| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sin4lt0 | Structured version Visualization version GIF version | ||
| Description: The sine of 4 is negative. (Contributed by Paul Chapman, 19-Jan-2008.) |
| Ref | Expression |
|---|---|
| sin4lt0 | ⊢ (sin‘4) < 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2t2e4 12345 | . . . 4 ⊢ (2 · 2) = 4 | |
| 2 | 1 | fveq2i 6861 | . . 3 ⊢ (sin‘(2 · 2)) = (sin‘4) |
| 3 | 2cn 12261 | . . . 4 ⊢ 2 ∈ ℂ | |
| 4 | sin2t 16145 | . . . 4 ⊢ (2 ∈ ℂ → (sin‘(2 · 2)) = (2 · ((sin‘2) · (cos‘2)))) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (sin‘(2 · 2)) = (2 · ((sin‘2) · (cos‘2))) |
| 6 | 2, 5 | eqtr3i 2754 | . 2 ⊢ (sin‘4) = (2 · ((sin‘2) · (cos‘2))) |
| 7 | sincos2sgn 16162 | . . . . . . 7 ⊢ (0 < (sin‘2) ∧ (cos‘2) < 0) | |
| 8 | 7 | simpri 485 | . . . . . 6 ⊢ (cos‘2) < 0 |
| 9 | 2re 12260 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
| 10 | recoscl 16109 | . . . . . . . 8 ⊢ (2 ∈ ℝ → (cos‘2) ∈ ℝ) | |
| 11 | 9, 10 | ax-mp 5 | . . . . . . 7 ⊢ (cos‘2) ∈ ℝ |
| 12 | 0re 11176 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
| 13 | resincl 16108 | . . . . . . . . 9 ⊢ (2 ∈ ℝ → (sin‘2) ∈ ℝ) | |
| 14 | 9, 13 | ax-mp 5 | . . . . . . . 8 ⊢ (sin‘2) ∈ ℝ |
| 15 | 7 | simpli 483 | . . . . . . . 8 ⊢ 0 < (sin‘2) |
| 16 | 14, 15 | pm3.2i 470 | . . . . . . 7 ⊢ ((sin‘2) ∈ ℝ ∧ 0 < (sin‘2)) |
| 17 | ltmul2 12033 | . . . . . . 7 ⊢ (((cos‘2) ∈ ℝ ∧ 0 ∈ ℝ ∧ ((sin‘2) ∈ ℝ ∧ 0 < (sin‘2))) → ((cos‘2) < 0 ↔ ((sin‘2) · (cos‘2)) < ((sin‘2) · 0))) | |
| 18 | 11, 12, 16, 17 | mp3an 1463 | . . . . . 6 ⊢ ((cos‘2) < 0 ↔ ((sin‘2) · (cos‘2)) < ((sin‘2) · 0)) |
| 19 | 8, 18 | mpbi 230 | . . . . 5 ⊢ ((sin‘2) · (cos‘2)) < ((sin‘2) · 0) |
| 20 | 14 | recni 11188 | . . . . . 6 ⊢ (sin‘2) ∈ ℂ |
| 21 | 20 | mul01i 11364 | . . . . 5 ⊢ ((sin‘2) · 0) = 0 |
| 22 | 19, 21 | breqtri 5132 | . . . 4 ⊢ ((sin‘2) · (cos‘2)) < 0 |
| 23 | 14, 11 | remulcli 11190 | . . . . 5 ⊢ ((sin‘2) · (cos‘2)) ∈ ℝ |
| 24 | 2pos 12289 | . . . . . 6 ⊢ 0 < 2 | |
| 25 | 9, 24 | pm3.2i 470 | . . . . 5 ⊢ (2 ∈ ℝ ∧ 0 < 2) |
| 26 | ltmul2 12033 | . . . . 5 ⊢ ((((sin‘2) · (cos‘2)) ∈ ℝ ∧ 0 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((sin‘2) · (cos‘2)) < 0 ↔ (2 · ((sin‘2) · (cos‘2))) < (2 · 0))) | |
| 27 | 23, 12, 25, 26 | mp3an 1463 | . . . 4 ⊢ (((sin‘2) · (cos‘2)) < 0 ↔ (2 · ((sin‘2) · (cos‘2))) < (2 · 0)) |
| 28 | 22, 27 | mpbi 230 | . . 3 ⊢ (2 · ((sin‘2) · (cos‘2))) < (2 · 0) |
| 29 | 3 | mul01i 11364 | . . 3 ⊢ (2 · 0) = 0 |
| 30 | 28, 29 | breqtri 5132 | . 2 ⊢ (2 · ((sin‘2) · (cos‘2))) < 0 |
| 31 | 6, 30 | eqbrtri 5128 | 1 ⊢ (sin‘4) < 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 ℝcr 11067 0cc0 11068 · cmul 11073 < clt 11208 2c2 12241 4c4 12243 sincsin 16029 cosccos 16030 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-ioc 13311 df-ico 13312 df-fz 13469 df-fzo 13616 df-fl 13754 df-seq 13967 df-exp 14027 df-fac 14239 df-bc 14268 df-hash 14296 df-shft 15033 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-limsup 15437 df-clim 15454 df-rlim 15455 df-sum 15653 df-ef 16033 df-sin 16035 df-cos 16036 |
| This theorem is referenced by: pilem3 26363 sinnpoly 46892 |
| Copyright terms: Public domain | W3C validator |