MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cos02pilt1 Structured version   Visualization version   GIF version

Theorem cos02pilt1 26523
Description: Cosine is less than one between zero and 2 · π. (Contributed by Jim Kingdon, 23-Mar-2024.)
Assertion
Ref Expression
cos02pilt1 (𝐴 ∈ (0(,)(2 · π)) → (cos‘𝐴) < 1)

Proof of Theorem cos02pilt1
StepHypRef Expression
1 elioore 13400 . . 3 (𝐴 ∈ (0(,)(2 · π)) → 𝐴 ∈ ℝ)
21recoscld 16163 . 2 (𝐴 ∈ (0(,)(2 · π)) → (cos‘𝐴) ∈ ℝ)
3 1red 11245 . 2 (𝐴 ∈ (0(,)(2 · π)) → 1 ∈ ℝ)
4 cosbnd 16200 . . . 4 (𝐴 ∈ ℝ → (-1 ≤ (cos‘𝐴) ∧ (cos‘𝐴) ≤ 1))
54simprd 495 . . 3 (𝐴 ∈ ℝ → (cos‘𝐴) ≤ 1)
61, 5syl 17 . 2 (𝐴 ∈ (0(,)(2 · π)) → (cos‘𝐴) ≤ 1)
7 0zd 12609 . . . . . 6 (𝐴 ∈ (0(,)(2 · π)) → 0 ∈ ℤ)
8 2re 12323 . . . . . . . . 9 2 ∈ ℝ
9 pire 26455 . . . . . . . . 9 π ∈ ℝ
108, 9remulcli 11260 . . . . . . . 8 (2 · π) ∈ ℝ
1110a1i 11 . . . . . . 7 (𝐴 ∈ (0(,)(2 · π)) → (2 · π) ∈ ℝ)
12 0xr 11291 . . . . . . . . 9 0 ∈ ℝ*
1310rexri 11302 . . . . . . . . 9 (2 · π) ∈ ℝ*
14 elioo2 13411 . . . . . . . . 9 ((0 ∈ ℝ* ∧ (2 · π) ∈ ℝ*) → (𝐴 ∈ (0(,)(2 · π)) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < (2 · π))))
1512, 13, 14mp2an 692 . . . . . . . 8 (𝐴 ∈ (0(,)(2 · π)) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < (2 · π)))
1615simp2bi 1146 . . . . . . 7 (𝐴 ∈ (0(,)(2 · π)) → 0 < 𝐴)
17 2rp 13022 . . . . . . . . 9 2 ∈ ℝ+
18 pirp 26458 . . . . . . . . 9 π ∈ ℝ+
19 rpmulcl 13041 . . . . . . . . 9 ((2 ∈ ℝ+ ∧ π ∈ ℝ+) → (2 · π) ∈ ℝ+)
2017, 18, 19mp2an 692 . . . . . . . 8 (2 · π) ∈ ℝ+
21 rpgt0 13030 . . . . . . . 8 ((2 · π) ∈ ℝ+ → 0 < (2 · π))
2220, 21mp1i 13 . . . . . . 7 (𝐴 ∈ (0(,)(2 · π)) → 0 < (2 · π))
231, 11, 16, 22divgt0d 12186 . . . . . 6 (𝐴 ∈ (0(,)(2 · π)) → 0 < (𝐴 / (2 · π)))
2420a1i 11 . . . . . . . . 9 (𝐴 ∈ (0(,)(2 · π)) → (2 · π) ∈ ℝ+)
2515simp3bi 1147 . . . . . . . . 9 (𝐴 ∈ (0(,)(2 · π)) → 𝐴 < (2 · π))
261, 11, 24, 25ltdiv1dd 13117 . . . . . . . 8 (𝐴 ∈ (0(,)(2 · π)) → (𝐴 / (2 · π)) < ((2 · π) / (2 · π)))
2711recnd 11272 . . . . . . . . 9 (𝐴 ∈ (0(,)(2 · π)) → (2 · π) ∈ ℂ)
2822gt0ne0d 11810 . . . . . . . . 9 (𝐴 ∈ (0(,)(2 · π)) → (2 · π) ≠ 0)
2927, 28dividd 12024 . . . . . . . 8 (𝐴 ∈ (0(,)(2 · π)) → ((2 · π) / (2 · π)) = 1)
3026, 29breqtrd 5151 . . . . . . 7 (𝐴 ∈ (0(,)(2 · π)) → (𝐴 / (2 · π)) < 1)
31 0p1e1 12371 . . . . . . 7 (0 + 1) = 1
3230, 31breqtrrdi 5167 . . . . . 6 (𝐴 ∈ (0(,)(2 · π)) → (𝐴 / (2 · π)) < (0 + 1))
33 btwnnz 12678 . . . . . 6 ((0 ∈ ℤ ∧ 0 < (𝐴 / (2 · π)) ∧ (𝐴 / (2 · π)) < (0 + 1)) → ¬ (𝐴 / (2 · π)) ∈ ℤ)
347, 23, 32, 33syl3anc 1372 . . . . 5 (𝐴 ∈ (0(,)(2 · π)) → ¬ (𝐴 / (2 · π)) ∈ ℤ)
351recnd 11272 . . . . . 6 (𝐴 ∈ (0(,)(2 · π)) → 𝐴 ∈ ℂ)
36 coseq1 26522 . . . . . 6 (𝐴 ∈ ℂ → ((cos‘𝐴) = 1 ↔ (𝐴 / (2 · π)) ∈ ℤ))
3735, 36syl 17 . . . . 5 (𝐴 ∈ (0(,)(2 · π)) → ((cos‘𝐴) = 1 ↔ (𝐴 / (2 · π)) ∈ ℤ))
3834, 37mtbird 325 . . . 4 (𝐴 ∈ (0(,)(2 · π)) → ¬ (cos‘𝐴) = 1)
3938neqned 2938 . . 3 (𝐴 ∈ (0(,)(2 · π)) → (cos‘𝐴) ≠ 1)
4039necomd 2986 . 2 (𝐴 ∈ (0(,)(2 · π)) → 1 ≠ (cos‘𝐴))
412, 3, 6, 40leneltd 11398 1 (𝐴 ∈ (0(,)(2 · π)) → (cos‘𝐴) < 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  w3a 1086   = wceq 1539  wcel 2107   class class class wbr 5125  cfv 6542  (class class class)co 7414  cc 11136  cr 11137  0cc0 11138  1c1 11139   + caddc 11141   · cmul 11143  *cxr 11277   < clt 11278  cle 11279  -cneg 11476   / cdiv 11903  2c2 12304  cz 12597  +crp 13017  (,)cioo 13370  cosccos 16083  πcpi 16085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-inf2 9664  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216  ax-addf 11217
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-tp 4613  df-op 4615  df-uni 4890  df-int 4929  df-iun 4975  df-iin 4976  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-se 5620  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7680  df-om 7871  df-1st 7997  df-2nd 7998  df-supp 8169  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-1o 8489  df-2o 8490  df-er 8728  df-map 8851  df-pm 8852  df-ixp 8921  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-fsupp 9385  df-fi 9434  df-sup 9465  df-inf 9466  df-oi 9533  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-div 11904  df-nn 12250  df-2 12312  df-3 12313  df-4 12314  df-5 12315  df-6 12316  df-7 12317  df-8 12318  df-9 12319  df-n0 12511  df-z 12598  df-dec 12718  df-uz 12862  df-q 12974  df-rp 13018  df-xneg 13137  df-xadd 13138  df-xmul 13139  df-ioo 13374  df-ioc 13375  df-ico 13376  df-icc 13377  df-fz 13531  df-fzo 13678  df-fl 13815  df-mod 13893  df-seq 14026  df-exp 14086  df-fac 14296  df-bc 14325  df-hash 14353  df-shft 15089  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-limsup 15490  df-clim 15507  df-rlim 15508  df-sum 15706  df-ef 16086  df-sin 16088  df-cos 16089  df-pi 16091  df-struct 17167  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17257  df-plusg 17290  df-mulr 17291  df-starv 17292  df-sca 17293  df-vsca 17294  df-ip 17295  df-tset 17296  df-ple 17297  df-ds 17299  df-unif 17300  df-hom 17301  df-cco 17302  df-rest 17443  df-topn 17444  df-0g 17462  df-gsum 17463  df-topgen 17464  df-pt 17465  df-prds 17468  df-xrs 17523  df-qtop 17528  df-imas 17529  df-xps 17531  df-mre 17605  df-mrc 17606  df-acs 17608  df-mgm 18627  df-sgrp 18706  df-mnd 18722  df-submnd 18771  df-mulg 19060  df-cntz 19309  df-cmn 19773  df-psmet 21323  df-xmet 21324  df-met 21325  df-bl 21326  df-mopn 21327  df-fbas 21328  df-fg 21329  df-cnfld 21332  df-top 22867  df-topon 22884  df-topsp 22906  df-bases 22919  df-cld 22992  df-ntr 22993  df-cls 22994  df-nei 23071  df-lp 23109  df-perf 23110  df-cn 23200  df-cnp 23201  df-haus 23288  df-tx 23535  df-hmeo 23728  df-fil 23819  df-fm 23911  df-flim 23912  df-flf 23913  df-xms 24294  df-ms 24295  df-tms 24296  df-cncf 24859  df-limc 25856  df-dv 25857
This theorem is referenced by:  cosq34lt1  26524  cos0pilt1  26529
  Copyright terms: Public domain W3C validator