re 11070 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
13 | resincl 15940 | . . . . . . . . 9 ⊢ (2 ∈ ℝ → (sin‘2) ∈ ℝ) | |
14 | 9, 13 | ax-mp 5 | . . . . . . . 8 ⊢ (sin‘2) ∈ ℝ |
15 | 7 | simpli 484 | . . . . . . . 8 ⊢ 0 < (sin‘2) |
16 | 14, 15 | pm3.2i 471 | . . . . . . 7 ⊢ ((sin‘2) ∈ ℝ ∧ 0 < (sin‘2)) |
17 | ltmul2 11919 | . . . . . . 7 ⊢ (((cos‘2) ∈ ℝ ∧ 0 ∈ ℝ ∧ ((sin‘2) ∈ ℝ ∧ 0 < (sin‘2))) → ((cos‘2) < 0 ↔ ((sin‘2) · (cos‘2)) < ((sin‘2) · 0))) | |
18 | 11, 12, 16, 17 | mp3an 1460 | . . . . . 6 ⊢ ((cos‘2) < 0 ↔ ((sin‘2) · (cos‘2)) < ((sin‘2) · 0)) |
19 | 8, 18 | mpbi 229 | . . . . 5 ⊢ ((sin‘2) · (cos‘2)) < ((sin‘2) · 0) |
20 | 14 | recni 11082 | . . . . . 6 ⊢ (sin‘2) ∈ ℂ |
21 | 20 | mul01i 11258 | . . . . 5 ⊢ ((sin‘2) · 0) = 0 |
22 | 19, 21 | breqtri 5114 | . . . 4 ⊢ ((sin‘2) · (cos‘2)) < 0 |
23 | 14, 11 | remulcli 11084 | . . . . 5 ⊢ ((sin‘2) · (cos‘2)) ∈ ℝ |
24 | 2pos 12169 | . . . . . 6 ⊢ 0 < 2 | |
25 | 9, 24 | pm3.2i 471 | . . . . 5 ⊢ (2 ∈ ℝ ∧ 0 < 2) |
26 | ltmul2 11919 | . . . . 5 ⊢ ((((sin‘2) · (cos‘2)) ∈ ℝ ∧ 0 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((sin‘2) · (cos‘2)) < 0 ↔ (2 · ((sin‘2) · (cos‘2))) < (2 · 0))) | |
27 | 23, 12, 25, 26 | mp3an 1460 | . . . 4 ⊢ (((sin‘2) · (cos‘2)) < 0 ↔ (2 · ((sin‘2) · (cos‘2))) < (2 · 0)) |
28 | 22, 27 | mpbi 229 | . . 3 ⊢ (2 · ((sin‘2) · (cos‘2))) < (2 · 0) |
29 | 3 | mul01i 11258 | . . 3 ⊢ (2 · 0) = 0 |
30 | 28, 29 | breqtri 5114 | . 2 ⊢ (2 · ((sin‘2) · (cos‘2))) < 0 |
31 | 6, 30 | eqbrtri 5110 | 1 ⊢ (sin‘4) < 0 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 class class class wbr 5089 ‘cfv 6473 (class class class)co 7329 ℂcc 10962 ℝcr 10963 0cc0 10964 · cmul 10969 < clt 11102 2c2 12121 4c4 12123 sincsin 15864 cosccos 15865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-inf2 9490 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 ax-pre-sup 11042 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-int 4894 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-se 5570 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-isom 6482 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-1st 7891 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-1o 8359 df-er 8561 df-pm 8681 df-en 8797 df-dom 8798 df-sdom 8799 df-fin 8800 df-sup 9291 df-inf 9292 df-oi 9359 df-card 9788 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-div 11726 df-nn 12067 df-2 12129 df-3 12130 df-4 12131 df-5 12132 df-6 12133 df-7 12134 df-8 12135 df-9 12136 df-n0 12327 df-z 12413 df-uz 12676 df-rp 12824 df-ioc 13177 df-ico 13178 df-fz 13333 df-fzo 13476 df-fl 13605 df-seq 13815 df-exp 13876 df-fac 14081 df-bc 14110 df-hash 14138 df-shft 14869 df-cj 14901 df-re 14902 df-im 14903 df-sqrt 15037 df-abs 15038 df-limsup 15271 df-clim 15288 df-rlim 15289 df-sum 15489 df-ef 15868 df-sin 15870 df-cos 15871 |
This theorem is referenced by: pilem3 25710 |
Copyright terms: Public domain | W3C validator |