| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cos02pilt1 | Structured version Visualization version GIF version | ||
| Description: Cosine is less than one between zero and 2 · π. (Contributed by Jim Kingdon, 23-Mar-2024.) |
| Ref | Expression |
|---|---|
| cos02pilt1 | ⊢ (𝐴 ∈ (0(,)(2 · π)) → (cos‘𝐴) < 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elioore 13400 | . . 3 ⊢ (𝐴 ∈ (0(,)(2 · π)) → 𝐴 ∈ ℝ) | |
| 2 | 1 | recoscld 16163 | . 2 ⊢ (𝐴 ∈ (0(,)(2 · π)) → (cos‘𝐴) ∈ ℝ) |
| 3 | 1red 11245 | . 2 ⊢ (𝐴 ∈ (0(,)(2 · π)) → 1 ∈ ℝ) | |
| 4 | cosbnd 16200 | . . . 4 ⊢ (𝐴 ∈ ℝ → (-1 ≤ (cos‘𝐴) ∧ (cos‘𝐴) ≤ 1)) | |
| 5 | 4 | simprd 495 | . . 3 ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) ≤ 1) |
| 6 | 1, 5 | syl 17 | . 2 ⊢ (𝐴 ∈ (0(,)(2 · π)) → (cos‘𝐴) ≤ 1) |
| 7 | 0zd 12609 | . . . . . 6 ⊢ (𝐴 ∈ (0(,)(2 · π)) → 0 ∈ ℤ) | |
| 8 | 2re 12323 | . . . . . . . . 9 ⊢ 2 ∈ ℝ | |
| 9 | pire 26455 | . . . . . . . . 9 ⊢ π ∈ ℝ | |
| 10 | 8, 9 | remulcli 11260 | . . . . . . . 8 ⊢ (2 · π) ∈ ℝ |
| 11 | 10 | a1i 11 | . . . . . . 7 ⊢ (𝐴 ∈ (0(,)(2 · π)) → (2 · π) ∈ ℝ) |
| 12 | 0xr 11291 | . . . . . . . . 9 ⊢ 0 ∈ ℝ* | |
| 13 | 10 | rexri 11302 | . . . . . . . . 9 ⊢ (2 · π) ∈ ℝ* |
| 14 | elioo2 13411 | . . . . . . . . 9 ⊢ ((0 ∈ ℝ* ∧ (2 · π) ∈ ℝ*) → (𝐴 ∈ (0(,)(2 · π)) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < (2 · π)))) | |
| 15 | 12, 13, 14 | mp2an 692 | . . . . . . . 8 ⊢ (𝐴 ∈ (0(,)(2 · π)) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < (2 · π))) |
| 16 | 15 | simp2bi 1146 | . . . . . . 7 ⊢ (𝐴 ∈ (0(,)(2 · π)) → 0 < 𝐴) |
| 17 | 2rp 13022 | . . . . . . . . 9 ⊢ 2 ∈ ℝ+ | |
| 18 | pirp 26458 | . . . . . . . . 9 ⊢ π ∈ ℝ+ | |
| 19 | rpmulcl 13041 | . . . . . . . . 9 ⊢ ((2 ∈ ℝ+ ∧ π ∈ ℝ+) → (2 · π) ∈ ℝ+) | |
| 20 | 17, 18, 19 | mp2an 692 | . . . . . . . 8 ⊢ (2 · π) ∈ ℝ+ |
| 21 | rpgt0 13030 | . . . . . . . 8 ⊢ ((2 · π) ∈ ℝ+ → 0 < (2 · π)) | |
| 22 | 20, 21 | mp1i 13 | . . . . . . 7 ⊢ (𝐴 ∈ (0(,)(2 · π)) → 0 < (2 · π)) |
| 23 | 1, 11, 16, 22 | divgt0d 12186 | . . . . . 6 ⊢ (𝐴 ∈ (0(,)(2 · π)) → 0 < (𝐴 / (2 · π))) |
| 24 | 20 | a1i 11 | . . . . . . . . 9 ⊢ (𝐴 ∈ (0(,)(2 · π)) → (2 · π) ∈ ℝ+) |
| 25 | 15 | simp3bi 1147 | . . . . . . . . 9 ⊢ (𝐴 ∈ (0(,)(2 · π)) → 𝐴 < (2 · π)) |
| 26 | 1, 11, 24, 25 | ltdiv1dd 13117 | . . . . . . . 8 ⊢ (𝐴 ∈ (0(,)(2 · π)) → (𝐴 / (2 · π)) < ((2 · π) / (2 · π))) |
| 27 | 11 | recnd 11272 | . . . . . . . . 9 ⊢ (𝐴 ∈ (0(,)(2 · π)) → (2 · π) ∈ ℂ) |
| 28 | 22 | gt0ne0d 11810 | . . . . . . . . 9 ⊢ (𝐴 ∈ (0(,)(2 · π)) → (2 · π) ≠ 0) |
| 29 | 27, 28 | dividd 12024 | . . . . . . . 8 ⊢ (𝐴 ∈ (0(,)(2 · π)) → ((2 · π) / (2 · π)) = 1) |
| 30 | 26, 29 | breqtrd 5151 | . . . . . . 7 ⊢ (𝐴 ∈ (0(,)(2 · π)) → (𝐴 / (2 · π)) < 1) |
| 31 | 0p1e1 12371 | . . . . . . 7 ⊢ (0 + 1) = 1 | |
| 32 | 30, 31 | breqtrrdi 5167 | . . . . . 6 ⊢ (𝐴 ∈ (0(,)(2 · π)) → (𝐴 / (2 · π)) < (0 + 1)) |
| 33 | btwnnz 12678 | . . . . . 6 ⊢ ((0 ∈ ℤ ∧ 0 < (𝐴 / (2 · π)) ∧ (𝐴 / (2 · π)) < (0 + 1)) → ¬ (𝐴 / (2 · π)) ∈ ℤ) | |
| 34 | 7, 23, 32, 33 | syl3anc 1372 | . . . . 5 ⊢ (𝐴 ∈ (0(,)(2 · π)) → ¬ (𝐴 / (2 · π)) ∈ ℤ) |
| 35 | 1 | recnd 11272 | . . . . . 6 ⊢ (𝐴 ∈ (0(,)(2 · π)) → 𝐴 ∈ ℂ) |
| 36 | coseq1 26522 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((cos‘𝐴) = 1 ↔ (𝐴 / (2 · π)) ∈ ℤ)) | |
| 37 | 35, 36 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ (0(,)(2 · π)) → ((cos‘𝐴) = 1 ↔ (𝐴 / (2 · π)) ∈ ℤ)) |
| 38 | 34, 37 | mtbird 325 | . . . 4 ⊢ (𝐴 ∈ (0(,)(2 · π)) → ¬ (cos‘𝐴) = 1) |
| 39 | 38 | neqned 2938 | . . 3 ⊢ (𝐴 ∈ (0(,)(2 · π)) → (cos‘𝐴) ≠ 1) |
| 40 | 39 | necomd 2986 | . 2 ⊢ (𝐴 ∈ (0(,)(2 · π)) → 1 ≠ (cos‘𝐴)) |
| 41 | 2, 3, 6, 40 | leneltd 11398 | 1 ⊢ (𝐴 ∈ (0(,)(2 · π)) → (cos‘𝐴) < 1) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 class class class wbr 5125 ‘cfv 6542 (class class class)co 7414 ℂcc 11136 ℝcr 11137 0cc0 11138 1c1 11139 + caddc 11141 · cmul 11143 ℝ*cxr 11277 < clt 11278 ≤ cle 11279 -cneg 11476 / cdiv 11903 2c2 12304 ℤcz 12597 ℝ+crp 13017 (,)cioo 13370 cosccos 16083 πcpi 16085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-inf2 9664 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 ax-addf 11217 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-tp 4613 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-iin 4976 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-se 5620 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7680 df-om 7871 df-1st 7997 df-2nd 7998 df-supp 8169 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-2o 8490 df-er 8728 df-map 8851 df-pm 8852 df-ixp 8921 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-fsupp 9385 df-fi 9434 df-sup 9465 df-inf 9466 df-oi 9533 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-div 11904 df-nn 12250 df-2 12312 df-3 12313 df-4 12314 df-5 12315 df-6 12316 df-7 12317 df-8 12318 df-9 12319 df-n0 12511 df-z 12598 df-dec 12718 df-uz 12862 df-q 12974 df-rp 13018 df-xneg 13137 df-xadd 13138 df-xmul 13139 df-ioo 13374 df-ioc 13375 df-ico 13376 df-icc 13377 df-fz 13531 df-fzo 13678 df-fl 13815 df-mod 13893 df-seq 14026 df-exp 14086 df-fac 14296 df-bc 14325 df-hash 14353 df-shft 15089 df-cj 15121 df-re 15122 df-im 15123 df-sqrt 15257 df-abs 15258 df-limsup 15490 df-clim 15507 df-rlim 15508 df-sum 15706 df-ef 16086 df-sin 16088 df-cos 16089 df-pi 16091 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17257 df-plusg 17290 df-mulr 17291 df-starv 17292 df-sca 17293 df-vsca 17294 df-ip 17295 df-tset 17296 df-ple 17297 df-ds 17299 df-unif 17300 df-hom 17301 df-cco 17302 df-rest 17443 df-topn 17444 df-0g 17462 df-gsum 17463 df-topgen 17464 df-pt 17465 df-prds 17468 df-xrs 17523 df-qtop 17528 df-imas 17529 df-xps 17531 df-mre 17605 df-mrc 17606 df-acs 17608 df-mgm 18627 df-sgrp 18706 df-mnd 18722 df-submnd 18771 df-mulg 19060 df-cntz 19309 df-cmn 19773 df-psmet 21323 df-xmet 21324 df-met 21325 df-bl 21326 df-mopn 21327 df-fbas 21328 df-fg 21329 df-cnfld 21332 df-top 22867 df-topon 22884 df-topsp 22906 df-bases 22919 df-cld 22992 df-ntr 22993 df-cls 22994 df-nei 23071 df-lp 23109 df-perf 23110 df-cn 23200 df-cnp 23201 df-haus 23288 df-tx 23535 df-hmeo 23728 df-fil 23819 df-fm 23911 df-flim 23912 df-flf 23913 df-xms 24294 df-ms 24295 df-tms 24296 df-cncf 24859 df-limc 25856 df-dv 25857 |
| This theorem is referenced by: cosq34lt1 26524 cos0pilt1 26529 |
| Copyright terms: Public domain | W3C validator |