MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cos0pilt1 Structured version   Visualization version   GIF version

Theorem cos0pilt1 25208
Description: Cosine is between minus one and one on the open interval between zero and π. (Contributed by Jim Kingdon, 7-May-2024.)
Assertion
Ref Expression
cos0pilt1 (𝐴 ∈ (0(,)π) → (cos‘𝐴) ∈ (-1(,)1))

Proof of Theorem cos0pilt1
StepHypRef Expression
1 elioore 12794 . . 3 (𝐴 ∈ (0(,)π) → 𝐴 ∈ ℝ)
21recoscld 15530 . 2 (𝐴 ∈ (0(,)π) → (cos‘𝐴) ∈ ℝ)
3 cospi 25149 . . 3 (cos‘π) = -1
4 ioossicc 12850 . . . . 5 (0(,)π) ⊆ (0[,]π)
54sseli 3884 . . . 4 (𝐴 ∈ (0(,)π) → 𝐴 ∈ (0[,]π))
6 0xr 10711 . . . . . 6 0 ∈ ℝ*
7 pire 25135 . . . . . . 7 π ∈ ℝ
87rexri 10722 . . . . . 6 π ∈ ℝ*
9 0re 10666 . . . . . . 7 0 ∈ ℝ
10 pipos 25137 . . . . . . 7 0 < π
119, 7, 10ltleii 10786 . . . . . 6 0 ≤ π
12 ubicc2 12882 . . . . . 6 ((0 ∈ ℝ* ∧ π ∈ ℝ* ∧ 0 ≤ π) → π ∈ (0[,]π))
136, 8, 11, 12mp3an 1459 . . . . 5 π ∈ (0[,]π)
1413a1i 11 . . . 4 (𝐴 ∈ (0(,)π) → π ∈ (0[,]π))
15 eliooord 12823 . . . . 5 (𝐴 ∈ (0(,)π) → (0 < 𝐴𝐴 < π))
1615simprd 500 . . . 4 (𝐴 ∈ (0(,)π) → 𝐴 < π)
175, 14, 16cosordlem 25206 . . 3 (𝐴 ∈ (0(,)π) → (cos‘π) < (cos‘𝐴))
183, 17eqbrtrrid 5061 . 2 (𝐴 ∈ (0(,)π) → -1 < (cos‘𝐴))
19 2re 11733 . . . . . . 7 2 ∈ ℝ
2019, 7remulcli 10680 . . . . . 6 (2 · π) ∈ ℝ
2120rexri 10722 . . . . 5 (2 · π) ∈ ℝ*
22 1le2 11868 . . . . . 6 1 ≤ 2
23 lemulge12 11526 . . . . . 6 (((π ∈ ℝ ∧ 2 ∈ ℝ) ∧ (0 ≤ π ∧ 1 ≤ 2)) → π ≤ (2 · π))
247, 19, 11, 22, 23mp4an 693 . . . . 5 π ≤ (2 · π)
25 iooss2 12800 . . . . 5 (((2 · π) ∈ ℝ* ∧ π ≤ (2 · π)) → (0(,)π) ⊆ (0(,)(2 · π)))
2621, 24, 25mp2an 692 . . . 4 (0(,)π) ⊆ (0(,)(2 · π))
2726sseli 3884 . . 3 (𝐴 ∈ (0(,)π) → 𝐴 ∈ (0(,)(2 · π)))
28 cos02pilt1 25202 . . 3 (𝐴 ∈ (0(,)(2 · π)) → (cos‘𝐴) < 1)
2927, 28syl 17 . 2 (𝐴 ∈ (0(,)π) → (cos‘𝐴) < 1)
30 neg1rr 11774 . . . 4 -1 ∈ ℝ
3130rexri 10722 . . 3 -1 ∈ ℝ*
32 1re 10664 . . . 4 1 ∈ ℝ
3332rexri 10722 . . 3 1 ∈ ℝ*
34 elioo2 12805 . . 3 ((-1 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((cos‘𝐴) ∈ (-1(,)1) ↔ ((cos‘𝐴) ∈ ℝ ∧ -1 < (cos‘𝐴) ∧ (cos‘𝐴) < 1)))
3531, 33, 34mp2an 692 . 2 ((cos‘𝐴) ∈ (-1(,)1) ↔ ((cos‘𝐴) ∈ ℝ ∧ -1 < (cos‘𝐴) ∧ (cos‘𝐴) < 1))
362, 18, 29, 35syl3anbrc 1341 1 (𝐴 ∈ (0(,)π) → (cos‘𝐴) ∈ (-1(,)1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  w3a 1085  wcel 2112  wss 3854   class class class wbr 5025  cfv 6328  (class class class)co 7143  cr 10559  0cc0 10560  1c1 10561   · cmul 10565  *cxr 10697   < clt 10698  cle 10699  -cneg 10894  2c2 11714  (,)cioo 12764  [,]cicc 12767  cosccos 15451  πcpi 15453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5149  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-inf2 9122  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637  ax-pre-sup 10638  ax-addf 10639  ax-mulf 10640
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rmo 3076  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-int 4832  df-iun 4878  df-iin 4879  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-se 5477  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-of 7398  df-om 7573  df-1st 7686  df-2nd 7687  df-supp 7829  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-pm 8412  df-ixp 8473  df-en 8521  df-dom 8522  df-sdom 8523  df-fin 8524  df-fsupp 8852  df-fi 8893  df-sup 8924  df-inf 8925  df-oi 8992  df-card 9386  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-div 11321  df-nn 11660  df-2 11722  df-3 11723  df-4 11724  df-5 11725  df-6 11726  df-7 11727  df-8 11728  df-9 11729  df-n0 11920  df-z 12006  df-dec 12123  df-uz 12268  df-q 12374  df-rp 12416  df-xneg 12533  df-xadd 12534  df-xmul 12535  df-ioo 12768  df-ioc 12769  df-ico 12770  df-icc 12771  df-fz 12925  df-fzo 13068  df-fl 13196  df-mod 13272  df-seq 13404  df-exp 13465  df-fac 13669  df-bc 13698  df-hash 13726  df-shft 14459  df-cj 14491  df-re 14492  df-im 14493  df-sqrt 14627  df-abs 14628  df-limsup 14861  df-clim 14878  df-rlim 14879  df-sum 15076  df-ef 15454  df-sin 15456  df-cos 15457  df-pi 15459  df-struct 16528  df-ndx 16529  df-slot 16530  df-base 16532  df-sets 16533  df-ress 16534  df-plusg 16621  df-mulr 16622  df-starv 16623  df-sca 16624  df-vsca 16625  df-ip 16626  df-tset 16627  df-ple 16628  df-ds 16630  df-unif 16631  df-hom 16632  df-cco 16633  df-rest 16739  df-topn 16740  df-0g 16758  df-gsum 16759  df-topgen 16760  df-pt 16761  df-prds 16764  df-xrs 16818  df-qtop 16823  df-imas 16824  df-xps 16826  df-mre 16900  df-mrc 16901  df-acs 16903  df-mgm 17903  df-sgrp 17952  df-mnd 17963  df-submnd 18008  df-mulg 18277  df-cntz 18499  df-cmn 18960  df-psmet 20143  df-xmet 20144  df-met 20145  df-bl 20146  df-mopn 20147  df-fbas 20148  df-fg 20149  df-cnfld 20152  df-top 21579  df-topon 21596  df-topsp 21618  df-bases 21631  df-cld 21704  df-ntr 21705  df-cls 21706  df-nei 21783  df-lp 21821  df-perf 21822  df-cn 21912  df-cnp 21913  df-haus 22000  df-tx 22247  df-hmeo 22440  df-fil 22531  df-fm 22623  df-flim 22624  df-flf 22625  df-xms 23007  df-ms 23008  df-tms 23009  df-cncf 23564  df-limc 24550  df-dv 24551
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator