MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sin4lt0 Structured version   Visualization version   GIF version

Theorem sin4lt0 15381
Description: The sine of 4 is negative. (Contributed by Paul Chapman, 19-Jan-2008.)
Assertion
Ref Expression
sin4lt0 (sin‘4) < 0

Proof of Theorem sin4lt0
StepHypRef Expression
1 2t2e4 11651 . . . 4 (2 · 2) = 4
21fveq2i 6544 . . 3 (sin‘(2 · 2)) = (sin‘4)
3 2cn 11562 . . . 4 2 ∈ ℂ
4 sin2t 15363 . . . 4 (2 ∈ ℂ → (sin‘(2 · 2)) = (2 · ((sin‘2) · (cos‘2))))
53, 4ax-mp 5 . . 3 (sin‘(2 · 2)) = (2 · ((sin‘2) · (cos‘2)))
62, 5eqtr3i 2820 . 2 (sin‘4) = (2 · ((sin‘2) · (cos‘2)))
7 sincos2sgn 15380 . . . . . . 7 (0 < (sin‘2) ∧ (cos‘2) < 0)
87simpri 486 . . . . . 6 (cos‘2) < 0
9 2re 11561 . . . . . . . 8 2 ∈ ℝ
10 recoscl 15327 . . . . . . . 8 (2 ∈ ℝ → (cos‘2) ∈ ℝ)
119, 10ax-mp 5 . . . . . . 7 (cos‘2) ∈ ℝ
12 0re 10492 . . . . . . 7 0 ∈ ℝ
13 resincl 15326 . . . . . . . . 9 (2 ∈ ℝ → (sin‘2) ∈ ℝ)
149, 13ax-mp 5 . . . . . . . 8 (sin‘2) ∈ ℝ
157simpli 484 . . . . . . . 8 0 < (sin‘2)
1614, 15pm3.2i 471 . . . . . . 7 ((sin‘2) ∈ ℝ ∧ 0 < (sin‘2))
17 ltmul2 11341 . . . . . . 7 (((cos‘2) ∈ ℝ ∧ 0 ∈ ℝ ∧ ((sin‘2) ∈ ℝ ∧ 0 < (sin‘2))) → ((cos‘2) < 0 ↔ ((sin‘2) · (cos‘2)) < ((sin‘2) · 0)))
1811, 12, 16, 17mp3an 1453 . . . . . 6 ((cos‘2) < 0 ↔ ((sin‘2) · (cos‘2)) < ((sin‘2) · 0))
198, 18mpbi 231 . . . . 5 ((sin‘2) · (cos‘2)) < ((sin‘2) · 0)
2014recni 10504 . . . . . 6 (sin‘2) ∈ ℂ
2120mul01i 10679 . . . . 5 ((sin‘2) · 0) = 0
2219, 21breqtri 4989 . . . 4 ((sin‘2) · (cos‘2)) < 0
2314, 11remulcli 10506 . . . . 5 ((sin‘2) · (cos‘2)) ∈ ℝ
24 2pos 11590 . . . . . 6 0 < 2
259, 24pm3.2i 471 . . . . 5 (2 ∈ ℝ ∧ 0 < 2)
26 ltmul2 11341 . . . . 5 ((((sin‘2) · (cos‘2)) ∈ ℝ ∧ 0 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((sin‘2) · (cos‘2)) < 0 ↔ (2 · ((sin‘2) · (cos‘2))) < (2 · 0)))
2723, 12, 25, 26mp3an 1453 . . . 4 (((sin‘2) · (cos‘2)) < 0 ↔ (2 · ((sin‘2) · (cos‘2))) < (2 · 0))
2822, 27mpbi 231 . . 3 (2 · ((sin‘2) · (cos‘2))) < (2 · 0)
293mul01i 10679 . . 3 (2 · 0) = 0
3028, 29breqtri 4989 . 2 (2 · ((sin‘2) · (cos‘2))) < 0
316, 30eqbrtri 4985 1 (sin‘4) < 0
Colors of variables: wff setvar class
Syntax hints:  wb 207  wa 396   = wceq 1522  wcel 2080   class class class wbr 4964  cfv 6228  (class class class)co 7019  cc 10384  cr 10385  0cc0 10386   · cmul 10391   < clt 10524  2c2 11542  4c4 11544  sincsin 15250  cosccos 15251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1778  ax-4 1792  ax-5 1889  ax-6 1948  ax-7 1993  ax-8 2082  ax-9 2090  ax-10 2111  ax-11 2125  ax-12 2140  ax-13 2343  ax-ext 2768  ax-rep 5084  ax-sep 5097  ax-nul 5104  ax-pow 5160  ax-pr 5224  ax-un 7322  ax-inf2 8953  ax-cnex 10442  ax-resscn 10443  ax-1cn 10444  ax-icn 10445  ax-addcl 10446  ax-addrcl 10447  ax-mulcl 10448  ax-mulrcl 10449  ax-mulcom 10450  ax-addass 10451  ax-mulass 10452  ax-distr 10453  ax-i2m1 10454  ax-1ne0 10455  ax-1rid 10456  ax-rnegex 10457  ax-rrecex 10458  ax-cnre 10459  ax-pre-lttri 10460  ax-pre-lttrn 10461  ax-pre-ltadd 10462  ax-pre-mulgt0 10463  ax-pre-sup 10464  ax-addf 10465  ax-mulf 10466
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1763  df-nf 1767  df-sb 2042  df-mo 2575  df-eu 2611  df-clab 2775  df-cleq 2787  df-clel 2862  df-nfc 2934  df-ne 2984  df-nel 3090  df-ral 3109  df-rex 3110  df-reu 3111  df-rmo 3112  df-rab 3113  df-v 3438  df-sbc 3708  df-csb 3814  df-dif 3864  df-un 3866  df-in 3868  df-ss 3876  df-pss 3878  df-nul 4214  df-if 4384  df-pw 4457  df-sn 4475  df-pr 4477  df-tp 4479  df-op 4481  df-uni 4748  df-int 4785  df-iun 4829  df-br 4965  df-opab 5027  df-mpt 5044  df-tr 5067  df-id 5351  df-eprel 5356  df-po 5365  df-so 5366  df-fr 5405  df-se 5406  df-we 5407  df-xp 5452  df-rel 5453  df-cnv 5454  df-co 5455  df-dm 5456  df-rn 5457  df-res 5458  df-ima 5459  df-pred 6026  df-ord 6072  df-on 6073  df-lim 6074  df-suc 6075  df-iota 6192  df-fun 6230  df-fn 6231  df-f 6232  df-f1 6233  df-fo 6234  df-f1o 6235  df-fv 6236  df-isom 6237  df-riota 6980  df-ov 7022  df-oprab 7023  df-mpo 7024  df-om 7440  df-1st 7548  df-2nd 7549  df-wrecs 7801  df-recs 7863  df-rdg 7901  df-1o 7956  df-oadd 7960  df-er 8142  df-pm 8262  df-en 8361  df-dom 8362  df-sdom 8363  df-fin 8364  df-sup 8755  df-inf 8756  df-oi 8823  df-card 9217  df-pnf 10526  df-mnf 10527  df-xr 10528  df-ltxr 10529  df-le 10530  df-sub 10721  df-neg 10722  df-div 11148  df-nn 11489  df-2 11550  df-3 11551  df-4 11552  df-5 11553  df-6 11554  df-7 11555  df-8 11556  df-9 11557  df-n0 11748  df-z 11832  df-uz 12094  df-rp 12240  df-ioc 12593  df-ico 12594  df-fz 12743  df-fzo 12884  df-fl 13012  df-seq 13220  df-exp 13280  df-fac 13484  df-bc 13513  df-hash 13541  df-shft 14260  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-limsup 14662  df-clim 14679  df-rlim 14680  df-sum 14877  df-ef 15254  df-sin 15256  df-cos 15257
This theorem is referenced by:  pilem3  24724
  Copyright terms: Public domain W3C validator