Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dirkerper Structured version   Visualization version   GIF version

Theorem dirkerper 45547
Description: the Dirichlet Kernel has period 2Ο€. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dirkerper.1 𝐷 = (𝑛 ∈ β„• ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 Β· Ο€)) = 0, (((2 Β· 𝑛) + 1) / (2 Β· Ο€)), ((sinβ€˜((𝑛 + (1 / 2)) Β· 𝑦)) / ((2 Β· Ο€) Β· (sinβ€˜(𝑦 / 2)))))))
dirkerper.2 𝑇 = (2 Β· Ο€)
Assertion
Ref Expression
dirkerper ((𝑁 ∈ β„• ∧ π‘₯ ∈ ℝ) β†’ ((π·β€˜π‘)β€˜(π‘₯ + 𝑇)) = ((π·β€˜π‘)β€˜π‘₯))
Distinct variable groups:   𝑦,𝑁   𝑦,𝑛
Allowed substitution hints:   𝐷(π‘₯,𝑦,𝑛)   𝑇(π‘₯,𝑦,𝑛)   𝑁(π‘₯,𝑛)

Proof of Theorem dirkerper
StepHypRef Expression
1 dirkerper.2 . . . . . . . . . . . . 13 𝑇 = (2 Β· Ο€)
21eqcomi 2734 . . . . . . . . . . . 12 (2 Β· Ο€) = 𝑇
32oveq2i 7428 . . . . . . . . . . 11 (1 Β· (2 Β· Ο€)) = (1 Β· 𝑇)
4 2re 12316 . . . . . . . . . . . . . . 15 2 ∈ ℝ
5 pire 26423 . . . . . . . . . . . . . . 15 Ο€ ∈ ℝ
64, 5remulcli 11260 . . . . . . . . . . . . . 14 (2 Β· Ο€) ∈ ℝ
71, 6eqeltri 2821 . . . . . . . . . . . . 13 𝑇 ∈ ℝ
87recni 11258 . . . . . . . . . . . 12 𝑇 ∈ β„‚
98mullidi 11249 . . . . . . . . . . 11 (1 Β· 𝑇) = 𝑇
103, 9eqtri 2753 . . . . . . . . . 10 (1 Β· (2 Β· Ο€)) = 𝑇
1110oveq2i 7428 . . . . . . . . 9 (π‘₯ + (1 Β· (2 Β· Ο€))) = (π‘₯ + 𝑇)
1211eqcomi 2734 . . . . . . . 8 (π‘₯ + 𝑇) = (π‘₯ + (1 Β· (2 Β· Ο€)))
1312oveq1i 7427 . . . . . . 7 ((π‘₯ + 𝑇) mod (2 Β· Ο€)) = ((π‘₯ + (1 Β· (2 Β· Ο€))) mod (2 Β· Ο€))
1413a1i 11 . . . . . 6 (((𝑁 ∈ β„• ∧ π‘₯ ∈ ℝ) ∧ (π‘₯ mod (2 Β· Ο€)) = 0) β†’ ((π‘₯ + 𝑇) mod (2 Β· Ο€)) = ((π‘₯ + (1 Β· (2 Β· Ο€))) mod (2 Β· Ο€)))
15 id 22 . . . . . . . 8 (π‘₯ ∈ ℝ β†’ π‘₯ ∈ ℝ)
1615ad2antlr 725 . . . . . . 7 (((𝑁 ∈ β„• ∧ π‘₯ ∈ ℝ) ∧ (π‘₯ mod (2 Β· Ο€)) = 0) β†’ π‘₯ ∈ ℝ)
17 2rp 13011 . . . . . . . . 9 2 ∈ ℝ+
18 pirp 26426 . . . . . . . . 9 Ο€ ∈ ℝ+
19 rpmulcl 13029 . . . . . . . . 9 ((2 ∈ ℝ+ ∧ Ο€ ∈ ℝ+) β†’ (2 Β· Ο€) ∈ ℝ+)
2017, 18, 19mp2an 690 . . . . . . . 8 (2 Β· Ο€) ∈ ℝ+
2120a1i 11 . . . . . . 7 (((𝑁 ∈ β„• ∧ π‘₯ ∈ ℝ) ∧ (π‘₯ mod (2 Β· Ο€)) = 0) β†’ (2 Β· Ο€) ∈ ℝ+)
22 1z 12622 . . . . . . . 8 1 ∈ β„€
2322a1i 11 . . . . . . 7 (((𝑁 ∈ β„• ∧ π‘₯ ∈ ℝ) ∧ (π‘₯ mod (2 Β· Ο€)) = 0) β†’ 1 ∈ β„€)
24 modcyc 13903 . . . . . . 7 ((π‘₯ ∈ ℝ ∧ (2 Β· Ο€) ∈ ℝ+ ∧ 1 ∈ β„€) β†’ ((π‘₯ + (1 Β· (2 Β· Ο€))) mod (2 Β· Ο€)) = (π‘₯ mod (2 Β· Ο€)))
2516, 21, 23, 24syl3anc 1368 . . . . . 6 (((𝑁 ∈ β„• ∧ π‘₯ ∈ ℝ) ∧ (π‘₯ mod (2 Β· Ο€)) = 0) β†’ ((π‘₯ + (1 Β· (2 Β· Ο€))) mod (2 Β· Ο€)) = (π‘₯ mod (2 Β· Ο€)))
26 simpr 483 . . . . . 6 (((𝑁 ∈ β„• ∧ π‘₯ ∈ ℝ) ∧ (π‘₯ mod (2 Β· Ο€)) = 0) β†’ (π‘₯ mod (2 Β· Ο€)) = 0)
2714, 25, 263eqtrd 2769 . . . . 5 (((𝑁 ∈ β„• ∧ π‘₯ ∈ ℝ) ∧ (π‘₯ mod (2 Β· Ο€)) = 0) β†’ ((π‘₯ + 𝑇) mod (2 Β· Ο€)) = 0)
2827iftrued 4537 . . . 4 (((𝑁 ∈ β„• ∧ π‘₯ ∈ ℝ) ∧ (π‘₯ mod (2 Β· Ο€)) = 0) β†’ if(((π‘₯ + 𝑇) mod (2 Β· Ο€)) = 0, (((2 Β· 𝑁) + 1) / (2 Β· Ο€)), ((sinβ€˜((𝑁 + (1 / 2)) Β· (π‘₯ + 𝑇))) / ((2 Β· Ο€) Β· (sinβ€˜((π‘₯ + 𝑇) / 2))))) = (((2 Β· 𝑁) + 1) / (2 Β· Ο€)))
29 iftrue 4535 . . . . 5 ((π‘₯ mod (2 Β· Ο€)) = 0 β†’ if((π‘₯ mod (2 Β· Ο€)) = 0, (((2 Β· 𝑁) + 1) / (2 Β· Ο€)), ((sinβ€˜((𝑁 + (1 / 2)) Β· π‘₯)) / ((2 Β· Ο€) Β· (sinβ€˜(π‘₯ / 2))))) = (((2 Β· 𝑁) + 1) / (2 Β· Ο€)))
3029adantl 480 . . . 4 (((𝑁 ∈ β„• ∧ π‘₯ ∈ ℝ) ∧ (π‘₯ mod (2 Β· Ο€)) = 0) β†’ if((π‘₯ mod (2 Β· Ο€)) = 0, (((2 Β· 𝑁) + 1) / (2 Β· Ο€)), ((sinβ€˜((𝑁 + (1 / 2)) Β· π‘₯)) / ((2 Β· Ο€) Β· (sinβ€˜(π‘₯ / 2))))) = (((2 Β· 𝑁) + 1) / (2 Β· Ο€)))
3128, 30eqtr4d 2768 . . 3 (((𝑁 ∈ β„• ∧ π‘₯ ∈ ℝ) ∧ (π‘₯ mod (2 Β· Ο€)) = 0) β†’ if(((π‘₯ + 𝑇) mod (2 Β· Ο€)) = 0, (((2 Β· 𝑁) + 1) / (2 Β· Ο€)), ((sinβ€˜((𝑁 + (1 / 2)) Β· (π‘₯ + 𝑇))) / ((2 Β· Ο€) Β· (sinβ€˜((π‘₯ + 𝑇) / 2))))) = if((π‘₯ mod (2 Β· Ο€)) = 0, (((2 Β· 𝑁) + 1) / (2 Β· Ο€)), ((sinβ€˜((𝑁 + (1 / 2)) Β· π‘₯)) / ((2 Β· Ο€) Β· (sinβ€˜(π‘₯ / 2))))))
32 iffalse 4538 . . . . 5 (Β¬ (π‘₯ mod (2 Β· Ο€)) = 0 β†’ if((π‘₯ mod (2 Β· Ο€)) = 0, (((2 Β· 𝑁) + 1) / (2 Β· Ο€)), ((sinβ€˜((𝑁 + (1 / 2)) Β· π‘₯)) / ((2 Β· Ο€) Β· (sinβ€˜(π‘₯ / 2))))) = ((sinβ€˜((𝑁 + (1 / 2)) Β· π‘₯)) / ((2 Β· Ο€) Β· (sinβ€˜(π‘₯ / 2)))))
3332adantl 480 . . . 4 (((𝑁 ∈ β„• ∧ π‘₯ ∈ ℝ) ∧ Β¬ (π‘₯ mod (2 Β· Ο€)) = 0) β†’ if((π‘₯ mod (2 Β· Ο€)) = 0, (((2 Β· 𝑁) + 1) / (2 Β· Ο€)), ((sinβ€˜((𝑁 + (1 / 2)) Β· π‘₯)) / ((2 Β· Ο€) Β· (sinβ€˜(π‘₯ / 2))))) = ((sinβ€˜((𝑁 + (1 / 2)) Β· π‘₯)) / ((2 Β· Ο€) Β· (sinβ€˜(π‘₯ / 2)))))
34 nncn 12250 . . . . . . . . . 10 (𝑁 ∈ β„• β†’ 𝑁 ∈ β„‚)
35 halfcn 12457 . . . . . . . . . . 11 (1 / 2) ∈ β„‚
3635a1i 11 . . . . . . . . . 10 (𝑁 ∈ β„• β†’ (1 / 2) ∈ β„‚)
3734, 36addcld 11263 . . . . . . . . 9 (𝑁 ∈ β„• β†’ (𝑁 + (1 / 2)) ∈ β„‚)
3837adantr 479 . . . . . . . 8 ((𝑁 ∈ β„• ∧ π‘₯ ∈ ℝ) β†’ (𝑁 + (1 / 2)) ∈ β„‚)
39 recn 11228 . . . . . . . . 9 (π‘₯ ∈ ℝ β†’ π‘₯ ∈ β„‚)
4039adantl 480 . . . . . . . 8 ((𝑁 ∈ β„• ∧ π‘₯ ∈ ℝ) β†’ π‘₯ ∈ β„‚)
4138, 40mulcld 11264 . . . . . . 7 ((𝑁 ∈ β„• ∧ π‘₯ ∈ ℝ) β†’ ((𝑁 + (1 / 2)) Β· π‘₯) ∈ β„‚)
4241sincld 16106 . . . . . 6 ((𝑁 ∈ β„• ∧ π‘₯ ∈ ℝ) β†’ (sinβ€˜((𝑁 + (1 / 2)) Β· π‘₯)) ∈ β„‚)
4342adantr 479 . . . . 5 (((𝑁 ∈ β„• ∧ π‘₯ ∈ ℝ) ∧ Β¬ (π‘₯ mod (2 Β· Ο€)) = 0) β†’ (sinβ€˜((𝑁 + (1 / 2)) Β· π‘₯)) ∈ β„‚)
446recni 11258 . . . . . . . 8 (2 Β· Ο€) ∈ β„‚
4544a1i 11 . . . . . . 7 ((𝑁 ∈ β„• ∧ π‘₯ ∈ ℝ) β†’ (2 Β· Ο€) ∈ β„‚)
4640halfcld 12487 . . . . . . . 8 ((𝑁 ∈ β„• ∧ π‘₯ ∈ ℝ) β†’ (π‘₯ / 2) ∈ β„‚)
4746sincld 16106 . . . . . . 7 ((𝑁 ∈ β„• ∧ π‘₯ ∈ ℝ) β†’ (sinβ€˜(π‘₯ / 2)) ∈ β„‚)
4845, 47mulcld 11264 . . . . . 6 ((𝑁 ∈ β„• ∧ π‘₯ ∈ ℝ) β†’ ((2 Β· Ο€) Β· (sinβ€˜(π‘₯ / 2))) ∈ β„‚)
4948adantr 479 . . . . 5 (((𝑁 ∈ β„• ∧ π‘₯ ∈ ℝ) ∧ Β¬ (π‘₯ mod (2 Β· Ο€)) = 0) β†’ ((2 Β· Ο€) Β· (sinβ€˜(π‘₯ / 2))) ∈ β„‚)
50 dirkerdenne0 45544 . . . . . 6 ((π‘₯ ∈ ℝ ∧ Β¬ (π‘₯ mod (2 Β· Ο€)) = 0) β†’ ((2 Β· Ο€) Β· (sinβ€˜(π‘₯ / 2))) β‰  0)
5150adantll 712 . . . . 5 (((𝑁 ∈ β„• ∧ π‘₯ ∈ ℝ) ∧ Β¬ (π‘₯ mod (2 Β· Ο€)) = 0) β†’ ((2 Β· Ο€) Β· (sinβ€˜(π‘₯ / 2))) β‰  0)
5243, 49, 51div2negd 12035 . . . 4 (((𝑁 ∈ β„• ∧ π‘₯ ∈ ℝ) ∧ Β¬ (π‘₯ mod (2 Β· Ο€)) = 0) β†’ (-(sinβ€˜((𝑁 + (1 / 2)) Β· π‘₯)) / -((2 Β· Ο€) Β· (sinβ€˜(π‘₯ / 2)))) = ((sinβ€˜((𝑁 + (1 / 2)) Β· π‘₯)) / ((2 Β· Ο€) Β· (sinβ€˜(π‘₯ / 2)))))
5313a1i 11 . . . . . . . . . . 11 (π‘₯ ∈ ℝ β†’ ((π‘₯ + 𝑇) mod (2 Β· Ο€)) = ((π‘₯ + (1 Β· (2 Β· Ο€))) mod (2 Β· Ο€)))
5420, 22, 24mp3an23 1449 . . . . . . . . . . 11 (π‘₯ ∈ ℝ β†’ ((π‘₯ + (1 Β· (2 Β· Ο€))) mod (2 Β· Ο€)) = (π‘₯ mod (2 Β· Ο€)))
5553, 54eqtrd 2765 . . . . . . . . . 10 (π‘₯ ∈ ℝ β†’ ((π‘₯ + 𝑇) mod (2 Β· Ο€)) = (π‘₯ mod (2 Β· Ο€)))
5655adantr 479 . . . . . . . . 9 ((π‘₯ ∈ ℝ ∧ Β¬ (π‘₯ mod (2 Β· Ο€)) = 0) β†’ ((π‘₯ + 𝑇) mod (2 Β· Ο€)) = (π‘₯ mod (2 Β· Ο€)))
57 simpr 483 . . . . . . . . . 10 ((π‘₯ ∈ ℝ ∧ Β¬ (π‘₯ mod (2 Β· Ο€)) = 0) β†’ Β¬ (π‘₯ mod (2 Β· Ο€)) = 0)
5857neqned 2937 . . . . . . . . 9 ((π‘₯ ∈ ℝ ∧ Β¬ (π‘₯ mod (2 Β· Ο€)) = 0) β†’ (π‘₯ mod (2 Β· Ο€)) β‰  0)
5956, 58eqnetrd 2998 . . . . . . . 8 ((π‘₯ ∈ ℝ ∧ Β¬ (π‘₯ mod (2 Β· Ο€)) = 0) β†’ ((π‘₯ + 𝑇) mod (2 Β· Ο€)) β‰  0)
6059neneqd 2935 . . . . . . 7 ((π‘₯ ∈ ℝ ∧ Β¬ (π‘₯ mod (2 Β· Ο€)) = 0) β†’ Β¬ ((π‘₯ + 𝑇) mod (2 Β· Ο€)) = 0)
61 iffalse 4538 . . . . . . . 8 (Β¬ ((π‘₯ + 𝑇) mod (2 Β· Ο€)) = 0 β†’ if(((π‘₯ + 𝑇) mod (2 Β· Ο€)) = 0, (((2 Β· 𝑁) + 1) / (2 Β· Ο€)), ((sinβ€˜((𝑁 + (1 / 2)) Β· (π‘₯ + 𝑇))) / ((2 Β· Ο€) Β· (sinβ€˜((π‘₯ + 𝑇) / 2))))) = ((sinβ€˜((𝑁 + (1 / 2)) Β· (π‘₯ + 𝑇))) / ((2 Β· Ο€) Β· (sinβ€˜((π‘₯ + 𝑇) / 2)))))
621oveq2i 7428 . . . . . . . . . . 11 (π‘₯ + 𝑇) = (π‘₯ + (2 Β· Ο€))
6362oveq2i 7428 . . . . . . . . . 10 ((𝑁 + (1 / 2)) Β· (π‘₯ + 𝑇)) = ((𝑁 + (1 / 2)) Β· (π‘₯ + (2 Β· Ο€)))
6463fveq2i 6897 . . . . . . . . 9 (sinβ€˜((𝑁 + (1 / 2)) Β· (π‘₯ + 𝑇))) = (sinβ€˜((𝑁 + (1 / 2)) Β· (π‘₯ + (2 Β· Ο€))))
6562oveq1i 7427 . . . . . . . . . . 11 ((π‘₯ + 𝑇) / 2) = ((π‘₯ + (2 Β· Ο€)) / 2)
6665fveq2i 6897 . . . . . . . . . 10 (sinβ€˜((π‘₯ + 𝑇) / 2)) = (sinβ€˜((π‘₯ + (2 Β· Ο€)) / 2))
6766oveq2i 7428 . . . . . . . . 9 ((2 Β· Ο€) Β· (sinβ€˜((π‘₯ + 𝑇) / 2))) = ((2 Β· Ο€) Β· (sinβ€˜((π‘₯ + (2 Β· Ο€)) / 2)))
6864, 67oveq12i 7429 . . . . . . . 8 ((sinβ€˜((𝑁 + (1 / 2)) Β· (π‘₯ + 𝑇))) / ((2 Β· Ο€) Β· (sinβ€˜((π‘₯ + 𝑇) / 2)))) = ((sinβ€˜((𝑁 + (1 / 2)) Β· (π‘₯ + (2 Β· Ο€)))) / ((2 Β· Ο€) Β· (sinβ€˜((π‘₯ + (2 Β· Ο€)) / 2))))
6961, 68eqtrdi 2781 . . . . . . 7 (Β¬ ((π‘₯ + 𝑇) mod (2 Β· Ο€)) = 0 β†’ if(((π‘₯ + 𝑇) mod (2 Β· Ο€)) = 0, (((2 Β· 𝑁) + 1) / (2 Β· Ο€)), ((sinβ€˜((𝑁 + (1 / 2)) Β· (π‘₯ + 𝑇))) / ((2 Β· Ο€) Β· (sinβ€˜((π‘₯ + 𝑇) / 2))))) = ((sinβ€˜((𝑁 + (1 / 2)) Β· (π‘₯ + (2 Β· Ο€)))) / ((2 Β· Ο€) Β· (sinβ€˜((π‘₯ + (2 Β· Ο€)) / 2)))))
7060, 69syl 17 . . . . . 6 ((π‘₯ ∈ ℝ ∧ Β¬ (π‘₯ mod (2 Β· Ο€)) = 0) β†’ if(((π‘₯ + 𝑇) mod (2 Β· Ο€)) = 0, (((2 Β· 𝑁) + 1) / (2 Β· Ο€)), ((sinβ€˜((𝑁 + (1 / 2)) Β· (π‘₯ + 𝑇))) / ((2 Β· Ο€) Β· (sinβ€˜((π‘₯ + 𝑇) / 2))))) = ((sinβ€˜((𝑁 + (1 / 2)) Β· (π‘₯ + (2 Β· Ο€)))) / ((2 Β· Ο€) Β· (sinβ€˜((π‘₯ + (2 Β· Ο€)) / 2)))))
7170adantll 712 . . . . 5 (((𝑁 ∈ β„• ∧ π‘₯ ∈ ℝ) ∧ Β¬ (π‘₯ mod (2 Β· Ο€)) = 0) β†’ if(((π‘₯ + 𝑇) mod (2 Β· Ο€)) = 0, (((2 Β· 𝑁) + 1) / (2 Β· Ο€)), ((sinβ€˜((𝑁 + (1 / 2)) Β· (π‘₯ + 𝑇))) / ((2 Β· Ο€) Β· (sinβ€˜((π‘₯ + 𝑇) / 2))))) = ((sinβ€˜((𝑁 + (1 / 2)) Β· (π‘₯ + (2 Β· Ο€)))) / ((2 Β· Ο€) Β· (sinβ€˜((π‘₯ + (2 Β· Ο€)) / 2)))))
7244a1i 11 . . . . . . . . . . . . . 14 (𝑁 ∈ β„• β†’ (2 Β· Ο€) ∈ β„‚)
7334, 36, 72adddird 11269 . . . . . . . . . . . . 13 (𝑁 ∈ β„• β†’ ((𝑁 + (1 / 2)) Β· (2 Β· Ο€)) = ((𝑁 Β· (2 Β· Ο€)) + ((1 / 2) Β· (2 Β· Ο€))))
74 ax-1cn 11196 . . . . . . . . . . . . . . . 16 1 ∈ β„‚
75 2cnne0 12452 . . . . . . . . . . . . . . . 16 (2 ∈ β„‚ ∧ 2 β‰  0)
76 2cn 12317 . . . . . . . . . . . . . . . . 17 2 ∈ β„‚
77 picn 26424 . . . . . . . . . . . . . . . . 17 Ο€ ∈ β„‚
7876, 77mulcli 11251 . . . . . . . . . . . . . . . 16 (2 Β· Ο€) ∈ β„‚
79 div32 11922 . . . . . . . . . . . . . . . 16 ((1 ∈ β„‚ ∧ (2 ∈ β„‚ ∧ 2 β‰  0) ∧ (2 Β· Ο€) ∈ β„‚) β†’ ((1 / 2) Β· (2 Β· Ο€)) = (1 Β· ((2 Β· Ο€) / 2)))
8074, 75, 78, 79mp3an 1457 . . . . . . . . . . . . . . 15 ((1 / 2) Β· (2 Β· Ο€)) = (1 Β· ((2 Β· Ο€) / 2))
81 2ne0 12346 . . . . . . . . . . . . . . . . . 18 2 β‰  0
8278, 76, 81divcli 11986 . . . . . . . . . . . . . . . . 17 ((2 Β· Ο€) / 2) ∈ β„‚
8382mullidi 11249 . . . . . . . . . . . . . . . 16 (1 Β· ((2 Β· Ο€) / 2)) = ((2 Β· Ο€) / 2)
8477, 76, 81divcan3i 11990 . . . . . . . . . . . . . . . 16 ((2 Β· Ο€) / 2) = Ο€
8583, 84eqtri 2753 . . . . . . . . . . . . . . 15 (1 Β· ((2 Β· Ο€) / 2)) = Ο€
8680, 85eqtri 2753 . . . . . . . . . . . . . 14 ((1 / 2) Β· (2 Β· Ο€)) = Ο€
8786oveq2i 7428 . . . . . . . . . . . . 13 ((𝑁 Β· (2 Β· Ο€)) + ((1 / 2) Β· (2 Β· Ο€))) = ((𝑁 Β· (2 Β· Ο€)) + Ο€)
8873, 87eqtrdi 2781 . . . . . . . . . . . 12 (𝑁 ∈ β„• β†’ ((𝑁 + (1 / 2)) Β· (2 Β· Ο€)) = ((𝑁 Β· (2 Β· Ο€)) + Ο€))
8988oveq2d 7433 . . . . . . . . . . 11 (𝑁 ∈ β„• β†’ (((𝑁 + (1 / 2)) Β· π‘₯) + ((𝑁 + (1 / 2)) Β· (2 Β· Ο€))) = (((𝑁 + (1 / 2)) Β· π‘₯) + ((𝑁 Β· (2 Β· Ο€)) + Ο€)))
9089adantr 479 . . . . . . . . . 10 ((𝑁 ∈ β„• ∧ π‘₯ ∈ ℝ) β†’ (((𝑁 + (1 / 2)) Β· π‘₯) + ((𝑁 + (1 / 2)) Β· (2 Β· Ο€))) = (((𝑁 + (1 / 2)) Β· π‘₯) + ((𝑁 Β· (2 Β· Ο€)) + Ο€)))
9138, 40, 45adddid 11268 . . . . . . . . . 10 ((𝑁 ∈ β„• ∧ π‘₯ ∈ ℝ) β†’ ((𝑁 + (1 / 2)) Β· (π‘₯ + (2 Β· Ο€))) = (((𝑁 + (1 / 2)) Β· π‘₯) + ((𝑁 + (1 / 2)) Β· (2 Β· Ο€))))
9234, 72mulcld 11264 . . . . . . . . . . . 12 (𝑁 ∈ β„• β†’ (𝑁 Β· (2 Β· Ο€)) ∈ β„‚)
9392adantr 479 . . . . . . . . . . 11 ((𝑁 ∈ β„• ∧ π‘₯ ∈ ℝ) β†’ (𝑁 Β· (2 Β· Ο€)) ∈ β„‚)
9477a1i 11 . . . . . . . . . . 11 ((𝑁 ∈ β„• ∧ π‘₯ ∈ ℝ) β†’ Ο€ ∈ β„‚)
9541, 93, 94addassd 11266 . . . . . . . . . 10 ((𝑁 ∈ β„• ∧ π‘₯ ∈ ℝ) β†’ ((((𝑁 + (1 / 2)) Β· π‘₯) + (𝑁 Β· (2 Β· Ο€))) + Ο€) = (((𝑁 + (1 / 2)) Β· π‘₯) + ((𝑁 Β· (2 Β· Ο€)) + Ο€)))
9690, 91, 953eqtr4d 2775 . . . . . . . . 9 ((𝑁 ∈ β„• ∧ π‘₯ ∈ ℝ) β†’ ((𝑁 + (1 / 2)) Β· (π‘₯ + (2 Β· Ο€))) = ((((𝑁 + (1 / 2)) Β· π‘₯) + (𝑁 Β· (2 Β· Ο€))) + Ο€))
9796fveq2d 6898 . . . . . . . 8 ((𝑁 ∈ β„• ∧ π‘₯ ∈ ℝ) β†’ (sinβ€˜((𝑁 + (1 / 2)) Β· (π‘₯ + (2 Β· Ο€)))) = (sinβ€˜((((𝑁 + (1 / 2)) Β· π‘₯) + (𝑁 Β· (2 Β· Ο€))) + Ο€)))
9841, 93addcld 11263 . . . . . . . . 9 ((𝑁 ∈ β„• ∧ π‘₯ ∈ ℝ) β†’ (((𝑁 + (1 / 2)) Β· π‘₯) + (𝑁 Β· (2 Β· Ο€))) ∈ β„‚)
99 sinppi 26454 . . . . . . . . 9 ((((𝑁 + (1 / 2)) Β· π‘₯) + (𝑁 Β· (2 Β· Ο€))) ∈ β„‚ β†’ (sinβ€˜((((𝑁 + (1 / 2)) Β· π‘₯) + (𝑁 Β· (2 Β· Ο€))) + Ο€)) = -(sinβ€˜(((𝑁 + (1 / 2)) Β· π‘₯) + (𝑁 Β· (2 Β· Ο€)))))
10098, 99syl 17 . . . . . . . 8 ((𝑁 ∈ β„• ∧ π‘₯ ∈ ℝ) β†’ (sinβ€˜((((𝑁 + (1 / 2)) Β· π‘₯) + (𝑁 Β· (2 Β· Ο€))) + Ο€)) = -(sinβ€˜(((𝑁 + (1 / 2)) Β· π‘₯) + (𝑁 Β· (2 Β· Ο€)))))
101 simpl 481 . . . . . . . . . . 11 ((𝑁 ∈ β„• ∧ π‘₯ ∈ ℝ) β†’ 𝑁 ∈ β„•)
102101nnzd 12615 . . . . . . . . . 10 ((𝑁 ∈ β„• ∧ π‘₯ ∈ ℝ) β†’ 𝑁 ∈ β„€)
103 sinper 26446 . . . . . . . . . 10 ((((𝑁 + (1 / 2)) Β· π‘₯) ∈ β„‚ ∧ 𝑁 ∈ β„€) β†’ (sinβ€˜(((𝑁 + (1 / 2)) Β· π‘₯) + (𝑁 Β· (2 Β· Ο€)))) = (sinβ€˜((𝑁 + (1 / 2)) Β· π‘₯)))
10441, 102, 103syl2anc 582 . . . . . . . . 9 ((𝑁 ∈ β„• ∧ π‘₯ ∈ ℝ) β†’ (sinβ€˜(((𝑁 + (1 / 2)) Β· π‘₯) + (𝑁 Β· (2 Β· Ο€)))) = (sinβ€˜((𝑁 + (1 / 2)) Β· π‘₯)))
105104negeqd 11484 . . . . . . . 8 ((𝑁 ∈ β„• ∧ π‘₯ ∈ ℝ) β†’ -(sinβ€˜(((𝑁 + (1 / 2)) Β· π‘₯) + (𝑁 Β· (2 Β· Ο€)))) = -(sinβ€˜((𝑁 + (1 / 2)) Β· π‘₯)))
10697, 100, 1053eqtrd 2769 . . . . . . 7 ((𝑁 ∈ β„• ∧ π‘₯ ∈ ℝ) β†’ (sinβ€˜((𝑁 + (1 / 2)) Β· (π‘₯ + (2 Β· Ο€)))) = -(sinβ€˜((𝑁 + (1 / 2)) Β· π‘₯)))
10744a1i 11 . . . . . . . . . . . . 13 (π‘₯ ∈ ℝ β†’ (2 Β· Ο€) ∈ β„‚)
10876a1i 11 . . . . . . . . . . . . 13 (π‘₯ ∈ ℝ β†’ 2 ∈ β„‚)
10981a1i 11 . . . . . . . . . . . . 13 (π‘₯ ∈ ℝ β†’ 2 β‰  0)
11039, 107, 108, 109divdird 12058 . . . . . . . . . . . 12 (π‘₯ ∈ ℝ β†’ ((π‘₯ + (2 Β· Ο€)) / 2) = ((π‘₯ / 2) + ((2 Β· Ο€) / 2)))
11184a1i 11 . . . . . . . . . . . . 13 (π‘₯ ∈ ℝ β†’ ((2 Β· Ο€) / 2) = Ο€)
112111oveq2d 7433 . . . . . . . . . . . 12 (π‘₯ ∈ ℝ β†’ ((π‘₯ / 2) + ((2 Β· Ο€) / 2)) = ((π‘₯ / 2) + Ο€))
113110, 112eqtrd 2765 . . . . . . . . . . 11 (π‘₯ ∈ ℝ β†’ ((π‘₯ + (2 Β· Ο€)) / 2) = ((π‘₯ / 2) + Ο€))
114113fveq2d 6898 . . . . . . . . . 10 (π‘₯ ∈ ℝ β†’ (sinβ€˜((π‘₯ + (2 Β· Ο€)) / 2)) = (sinβ€˜((π‘₯ / 2) + Ο€)))
11539halfcld 12487 . . . . . . . . . . 11 (π‘₯ ∈ ℝ β†’ (π‘₯ / 2) ∈ β„‚)
116 sinppi 26454 . . . . . . . . . . 11 ((π‘₯ / 2) ∈ β„‚ β†’ (sinβ€˜((π‘₯ / 2) + Ο€)) = -(sinβ€˜(π‘₯ / 2)))
117115, 116syl 17 . . . . . . . . . 10 (π‘₯ ∈ ℝ β†’ (sinβ€˜((π‘₯ / 2) + Ο€)) = -(sinβ€˜(π‘₯ / 2)))
118114, 117eqtrd 2765 . . . . . . . . 9 (π‘₯ ∈ ℝ β†’ (sinβ€˜((π‘₯ + (2 Β· Ο€)) / 2)) = -(sinβ€˜(π‘₯ / 2)))
119118oveq2d 7433 . . . . . . . 8 (π‘₯ ∈ ℝ β†’ ((2 Β· Ο€) Β· (sinβ€˜((π‘₯ + (2 Β· Ο€)) / 2))) = ((2 Β· Ο€) Β· -(sinβ€˜(π‘₯ / 2))))
120119adantl 480 . . . . . . 7 ((𝑁 ∈ β„• ∧ π‘₯ ∈ ℝ) β†’ ((2 Β· Ο€) Β· (sinβ€˜((π‘₯ + (2 Β· Ο€)) / 2))) = ((2 Β· Ο€) Β· -(sinβ€˜(π‘₯ / 2))))
121106, 120oveq12d 7435 . . . . . 6 ((𝑁 ∈ β„• ∧ π‘₯ ∈ ℝ) β†’ ((sinβ€˜((𝑁 + (1 / 2)) Β· (π‘₯ + (2 Β· Ο€)))) / ((2 Β· Ο€) Β· (sinβ€˜((π‘₯ + (2 Β· Ο€)) / 2)))) = (-(sinβ€˜((𝑁 + (1 / 2)) Β· π‘₯)) / ((2 Β· Ο€) Β· -(sinβ€˜(π‘₯ / 2)))))
122121adantr 479 . . . . 5 (((𝑁 ∈ β„• ∧ π‘₯ ∈ ℝ) ∧ Β¬ (π‘₯ mod (2 Β· Ο€)) = 0) β†’ ((sinβ€˜((𝑁 + (1 / 2)) Β· (π‘₯ + (2 Β· Ο€)))) / ((2 Β· Ο€) Β· (sinβ€˜((π‘₯ + (2 Β· Ο€)) / 2)))) = (-(sinβ€˜((𝑁 + (1 / 2)) Β· π‘₯)) / ((2 Β· Ο€) Β· -(sinβ€˜(π‘₯ / 2)))))
123115sincld 16106 . . . . . . . 8 (π‘₯ ∈ ℝ β†’ (sinβ€˜(π‘₯ / 2)) ∈ β„‚)
124107, 123mulneg2d 11698 . . . . . . 7 (π‘₯ ∈ ℝ β†’ ((2 Β· Ο€) Β· -(sinβ€˜(π‘₯ / 2))) = -((2 Β· Ο€) Β· (sinβ€˜(π‘₯ / 2))))
125124oveq2d 7433 . . . . . 6 (π‘₯ ∈ ℝ β†’ (-(sinβ€˜((𝑁 + (1 / 2)) Β· π‘₯)) / ((2 Β· Ο€) Β· -(sinβ€˜(π‘₯ / 2)))) = (-(sinβ€˜((𝑁 + (1 / 2)) Β· π‘₯)) / -((2 Β· Ο€) Β· (sinβ€˜(π‘₯ / 2)))))
126125ad2antlr 725 . . . . 5 (((𝑁 ∈ β„• ∧ π‘₯ ∈ ℝ) ∧ Β¬ (π‘₯ mod (2 Β· Ο€)) = 0) β†’ (-(sinβ€˜((𝑁 + (1 / 2)) Β· π‘₯)) / ((2 Β· Ο€) Β· -(sinβ€˜(π‘₯ / 2)))) = (-(sinβ€˜((𝑁 + (1 / 2)) Β· π‘₯)) / -((2 Β· Ο€) Β· (sinβ€˜(π‘₯ / 2)))))
12771, 122, 1263eqtrrd 2770 . . . 4 (((𝑁 ∈ β„• ∧ π‘₯ ∈ ℝ) ∧ Β¬ (π‘₯ mod (2 Β· Ο€)) = 0) β†’ (-(sinβ€˜((𝑁 + (1 / 2)) Β· π‘₯)) / -((2 Β· Ο€) Β· (sinβ€˜(π‘₯ / 2)))) = if(((π‘₯ + 𝑇) mod (2 Β· Ο€)) = 0, (((2 Β· 𝑁) + 1) / (2 Β· Ο€)), ((sinβ€˜((𝑁 + (1 / 2)) Β· (π‘₯ + 𝑇))) / ((2 Β· Ο€) Β· (sinβ€˜((π‘₯ + 𝑇) / 2))))))
12833, 52, 1273eqtr2rd 2772 . . 3 (((𝑁 ∈ β„• ∧ π‘₯ ∈ ℝ) ∧ Β¬ (π‘₯ mod (2 Β· Ο€)) = 0) β†’ if(((π‘₯ + 𝑇) mod (2 Β· Ο€)) = 0, (((2 Β· 𝑁) + 1) / (2 Β· Ο€)), ((sinβ€˜((𝑁 + (1 / 2)) Β· (π‘₯ + 𝑇))) / ((2 Β· Ο€) Β· (sinβ€˜((π‘₯ + 𝑇) / 2))))) = if((π‘₯ mod (2 Β· Ο€)) = 0, (((2 Β· 𝑁) + 1) / (2 Β· Ο€)), ((sinβ€˜((𝑁 + (1 / 2)) Β· π‘₯)) / ((2 Β· Ο€) Β· (sinβ€˜(π‘₯ / 2))))))
12931, 128pm2.61dan 811 . 2 ((𝑁 ∈ β„• ∧ π‘₯ ∈ ℝ) β†’ if(((π‘₯ + 𝑇) mod (2 Β· Ο€)) = 0, (((2 Β· 𝑁) + 1) / (2 Β· Ο€)), ((sinβ€˜((𝑁 + (1 / 2)) Β· (π‘₯ + 𝑇))) / ((2 Β· Ο€) Β· (sinβ€˜((π‘₯ + 𝑇) / 2))))) = if((π‘₯ mod (2 Β· Ο€)) = 0, (((2 Β· 𝑁) + 1) / (2 Β· Ο€)), ((sinβ€˜((𝑁 + (1 / 2)) Β· π‘₯)) / ((2 Β· Ο€) Β· (sinβ€˜(π‘₯ / 2))))))
1307a1i 11 . . . 4 (π‘₯ ∈ ℝ β†’ 𝑇 ∈ ℝ)
13115, 130readdcld 11273 . . 3 (π‘₯ ∈ ℝ β†’ (π‘₯ + 𝑇) ∈ ℝ)
132 dirkerper.1 . . . 4 𝐷 = (𝑛 ∈ β„• ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 Β· Ο€)) = 0, (((2 Β· 𝑛) + 1) / (2 Β· Ο€)), ((sinβ€˜((𝑛 + (1 / 2)) Β· 𝑦)) / ((2 Β· Ο€) Β· (sinβ€˜(𝑦 / 2)))))))
133132dirkerval2 45545 . . 3 ((𝑁 ∈ β„• ∧ (π‘₯ + 𝑇) ∈ ℝ) β†’ ((π·β€˜π‘)β€˜(π‘₯ + 𝑇)) = if(((π‘₯ + 𝑇) mod (2 Β· Ο€)) = 0, (((2 Β· 𝑁) + 1) / (2 Β· Ο€)), ((sinβ€˜((𝑁 + (1 / 2)) Β· (π‘₯ + 𝑇))) / ((2 Β· Ο€) Β· (sinβ€˜((π‘₯ + 𝑇) / 2))))))
134131, 133sylan2 591 . 2 ((𝑁 ∈ β„• ∧ π‘₯ ∈ ℝ) β†’ ((π·β€˜π‘)β€˜(π‘₯ + 𝑇)) = if(((π‘₯ + 𝑇) mod (2 Β· Ο€)) = 0, (((2 Β· 𝑁) + 1) / (2 Β· Ο€)), ((sinβ€˜((𝑁 + (1 / 2)) Β· (π‘₯ + 𝑇))) / ((2 Β· Ο€) Β· (sinβ€˜((π‘₯ + 𝑇) / 2))))))
135132dirkerval2 45545 . 2 ((𝑁 ∈ β„• ∧ π‘₯ ∈ ℝ) β†’ ((π·β€˜π‘)β€˜π‘₯) = if((π‘₯ mod (2 Β· Ο€)) = 0, (((2 Β· 𝑁) + 1) / (2 Β· Ο€)), ((sinβ€˜((𝑁 + (1 / 2)) Β· π‘₯)) / ((2 Β· Ο€) Β· (sinβ€˜(π‘₯ / 2))))))
136129, 134, 1353eqtr4d 2775 1 ((𝑁 ∈ β„• ∧ π‘₯ ∈ ℝ) β†’ ((π·β€˜π‘)β€˜(π‘₯ + 𝑇)) = ((π·β€˜π‘)β€˜π‘₯))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 394   = wceq 1533   ∈ wcel 2098   β‰  wne 2930  ifcif 4529   ↦ cmpt 5231  β€˜cfv 6547  (class class class)co 7417  β„‚cc 11136  β„cr 11137  0cc0 11138  1c1 11139   + caddc 11141   Β· cmul 11143  -cneg 11475   / cdiv 11901  β„•cn 12242  2c2 12297  β„€cz 12588  β„+crp 13006   mod cmo 13866  sincsin 16039  Ο€cpi 16042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-inf2 9664  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216  ax-addf 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-isom 6556  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-of 7683  df-om 7870  df-1st 7992  df-2nd 7993  df-supp 8164  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8723  df-map 8845  df-pm 8846  df-ixp 8915  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-fsupp 9386  df-fi 9434  df-sup 9465  df-inf 9466  df-oi 9533  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-2 12305  df-3 12306  df-4 12307  df-5 12308  df-6 12309  df-7 12310  df-8 12311  df-9 12312  df-n0 12503  df-z 12589  df-dec 12708  df-uz 12853  df-q 12963  df-rp 13007  df-xneg 13124  df-xadd 13125  df-xmul 13126  df-ioo 13360  df-ioc 13361  df-ico 13362  df-icc 13363  df-fz 13517  df-fzo 13660  df-fl 13789  df-mod 13867  df-seq 13999  df-exp 14059  df-fac 14265  df-bc 14294  df-hash 14322  df-shft 15046  df-cj 15078  df-re 15079  df-im 15080  df-sqrt 15214  df-abs 15215  df-limsup 15447  df-clim 15464  df-rlim 15465  df-sum 15665  df-ef 16043  df-sin 16045  df-cos 16046  df-pi 16048  df-struct 17115  df-sets 17132  df-slot 17150  df-ndx 17162  df-base 17180  df-ress 17209  df-plusg 17245  df-mulr 17246  df-starv 17247  df-sca 17248  df-vsca 17249  df-ip 17250  df-tset 17251  df-ple 17252  df-ds 17254  df-unif 17255  df-hom 17256  df-cco 17257  df-rest 17403  df-topn 17404  df-0g 17422  df-gsum 17423  df-topgen 17424  df-pt 17425  df-prds 17428  df-xrs 17483  df-qtop 17488  df-imas 17489  df-xps 17491  df-mre 17565  df-mrc 17566  df-acs 17568  df-mgm 18599  df-sgrp 18678  df-mnd 18694  df-submnd 18740  df-mulg 19028  df-cntz 19272  df-cmn 19741  df-psmet 21275  df-xmet 21276  df-met 21277  df-bl 21278  df-mopn 21279  df-fbas 21280  df-fg 21281  df-cnfld 21284  df-top 22826  df-topon 22843  df-topsp 22865  df-bases 22879  df-cld 22953  df-ntr 22954  df-cls 22955  df-nei 23032  df-lp 23070  df-perf 23071  df-cn 23161  df-cnp 23162  df-haus 23249  df-tx 23496  df-hmeo 23689  df-fil 23780  df-fm 23872  df-flim 23873  df-flf 23874  df-xms 24256  df-ms 24257  df-tms 24258  df-cncf 24828  df-limc 25825  df-dv 25826
This theorem is referenced by:  fourierdlem111  45668
  Copyright terms: Public domain W3C validator