![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cos0pilt1 | Structured version Visualization version GIF version |
Description: Cosine is between minus one and one on the open interval between zero and ฯ. (Contributed by Jim Kingdon, 7-May-2024.) |
Ref | Expression |
---|---|
cos0pilt1 | โข (๐ด โ (0(,)ฯ) โ (cosโ๐ด) โ (-1(,)1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elioore 13300 | . . 3 โข (๐ด โ (0(,)ฯ) โ ๐ด โ โ) | |
2 | 1 | recoscld 16031 | . 2 โข (๐ด โ (0(,)ฯ) โ (cosโ๐ด) โ โ) |
3 | cospi 25845 | . . 3 โข (cosโฯ) = -1 | |
4 | ioossicc 13356 | . . . . 5 โข (0(,)ฯ) โ (0[,]ฯ) | |
5 | 4 | sseli 3941 | . . . 4 โข (๐ด โ (0(,)ฯ) โ ๐ด โ (0[,]ฯ)) |
6 | 0xr 11207 | . . . . . 6 โข 0 โ โ* | |
7 | pire 25831 | . . . . . . 7 โข ฯ โ โ | |
8 | 7 | rexri 11218 | . . . . . 6 โข ฯ โ โ* |
9 | 0re 11162 | . . . . . . 7 โข 0 โ โ | |
10 | pipos 25833 | . . . . . . 7 โข 0 < ฯ | |
11 | 9, 7, 10 | ltleii 11283 | . . . . . 6 โข 0 โค ฯ |
12 | ubicc2 13388 | . . . . . 6 โข ((0 โ โ* โง ฯ โ โ* โง 0 โค ฯ) โ ฯ โ (0[,]ฯ)) | |
13 | 6, 8, 11, 12 | mp3an 1462 | . . . . 5 โข ฯ โ (0[,]ฯ) |
14 | 13 | a1i 11 | . . . 4 โข (๐ด โ (0(,)ฯ) โ ฯ โ (0[,]ฯ)) |
15 | eliooord 13329 | . . . . 5 โข (๐ด โ (0(,)ฯ) โ (0 < ๐ด โง ๐ด < ฯ)) | |
16 | 15 | simprd 497 | . . . 4 โข (๐ด โ (0(,)ฯ) โ ๐ด < ฯ) |
17 | 5, 14, 16 | cosordlem 25902 | . . 3 โข (๐ด โ (0(,)ฯ) โ (cosโฯ) < (cosโ๐ด)) |
18 | 3, 17 | eqbrtrrid 5142 | . 2 โข (๐ด โ (0(,)ฯ) โ -1 < (cosโ๐ด)) |
19 | 2re 12232 | . . . . . . 7 โข 2 โ โ | |
20 | 19, 7 | remulcli 11176 | . . . . . 6 โข (2 ยท ฯ) โ โ |
21 | 20 | rexri 11218 | . . . . 5 โข (2 ยท ฯ) โ โ* |
22 | 1le2 12367 | . . . . . 6 โข 1 โค 2 | |
23 | lemulge12 12023 | . . . . . 6 โข (((ฯ โ โ โง 2 โ โ) โง (0 โค ฯ โง 1 โค 2)) โ ฯ โค (2 ยท ฯ)) | |
24 | 7, 19, 11, 22, 23 | mp4an 692 | . . . . 5 โข ฯ โค (2 ยท ฯ) |
25 | iooss2 13306 | . . . . 5 โข (((2 ยท ฯ) โ โ* โง ฯ โค (2 ยท ฯ)) โ (0(,)ฯ) โ (0(,)(2 ยท ฯ))) | |
26 | 21, 24, 25 | mp2an 691 | . . . 4 โข (0(,)ฯ) โ (0(,)(2 ยท ฯ)) |
27 | 26 | sseli 3941 | . . 3 โข (๐ด โ (0(,)ฯ) โ ๐ด โ (0(,)(2 ยท ฯ))) |
28 | cos02pilt1 25898 | . . 3 โข (๐ด โ (0(,)(2 ยท ฯ)) โ (cosโ๐ด) < 1) | |
29 | 27, 28 | syl 17 | . 2 โข (๐ด โ (0(,)ฯ) โ (cosโ๐ด) < 1) |
30 | neg1rr 12273 | . . . 4 โข -1 โ โ | |
31 | 30 | rexri 11218 | . . 3 โข -1 โ โ* |
32 | 1re 11160 | . . . 4 โข 1 โ โ | |
33 | 32 | rexri 11218 | . . 3 โข 1 โ โ* |
34 | elioo2 13311 | . . 3 โข ((-1 โ โ* โง 1 โ โ*) โ ((cosโ๐ด) โ (-1(,)1) โ ((cosโ๐ด) โ โ โง -1 < (cosโ๐ด) โง (cosโ๐ด) < 1))) | |
35 | 31, 33, 34 | mp2an 691 | . 2 โข ((cosโ๐ด) โ (-1(,)1) โ ((cosโ๐ด) โ โ โง -1 < (cosโ๐ด) โง (cosโ๐ด) < 1)) |
36 | 2, 18, 29, 35 | syl3anbrc 1344 | 1 โข (๐ด โ (0(,)ฯ) โ (cosโ๐ด) โ (-1(,)1)) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โ wb 205 โง w3a 1088 โ wcel 2107 โ wss 3911 class class class wbr 5106 โcfv 6497 (class class class)co 7358 โcr 11055 0cc0 11056 1c1 11057 ยท cmul 11061 โ*cxr 11193 < clt 11194 โค cle 11195 -cneg 11391 2c2 12213 (,)cioo 13270 [,]cicc 13273 cosccos 15952 ฯcpi 15954 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-inf2 9582 ax-cnex 11112 ax-resscn 11113 ax-1cn 11114 ax-icn 11115 ax-addcl 11116 ax-addrcl 11117 ax-mulcl 11118 ax-mulrcl 11119 ax-mulcom 11120 ax-addass 11121 ax-mulass 11122 ax-distr 11123 ax-i2m1 11124 ax-1ne0 11125 ax-1rid 11126 ax-rnegex 11127 ax-rrecex 11128 ax-cnre 11129 ax-pre-lttri 11130 ax-pre-lttrn 11131 ax-pre-ltadd 11132 ax-pre-mulgt0 11133 ax-pre-sup 11134 ax-addf 11135 ax-mulf 11136 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-tp 4592 df-op 4594 df-uni 4867 df-int 4909 df-iun 4957 df-iin 4958 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-se 5590 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-isom 6506 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-of 7618 df-om 7804 df-1st 7922 df-2nd 7923 df-supp 8094 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-1o 8413 df-2o 8414 df-er 8651 df-map 8770 df-pm 8771 df-ixp 8839 df-en 8887 df-dom 8888 df-sdom 8889 df-fin 8890 df-fsupp 9309 df-fi 9352 df-sup 9383 df-inf 9384 df-oi 9451 df-card 9880 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-le 11200 df-sub 11392 df-neg 11393 df-div 11818 df-nn 12159 df-2 12221 df-3 12222 df-4 12223 df-5 12224 df-6 12225 df-7 12226 df-8 12227 df-9 12228 df-n0 12419 df-z 12505 df-dec 12624 df-uz 12769 df-q 12879 df-rp 12921 df-xneg 13038 df-xadd 13039 df-xmul 13040 df-ioo 13274 df-ioc 13275 df-ico 13276 df-icc 13277 df-fz 13431 df-fzo 13574 df-fl 13703 df-mod 13781 df-seq 13913 df-exp 13974 df-fac 14180 df-bc 14209 df-hash 14237 df-shft 14958 df-cj 14990 df-re 14991 df-im 14992 df-sqrt 15126 df-abs 15127 df-limsup 15359 df-clim 15376 df-rlim 15377 df-sum 15577 df-ef 15955 df-sin 15957 df-cos 15958 df-pi 15960 df-struct 17024 df-sets 17041 df-slot 17059 df-ndx 17071 df-base 17089 df-ress 17118 df-plusg 17151 df-mulr 17152 df-starv 17153 df-sca 17154 df-vsca 17155 df-ip 17156 df-tset 17157 df-ple 17158 df-ds 17160 df-unif 17161 df-hom 17162 df-cco 17163 df-rest 17309 df-topn 17310 df-0g 17328 df-gsum 17329 df-topgen 17330 df-pt 17331 df-prds 17334 df-xrs 17389 df-qtop 17394 df-imas 17395 df-xps 17397 df-mre 17471 df-mrc 17472 df-acs 17474 df-mgm 18502 df-sgrp 18551 df-mnd 18562 df-submnd 18607 df-mulg 18878 df-cntz 19102 df-cmn 19569 df-psmet 20804 df-xmet 20805 df-met 20806 df-bl 20807 df-mopn 20808 df-fbas 20809 df-fg 20810 df-cnfld 20813 df-top 22259 df-topon 22276 df-topsp 22298 df-bases 22312 df-cld 22386 df-ntr 22387 df-cls 22388 df-nei 22465 df-lp 22503 df-perf 22504 df-cn 22594 df-cnp 22595 df-haus 22682 df-tx 22929 df-hmeo 23122 df-fil 23213 df-fm 23305 df-flim 23306 df-flf 23307 df-xms 23689 df-ms 23690 df-tms 23691 df-cncf 24257 df-limc 25246 df-dv 25247 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |