MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sin4lt0 Structured version   Visualization version   GIF version

Theorem sin4lt0 15995
Description: The sine of 4 is negative. (Contributed by Paul Chapman, 19-Jan-2008.)
Assertion
Ref Expression
sin4lt0 (sin‘4) < 0

Proof of Theorem sin4lt0
StepHypRef Expression
1 2t2e4 12230 . . . 4 (2 · 2) = 4
21fveq2i 6822 . . 3 (sin‘(2 · 2)) = (sin‘4)
3 2cn 12141 . . . 4 2 ∈ ℂ
4 sin2t 15977 . . . 4 (2 ∈ ℂ → (sin‘(2 · 2)) = (2 · ((sin‘2) · (cos‘2))))
53, 4ax-mp 5 . . 3 (sin‘(2 · 2)) = (2 · ((sin‘2) · (cos‘2)))
62, 5eqtr3i 2766 . 2 (sin‘4) = (2 · ((sin‘2) · (cos‘2)))
7 sincos2sgn 15994 . . . . . . 7 (0 < (sin‘2) ∧ (cos‘2) < 0)
87simpri 486 . . . . . 6 (cos‘2) < 0
9 2re 12140 . . . . . . . 8 2 ∈ ℝ
10 recoscl 15941 . . . . . . . 8 (2 ∈ ℝ → (cos‘2) ∈ ℝ)
119, 10ax-mp 5 . . . . . . 7 (cos‘2) ∈ ℝ
12 0re 11070 . . . . . . 7 0 ∈ ℝ
13 resincl 15940 . . . . . . . . 9 (2 ∈ ℝ → (sin‘2) ∈ ℝ)
149, 13ax-mp 5 . . . . . . . 8 (sin‘2) ∈ ℝ
157simpli 484 . . . . . . . 8 0 < (sin‘2)
1614, 15pm3.2i 471 . . . . . . 7 ((sin‘2) ∈ ℝ ∧ 0 < (sin‘2))
17 ltmul2 11919 . . . . . . 7 (((cos‘2) ∈ ℝ ∧ 0 ∈ ℝ ∧ ((sin‘2) ∈ ℝ ∧ 0 < (sin‘2))) → ((cos‘2) < 0 ↔ ((sin‘2) · (cos‘2)) < ((sin‘2) · 0)))
1811, 12, 16, 17mp3an 1460 . . . . . 6 ((cos‘2) < 0 ↔ ((sin‘2) · (cos‘2)) < ((sin‘2) · 0))
198, 18mpbi 229 . . . . 5 ((sin‘2) · (cos‘2)) < ((sin‘2) · 0)
2014recni 11082 . . . . . 6 (sin‘2) ∈ ℂ
2120mul01i 11258 . . . . 5 ((sin‘2) · 0) = 0
2219, 21breqtri 5114 . . . 4 ((sin‘2) · (cos‘2)) < 0
2314, 11remulcli 11084 . . . . 5 ((sin‘2) · (cos‘2)) ∈ ℝ
24 2pos 12169 . . . . . 6 0 < 2
259, 24pm3.2i 471 . . . . 5 (2 ∈ ℝ ∧ 0 < 2)
26 ltmul2 11919 . . . . 5 ((((sin‘2) · (cos‘2)) ∈ ℝ ∧ 0 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((sin‘2) · (cos‘2)) < 0 ↔ (2 · ((sin‘2) · (cos‘2))) < (2 · 0)))
2723, 12, 25, 26mp3an 1460 . . . 4 (((sin‘2) · (cos‘2)) < 0 ↔ (2 · ((sin‘2) · (cos‘2))) < (2 · 0))
2822, 27mpbi 229 . . 3 (2 · ((sin‘2) · (cos‘2))) < (2 · 0)
293mul01i 11258 . . 3 (2 · 0) = 0
3028, 29breqtri 5114 . 2 (2 · ((sin‘2) · (cos‘2))) < 0
316, 30eqbrtri 5110 1 (sin‘4) < 0
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1540  wcel 2105   class class class wbr 5089  cfv 6473  (class class class)co 7329  cc 10962  cr 10963  0cc0 10964   · cmul 10969   < clt 11102  2c2 12121  4c4 12123  sincsin 15864  cosccos 15865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-inf2 9490  ax-cnex 11020  ax-resscn 11021  ax-1cn 11022  ax-icn 11023  ax-addcl 11024  ax-addrcl 11025  ax-mulcl 11026  ax-mulrcl 11027  ax-mulcom 11028  ax-addass 11029  ax-mulass 11030  ax-distr 11031  ax-i2m1 11032  ax-1ne0 11033  ax-1rid 11034  ax-rnegex 11035  ax-rrecex 11036  ax-cnre 11037  ax-pre-lttri 11038  ax-pre-lttrn 11039  ax-pre-ltadd 11040  ax-pre-mulgt0 11041  ax-pre-sup 11042
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-int 4894  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-se 5570  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-isom 6482  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-om 7773  df-1st 7891  df-2nd 7892  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-rdg 8303  df-1o 8359  df-er 8561  df-pm 8681  df-en 8797  df-dom 8798  df-sdom 8799  df-fin 8800  df-sup 9291  df-inf 9292  df-oi 9359  df-card 9788  df-pnf 11104  df-mnf 11105  df-xr 11106  df-ltxr 11107  df-le 11108  df-sub 11300  df-neg 11301  df-div 11726  df-nn 12067  df-2 12129  df-3 12130  df-4 12131  df-5 12132  df-6 12133  df-7 12134  df-8 12135  df-9 12136  df-n0 12327  df-z 12413  df-uz 12676  df-rp 12824  df-ioc 13177  df-ico 13178  df-fz 13333  df-fzo 13476  df-fl 13605  df-seq 13815  df-exp 13876  df-fac 14081  df-bc 14110  df-hash 14138  df-shft 14869  df-cj 14901  df-re 14902  df-im 14903  df-sqrt 15037  df-abs 15038  df-limsup 15271  df-clim 15288  df-rlim 15289  df-sum 15489  df-ef 15868  df-sin 15870  df-cos 15871
This theorem is referenced by:  pilem3  25710
  Copyright terms: Public domain W3C validator