MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sin4lt0 Structured version   Visualization version   GIF version

Theorem sin4lt0 16232
Description: The sine of 4 is negative. (Contributed by Paul Chapman, 19-Jan-2008.)
Assertion
Ref Expression
sin4lt0 (sin‘4) < 0

Proof of Theorem sin4lt0
StepHypRef Expression
1 2t2e4 12431 . . . 4 (2 · 2) = 4
21fveq2i 6908 . . 3 (sin‘(2 · 2)) = (sin‘4)
3 2cn 12342 . . . 4 2 ∈ ℂ
4 sin2t 16214 . . . 4 (2 ∈ ℂ → (sin‘(2 · 2)) = (2 · ((sin‘2) · (cos‘2))))
53, 4ax-mp 5 . . 3 (sin‘(2 · 2)) = (2 · ((sin‘2) · (cos‘2)))
62, 5eqtr3i 2766 . 2 (sin‘4) = (2 · ((sin‘2) · (cos‘2)))
7 sincos2sgn 16231 . . . . . . 7 (0 < (sin‘2) ∧ (cos‘2) < 0)
87simpri 485 . . . . . 6 (cos‘2) < 0
9 2re 12341 . . . . . . . 8 2 ∈ ℝ
10 recoscl 16178 . . . . . . . 8 (2 ∈ ℝ → (cos‘2) ∈ ℝ)
119, 10ax-mp 5 . . . . . . 7 (cos‘2) ∈ ℝ
12 0re 11264 . . . . . . 7 0 ∈ ℝ
13 resincl 16177 . . . . . . . . 9 (2 ∈ ℝ → (sin‘2) ∈ ℝ)
149, 13ax-mp 5 . . . . . . . 8 (sin‘2) ∈ ℝ
157simpli 483 . . . . . . . 8 0 < (sin‘2)
1614, 15pm3.2i 470 . . . . . . 7 ((sin‘2) ∈ ℝ ∧ 0 < (sin‘2))
17 ltmul2 12119 . . . . . . 7 (((cos‘2) ∈ ℝ ∧ 0 ∈ ℝ ∧ ((sin‘2) ∈ ℝ ∧ 0 < (sin‘2))) → ((cos‘2) < 0 ↔ ((sin‘2) · (cos‘2)) < ((sin‘2) · 0)))
1811, 12, 16, 17mp3an 1462 . . . . . 6 ((cos‘2) < 0 ↔ ((sin‘2) · (cos‘2)) < ((sin‘2) · 0))
198, 18mpbi 230 . . . . 5 ((sin‘2) · (cos‘2)) < ((sin‘2) · 0)
2014recni 11276 . . . . . 6 (sin‘2) ∈ ℂ
2120mul01i 11452 . . . . 5 ((sin‘2) · 0) = 0
2219, 21breqtri 5167 . . . 4 ((sin‘2) · (cos‘2)) < 0
2314, 11remulcli 11278 . . . . 5 ((sin‘2) · (cos‘2)) ∈ ℝ
24 2pos 12370 . . . . . 6 0 < 2
259, 24pm3.2i 470 . . . . 5 (2 ∈ ℝ ∧ 0 < 2)
26 ltmul2 12119 . . . . 5 ((((sin‘2) · (cos‘2)) ∈ ℝ ∧ 0 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((sin‘2) · (cos‘2)) < 0 ↔ (2 · ((sin‘2) · (cos‘2))) < (2 · 0)))
2723, 12, 25, 26mp3an 1462 . . . 4 (((sin‘2) · (cos‘2)) < 0 ↔ (2 · ((sin‘2) · (cos‘2))) < (2 · 0))
2822, 27mpbi 230 . . 3 (2 · ((sin‘2) · (cos‘2))) < (2 · 0)
293mul01i 11452 . . 3 (2 · 0) = 0
3028, 29breqtri 5167 . 2 (2 · ((sin‘2) · (cos‘2))) < 0
316, 30eqbrtri 5163 1 (sin‘4) < 0
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1539  wcel 2107   class class class wbr 5142  cfv 6560  (class class class)co 7432  cc 11154  cr 11155  0cc0 11156   · cmul 11161   < clt 11296  2c2 12322  4c4 12324  sincsin 16100  cosccos 16101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-pm 8870  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-inf 9484  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-uz 12880  df-rp 13036  df-ioc 13393  df-ico 13394  df-fz 13549  df-fzo 13696  df-fl 13833  df-seq 14044  df-exp 14104  df-fac 14314  df-bc 14343  df-hash 14371  df-shft 15107  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-limsup 15508  df-clim 15525  df-rlim 15526  df-sum 15724  df-ef 16104  df-sin 16106  df-cos 16107
This theorem is referenced by:  pilem3  26498
  Copyright terms: Public domain W3C validator