|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > sin4lt0 | Structured version Visualization version GIF version | ||
| Description: The sine of 4 is negative. (Contributed by Paul Chapman, 19-Jan-2008.) | 
| Ref | Expression | 
|---|---|
| sin4lt0 | ⊢ (sin‘4) < 0 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 2t2e4 12431 | . . . 4 ⊢ (2 · 2) = 4 | |
| 2 | 1 | fveq2i 6908 | . . 3 ⊢ (sin‘(2 · 2)) = (sin‘4) | 
| 3 | 2cn 12342 | . . . 4 ⊢ 2 ∈ ℂ | |
| 4 | sin2t 16214 | . . . 4 ⊢ (2 ∈ ℂ → (sin‘(2 · 2)) = (2 · ((sin‘2) · (cos‘2)))) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (sin‘(2 · 2)) = (2 · ((sin‘2) · (cos‘2))) | 
| 6 | 2, 5 | eqtr3i 2766 | . 2 ⊢ (sin‘4) = (2 · ((sin‘2) · (cos‘2))) | 
| 7 | sincos2sgn 16231 | . . . . . . 7 ⊢ (0 < (sin‘2) ∧ (cos‘2) < 0) | |
| 8 | 7 | simpri 485 | . . . . . 6 ⊢ (cos‘2) < 0 | 
| 9 | 2re 12341 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
| 10 | recoscl 16178 | . . . . . . . 8 ⊢ (2 ∈ ℝ → (cos‘2) ∈ ℝ) | |
| 11 | 9, 10 | ax-mp 5 | . . . . . . 7 ⊢ (cos‘2) ∈ ℝ | 
| 12 | 0re 11264 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
| 13 | resincl 16177 | . . . . . . . . 9 ⊢ (2 ∈ ℝ → (sin‘2) ∈ ℝ) | |
| 14 | 9, 13 | ax-mp 5 | . . . . . . . 8 ⊢ (sin‘2) ∈ ℝ | 
| 15 | 7 | simpli 483 | . . . . . . . 8 ⊢ 0 < (sin‘2) | 
| 16 | 14, 15 | pm3.2i 470 | . . . . . . 7 ⊢ ((sin‘2) ∈ ℝ ∧ 0 < (sin‘2)) | 
| 17 | ltmul2 12119 | . . . . . . 7 ⊢ (((cos‘2) ∈ ℝ ∧ 0 ∈ ℝ ∧ ((sin‘2) ∈ ℝ ∧ 0 < (sin‘2))) → ((cos‘2) < 0 ↔ ((sin‘2) · (cos‘2)) < ((sin‘2) · 0))) | |
| 18 | 11, 12, 16, 17 | mp3an 1462 | . . . . . 6 ⊢ ((cos‘2) < 0 ↔ ((sin‘2) · (cos‘2)) < ((sin‘2) · 0)) | 
| 19 | 8, 18 | mpbi 230 | . . . . 5 ⊢ ((sin‘2) · (cos‘2)) < ((sin‘2) · 0) | 
| 20 | 14 | recni 11276 | . . . . . 6 ⊢ (sin‘2) ∈ ℂ | 
| 21 | 20 | mul01i 11452 | . . . . 5 ⊢ ((sin‘2) · 0) = 0 | 
| 22 | 19, 21 | breqtri 5167 | . . . 4 ⊢ ((sin‘2) · (cos‘2)) < 0 | 
| 23 | 14, 11 | remulcli 11278 | . . . . 5 ⊢ ((sin‘2) · (cos‘2)) ∈ ℝ | 
| 24 | 2pos 12370 | . . . . . 6 ⊢ 0 < 2 | |
| 25 | 9, 24 | pm3.2i 470 | . . . . 5 ⊢ (2 ∈ ℝ ∧ 0 < 2) | 
| 26 | ltmul2 12119 | . . . . 5 ⊢ ((((sin‘2) · (cos‘2)) ∈ ℝ ∧ 0 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((sin‘2) · (cos‘2)) < 0 ↔ (2 · ((sin‘2) · (cos‘2))) < (2 · 0))) | |
| 27 | 23, 12, 25, 26 | mp3an 1462 | . . . 4 ⊢ (((sin‘2) · (cos‘2)) < 0 ↔ (2 · ((sin‘2) · (cos‘2))) < (2 · 0)) | 
| 28 | 22, 27 | mpbi 230 | . . 3 ⊢ (2 · ((sin‘2) · (cos‘2))) < (2 · 0) | 
| 29 | 3 | mul01i 11452 | . . 3 ⊢ (2 · 0) = 0 | 
| 30 | 28, 29 | breqtri 5167 | . 2 ⊢ (2 · ((sin‘2) · (cos‘2))) < 0 | 
| 31 | 6, 30 | eqbrtri 5163 | 1 ⊢ (sin‘4) < 0 | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 class class class wbr 5142 ‘cfv 6560 (class class class)co 7432 ℂcc 11154 ℝcr 11155 0cc0 11156 · cmul 11161 < clt 11296 2c2 12322 4c4 12324 sincsin 16100 cosccos 16101 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-inf2 9682 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-pre-sup 11234 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-er 8746 df-pm 8870 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-sup 9483 df-inf 9484 df-oi 9551 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-z 12616 df-uz 12880 df-rp 13036 df-ioc 13393 df-ico 13394 df-fz 13549 df-fzo 13696 df-fl 13833 df-seq 14044 df-exp 14104 df-fac 14314 df-bc 14343 df-hash 14371 df-shft 15107 df-cj 15139 df-re 15140 df-im 15141 df-sqrt 15275 df-abs 15276 df-limsup 15508 df-clim 15525 df-rlim 15526 df-sum 15724 df-ef 16104 df-sin 16106 df-cos 16107 | 
| This theorem is referenced by: pilem3 26498 | 
| Copyright terms: Public domain | W3C validator |