MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efif1olem1 Structured version   Visualization version   GIF version

Theorem efif1olem1 26484
Description: Lemma for efif1o 26488. (Contributed by Mario Carneiro, 13-May-2014.)
Hypothesis
Ref Expression
efif1olem1.1 𝐷 = (𝐴(,](𝐴 + (2 · π)))
Assertion
Ref Expression
efif1olem1 ((𝐴 ∈ ℝ ∧ (𝑥𝐷𝑦𝐷)) → (abs‘(𝑥𝑦)) < (2 · π))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐷
Allowed substitution hints:   𝐴(𝑥)   𝐷(𝑥)

Proof of Theorem efif1olem1
StepHypRef Expression
1 simprr 772 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝑥𝐷𝑦𝐷)) → 𝑦𝐷)
2 efif1olem1.1 . . . . . . 7 𝐷 = (𝐴(,](𝐴 + (2 · π)))
31, 2eleqtrdi 2838 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝑥𝐷𝑦𝐷)) → 𝑦 ∈ (𝐴(,](𝐴 + (2 · π))))
4 rexr 11196 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
5 simpl 482 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝑥𝐷𝑦𝐷)) → 𝐴 ∈ ℝ)
6 2re 12236 . . . . . . . . 9 2 ∈ ℝ
7 pire 26399 . . . . . . . . 9 π ∈ ℝ
86, 7remulcli 11166 . . . . . . . 8 (2 · π) ∈ ℝ
9 readdcl 11127 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (2 · π) ∈ ℝ) → (𝐴 + (2 · π)) ∈ ℝ)
105, 8, 9sylancl 586 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝑥𝐷𝑦𝐷)) → (𝐴 + (2 · π)) ∈ ℝ)
11 elioc2 13346 . . . . . . 7 ((𝐴 ∈ ℝ* ∧ (𝐴 + (2 · π)) ∈ ℝ) → (𝑦 ∈ (𝐴(,](𝐴 + (2 · π))) ↔ (𝑦 ∈ ℝ ∧ 𝐴 < 𝑦𝑦 ≤ (𝐴 + (2 · π)))))
124, 10, 11syl2an2r 685 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝑥𝐷𝑦𝐷)) → (𝑦 ∈ (𝐴(,](𝐴 + (2 · π))) ↔ (𝑦 ∈ ℝ ∧ 𝐴 < 𝑦𝑦 ≤ (𝐴 + (2 · π)))))
133, 12mpbid 232 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝑥𝐷𝑦𝐷)) → (𝑦 ∈ ℝ ∧ 𝐴 < 𝑦𝑦 ≤ (𝐴 + (2 · π))))
1413simp1d 1142 . . . 4 ((𝐴 ∈ ℝ ∧ (𝑥𝐷𝑦𝐷)) → 𝑦 ∈ ℝ)
15 simprl 770 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝑥𝐷𝑦𝐷)) → 𝑥𝐷)
1615, 2eleqtrdi 2838 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝑥𝐷𝑦𝐷)) → 𝑥 ∈ (𝐴(,](𝐴 + (2 · π))))
17 elioc2 13346 . . . . . . . 8 ((𝐴 ∈ ℝ* ∧ (𝐴 + (2 · π)) ∈ ℝ) → (𝑥 ∈ (𝐴(,](𝐴 + (2 · π))) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 ≤ (𝐴 + (2 · π)))))
184, 10, 17syl2an2r 685 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝑥𝐷𝑦𝐷)) → (𝑥 ∈ (𝐴(,](𝐴 + (2 · π))) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 ≤ (𝐴 + (2 · π)))))
1916, 18mpbid 232 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝑥𝐷𝑦𝐷)) → (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 ≤ (𝐴 + (2 · π))))
2019simp1d 1142 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝑥𝐷𝑦𝐷)) → 𝑥 ∈ ℝ)
21 readdcl 11127 . . . . 5 ((𝑥 ∈ ℝ ∧ (2 · π) ∈ ℝ) → (𝑥 + (2 · π)) ∈ ℝ)
2220, 8, 21sylancl 586 . . . 4 ((𝐴 ∈ ℝ ∧ (𝑥𝐷𝑦𝐷)) → (𝑥 + (2 · π)) ∈ ℝ)
2313simp3d 1144 . . . 4 ((𝐴 ∈ ℝ ∧ (𝑥𝐷𝑦𝐷)) → 𝑦 ≤ (𝐴 + (2 · π)))
248a1i 11 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝑥𝐷𝑦𝐷)) → (2 · π) ∈ ℝ)
2519simp2d 1143 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝑥𝐷𝑦𝐷)) → 𝐴 < 𝑥)
265, 20, 24, 25ltadd1dd 11765 . . . 4 ((𝐴 ∈ ℝ ∧ (𝑥𝐷𝑦𝐷)) → (𝐴 + (2 · π)) < (𝑥 + (2 · π)))
2714, 10, 22, 23, 26lelttrd 11308 . . 3 ((𝐴 ∈ ℝ ∧ (𝑥𝐷𝑦𝐷)) → 𝑦 < (𝑥 + (2 · π)))
2814, 24, 20ltsubaddd 11750 . . 3 ((𝐴 ∈ ℝ ∧ (𝑥𝐷𝑦𝐷)) → ((𝑦 − (2 · π)) < 𝑥𝑦 < (𝑥 + (2 · π))))
2927, 28mpbird 257 . 2 ((𝐴 ∈ ℝ ∧ (𝑥𝐷𝑦𝐷)) → (𝑦 − (2 · π)) < 𝑥)
30 readdcl 11127 . . . 4 ((𝑦 ∈ ℝ ∧ (2 · π) ∈ ℝ) → (𝑦 + (2 · π)) ∈ ℝ)
3114, 8, 30sylancl 586 . . 3 ((𝐴 ∈ ℝ ∧ (𝑥𝐷𝑦𝐷)) → (𝑦 + (2 · π)) ∈ ℝ)
3219simp3d 1144 . . 3 ((𝐴 ∈ ℝ ∧ (𝑥𝐷𝑦𝐷)) → 𝑥 ≤ (𝐴 + (2 · π)))
3313simp2d 1143 . . . 4 ((𝐴 ∈ ℝ ∧ (𝑥𝐷𝑦𝐷)) → 𝐴 < 𝑦)
345, 14, 24, 33ltadd1dd 11765 . . 3 ((𝐴 ∈ ℝ ∧ (𝑥𝐷𝑦𝐷)) → (𝐴 + (2 · π)) < (𝑦 + (2 · π)))
3520, 10, 31, 32, 34lelttrd 11308 . 2 ((𝐴 ∈ ℝ ∧ (𝑥𝐷𝑦𝐷)) → 𝑥 < (𝑦 + (2 · π)))
3620, 14, 24absdifltd 15378 . 2 ((𝐴 ∈ ℝ ∧ (𝑥𝐷𝑦𝐷)) → ((abs‘(𝑥𝑦)) < (2 · π) ↔ ((𝑦 − (2 · π)) < 𝑥𝑥 < (𝑦 + (2 · π)))))
3729, 35, 36mpbir2and 713 1 ((𝐴 ∈ ℝ ∧ (𝑥𝐷𝑦𝐷)) → (abs‘(𝑥𝑦)) < (2 · π))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5102  cfv 6499  (class class class)co 7369  cr 11043   + caddc 11047   · cmul 11049  *cxr 11183   < clt 11184  cle 11185  cmin 11381  2c2 12217  (,]cioc 13283  abscabs 15176  πcpi 16008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-pi 16014  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-mulg 18982  df-cntz 19231  df-cmn 19696  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cld 22939  df-ntr 22940  df-cls 22941  df-nei 23018  df-lp 23056  df-perf 23057  df-cn 23147  df-cnp 23148  df-haus 23235  df-tx 23482  df-hmeo 23675  df-fil 23766  df-fm 23858  df-flim 23859  df-flf 23860  df-xms 24241  df-ms 24242  df-tms 24243  df-cncf 24804  df-limc 25800  df-dv 25801
This theorem is referenced by:  efif1o  26488  eff1o  26491
  Copyright terms: Public domain W3C validator