![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sin4lt0 | Structured version Visualization version GIF version |
Description: The sine of 4 is negative. (Contributed by Paul Chapman, 19-Jan-2008.) |
Ref | Expression |
---|---|
sin4lt0 | ⊢ (sin‘4) < 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2t2e4 12372 | . . . 4 ⊢ (2 · 2) = 4 | |
2 | 1 | fveq2i 6891 | . . 3 ⊢ (sin‘(2 · 2)) = (sin‘4) |
3 | 2cn 12283 | . . . 4 ⊢ 2 ∈ ℂ | |
4 | sin2t 16116 | . . . 4 ⊢ (2 ∈ ℂ → (sin‘(2 · 2)) = (2 · ((sin‘2) · (cos‘2)))) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (sin‘(2 · 2)) = (2 · ((sin‘2) · (cos‘2))) |
6 | 2, 5 | eqtr3i 2762 | . 2 ⊢ (sin‘4) = (2 · ((sin‘2) · (cos‘2))) |
7 | sincos2sgn 16133 | . . . . . . 7 ⊢ (0 < (sin‘2) ∧ (cos‘2) < 0) | |
8 | 7 | simpri 486 | . . . . . 6 ⊢ (cos‘2) < 0 |
9 | 2re 12282 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
10 | recoscl 16080 | . . . . . . . 8 ⊢ (2 ∈ ℝ → (cos‘2) ∈ ℝ) | |
11 | 9, 10 | ax-mp 5 | . . . . . . 7 ⊢ (cos‘2) ∈ ℝ |
12 | 0re 11212 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
13 | resincl 16079 | . . . . . . . . 9 ⊢ (2 ∈ ℝ → (sin‘2) ∈ ℝ) | |
14 | 9, 13 | ax-mp 5 | . . . . . . . 8 ⊢ (sin‘2) ∈ ℝ |
15 | 7 | simpli 484 | . . . . . . . 8 ⊢ 0 < (sin‘2) |
16 | 14, 15 | pm3.2i 471 | . . . . . . 7 ⊢ ((sin‘2) ∈ ℝ ∧ 0 < (sin‘2)) |
17 | ltmul2 12061 | . . . . . . 7 ⊢ (((cos‘2) ∈ ℝ ∧ 0 ∈ ℝ ∧ ((sin‘2) ∈ ℝ ∧ 0 < (sin‘2))) → ((cos‘2) < 0 ↔ ((sin‘2) · (cos‘2)) < ((sin‘2) · 0))) | |
18 | 11, 12, 16, 17 | mp3an 1461 | . . . . . 6 ⊢ ((cos‘2) < 0 ↔ ((sin‘2) · (cos‘2)) < ((sin‘2) · 0)) |
19 | 8, 18 | mpbi 229 | . . . . 5 ⊢ ((sin‘2) · (cos‘2)) < ((sin‘2) · 0) |
20 | 14 | recni 11224 | . . . . . 6 ⊢ (sin‘2) ∈ ℂ |
21 | 20 | mul01i 11400 | . . . . 5 ⊢ ((sin‘2) · 0) = 0 |
22 | 19, 21 | breqtri 5172 | . . . 4 ⊢ ((sin‘2) · (cos‘2)) < 0 |
23 | 14, 11 | remulcli 11226 | . . . . 5 ⊢ ((sin‘2) · (cos‘2)) ∈ ℝ |
24 | 2pos 12311 | . . . . . 6 ⊢ 0 < 2 | |
25 | 9, 24 | pm3.2i 471 | . . . . 5 ⊢ (2 ∈ ℝ ∧ 0 < 2) |
26 | ltmul2 12061 | . . . . 5 ⊢ ((((sin‘2) · (cos‘2)) ∈ ℝ ∧ 0 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((sin‘2) · (cos‘2)) < 0 ↔ (2 · ((sin‘2) · (cos‘2))) < (2 · 0))) | |
27 | 23, 12, 25, 26 | mp3an 1461 | . . . 4 ⊢ (((sin‘2) · (cos‘2)) < 0 ↔ (2 · ((sin‘2) · (cos‘2))) < (2 · 0)) |
28 | 22, 27 | mpbi 229 | . . 3 ⊢ (2 · ((sin‘2) · (cos‘2))) < (2 · 0) |
29 | 3 | mul01i 11400 | . . 3 ⊢ (2 · 0) = 0 |
30 | 28, 29 | breqtri 5172 | . 2 ⊢ (2 · ((sin‘2) · (cos‘2))) < 0 |
31 | 6, 30 | eqbrtri 5168 | 1 ⊢ (sin‘4) < 0 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 class class class wbr 5147 ‘cfv 6540 (class class class)co 7405 ℂcc 11104 ℝcr 11105 0cc0 11106 · cmul 11111 < clt 11244 2c2 12263 4c4 12265 sincsin 16003 cosccos 16004 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-pm 8819 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-uz 12819 df-rp 12971 df-ioc 13325 df-ico 13326 df-fz 13481 df-fzo 13624 df-fl 13753 df-seq 13963 df-exp 14024 df-fac 14230 df-bc 14259 df-hash 14287 df-shft 15010 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-limsup 15411 df-clim 15428 df-rlim 15429 df-sum 15629 df-ef 16007 df-sin 16009 df-cos 16010 |
This theorem is referenced by: pilem3 25956 |
Copyright terms: Public domain | W3C validator |