Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dirkerper Structured version   Visualization version   GIF version

Theorem dirkerper 40974
Description: the Dirichlet Kernel has period . (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dirkerper.1 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
dirkerper.2 𝑇 = (2 · π)
Assertion
Ref Expression
dirkerper ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((𝐷𝑁)‘(𝑥 + 𝑇)) = ((𝐷𝑁)‘𝑥))
Distinct variable groups:   𝑦,𝑁   𝑦,𝑛
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑛)   𝑇(𝑥,𝑦,𝑛)   𝑁(𝑥,𝑛)

Proof of Theorem dirkerper
StepHypRef Expression
1 dirkerper.2 . . . . . . . . . . . . 13 𝑇 = (2 · π)
21eqcomi 2774 . . . . . . . . . . . 12 (2 · π) = 𝑇
32oveq2i 6857 . . . . . . . . . . 11 (1 · (2 · π)) = (1 · 𝑇)
4 2re 11350 . . . . . . . . . . . . . . 15 2 ∈ ℝ
5 pire 24516 . . . . . . . . . . . . . . 15 π ∈ ℝ
64, 5remulcli 10314 . . . . . . . . . . . . . 14 (2 · π) ∈ ℝ
71, 6eqeltri 2840 . . . . . . . . . . . . 13 𝑇 ∈ ℝ
87recni 10312 . . . . . . . . . . . 12 𝑇 ∈ ℂ
98mulid2i 10303 . . . . . . . . . . 11 (1 · 𝑇) = 𝑇
103, 9eqtri 2787 . . . . . . . . . 10 (1 · (2 · π)) = 𝑇
1110oveq2i 6857 . . . . . . . . 9 (𝑥 + (1 · (2 · π))) = (𝑥 + 𝑇)
1211eqcomi 2774 . . . . . . . 8 (𝑥 + 𝑇) = (𝑥 + (1 · (2 · π)))
1312oveq1i 6856 . . . . . . 7 ((𝑥 + 𝑇) mod (2 · π)) = ((𝑥 + (1 · (2 · π))) mod (2 · π))
1413a1i 11 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ (𝑥 mod (2 · π)) = 0) → ((𝑥 + 𝑇) mod (2 · π)) = ((𝑥 + (1 · (2 · π))) mod (2 · π)))
15 id 22 . . . . . . . 8 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ)
1615ad2antlr 718 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ (𝑥 mod (2 · π)) = 0) → 𝑥 ∈ ℝ)
17 2rp 12038 . . . . . . . . 9 2 ∈ ℝ+
18 pirp 24519 . . . . . . . . 9 π ∈ ℝ+
19 rpmulcl 12058 . . . . . . . . 9 ((2 ∈ ℝ+ ∧ π ∈ ℝ+) → (2 · π) ∈ ℝ+)
2017, 18, 19mp2an 683 . . . . . . . 8 (2 · π) ∈ ℝ+
2120a1i 11 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ (𝑥 mod (2 · π)) = 0) → (2 · π) ∈ ℝ+)
22 1z 11659 . . . . . . . 8 1 ∈ ℤ
2322a1i 11 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ (𝑥 mod (2 · π)) = 0) → 1 ∈ ℤ)
24 modcyc 12918 . . . . . . 7 ((𝑥 ∈ ℝ ∧ (2 · π) ∈ ℝ+ ∧ 1 ∈ ℤ) → ((𝑥 + (1 · (2 · π))) mod (2 · π)) = (𝑥 mod (2 · π)))
2516, 21, 23, 24syl3anc 1490 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ (𝑥 mod (2 · π)) = 0) → ((𝑥 + (1 · (2 · π))) mod (2 · π)) = (𝑥 mod (2 · π)))
26 simpr 477 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ (𝑥 mod (2 · π)) = 0) → (𝑥 mod (2 · π)) = 0)
2714, 25, 263eqtrd 2803 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ (𝑥 mod (2 · π)) = 0) → ((𝑥 + 𝑇) mod (2 · π)) = 0)
2827iftrued 4253 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ (𝑥 mod (2 · π)) = 0) → if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))) = (((2 · 𝑁) + 1) / (2 · π)))
29 iftrue 4251 . . . . 5 ((𝑥 mod (2 · π)) = 0 → if((𝑥 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2))))) = (((2 · 𝑁) + 1) / (2 · π)))
3029adantl 473 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ (𝑥 mod (2 · π)) = 0) → if((𝑥 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2))))) = (((2 · 𝑁) + 1) / (2 · π)))
3128, 30eqtr4d 2802 . . 3 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ (𝑥 mod (2 · π)) = 0) → if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))) = if((𝑥 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2))))))
32 iffalse 4254 . . . . 5 (¬ (𝑥 mod (2 · π)) = 0 → if((𝑥 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2))))) = ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2)))))
3332adantl 473 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 mod (2 · π)) = 0) → if((𝑥 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2))))) = ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2)))))
34 nncn 11287 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
35 halfcn 11497 . . . . . . . . . . 11 (1 / 2) ∈ ℂ
3635a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ → (1 / 2) ∈ ℂ)
3734, 36addcld 10317 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 + (1 / 2)) ∈ ℂ)
3837adantr 472 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝑁 + (1 / 2)) ∈ ℂ)
39 recn 10283 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
4039adantl 473 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
4138, 40mulcld 10318 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((𝑁 + (1 / 2)) · 𝑥) ∈ ℂ)
4241sincld 15156 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (sin‘((𝑁 + (1 / 2)) · 𝑥)) ∈ ℂ)
4342adantr 472 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 mod (2 · π)) = 0) → (sin‘((𝑁 + (1 / 2)) · 𝑥)) ∈ ℂ)
446recni 10312 . . . . . . . 8 (2 · π) ∈ ℂ
4544a1i 11 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (2 · π) ∈ ℂ)
4640halfcld 11527 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝑥 / 2) ∈ ℂ)
4746sincld 15156 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (sin‘(𝑥 / 2)) ∈ ℂ)
4845, 47mulcld 10318 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((2 · π) · (sin‘(𝑥 / 2))) ∈ ℂ)
4948adantr 472 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 mod (2 · π)) = 0) → ((2 · π) · (sin‘(𝑥 / 2))) ∈ ℂ)
50 dirkerdenne0 40971 . . . . . 6 ((𝑥 ∈ ℝ ∧ ¬ (𝑥 mod (2 · π)) = 0) → ((2 · π) · (sin‘(𝑥 / 2))) ≠ 0)
5150adantll 705 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 mod (2 · π)) = 0) → ((2 · π) · (sin‘(𝑥 / 2))) ≠ 0)
5243, 49, 51div2negd 11074 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 mod (2 · π)) = 0) → (-(sin‘((𝑁 + (1 / 2)) · 𝑥)) / -((2 · π) · (sin‘(𝑥 / 2)))) = ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2)))))
5313a1i 11 . . . . . . . . . . 11 (𝑥 ∈ ℝ → ((𝑥 + 𝑇) mod (2 · π)) = ((𝑥 + (1 · (2 · π))) mod (2 · π)))
5420, 22, 24mp3an23 1577 . . . . . . . . . . 11 (𝑥 ∈ ℝ → ((𝑥 + (1 · (2 · π))) mod (2 · π)) = (𝑥 mod (2 · π)))
5553, 54eqtrd 2799 . . . . . . . . . 10 (𝑥 ∈ ℝ → ((𝑥 + 𝑇) mod (2 · π)) = (𝑥 mod (2 · π)))
5655adantr 472 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ ¬ (𝑥 mod (2 · π)) = 0) → ((𝑥 + 𝑇) mod (2 · π)) = (𝑥 mod (2 · π)))
57 simpr 477 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ ¬ (𝑥 mod (2 · π)) = 0) → ¬ (𝑥 mod (2 · π)) = 0)
5857neqned 2944 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ ¬ (𝑥 mod (2 · π)) = 0) → (𝑥 mod (2 · π)) ≠ 0)
5956, 58eqnetrd 3004 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ ¬ (𝑥 mod (2 · π)) = 0) → ((𝑥 + 𝑇) mod (2 · π)) ≠ 0)
6059neneqd 2942 . . . . . . 7 ((𝑥 ∈ ℝ ∧ ¬ (𝑥 mod (2 · π)) = 0) → ¬ ((𝑥 + 𝑇) mod (2 · π)) = 0)
61 iffalse 4254 . . . . . . . 8 (¬ ((𝑥 + 𝑇) mod (2 · π)) = 0 → if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))) = ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2)))))
621oveq2i 6857 . . . . . . . . . . 11 (𝑥 + 𝑇) = (𝑥 + (2 · π))
6362oveq2i 6857 . . . . . . . . . 10 ((𝑁 + (1 / 2)) · (𝑥 + 𝑇)) = ((𝑁 + (1 / 2)) · (𝑥 + (2 · π)))
6463fveq2i 6382 . . . . . . . . 9 (sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) = (sin‘((𝑁 + (1 / 2)) · (𝑥 + (2 · π))))
6562oveq1i 6856 . . . . . . . . . . 11 ((𝑥 + 𝑇) / 2) = ((𝑥 + (2 · π)) / 2)
6665fveq2i 6382 . . . . . . . . . 10 (sin‘((𝑥 + 𝑇) / 2)) = (sin‘((𝑥 + (2 · π)) / 2))
6766oveq2i 6857 . . . . . . . . 9 ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))) = ((2 · π) · (sin‘((𝑥 + (2 · π)) / 2)))
6864, 67oveq12i 6858 . . . . . . . 8 ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2)))) = ((sin‘((𝑁 + (1 / 2)) · (𝑥 + (2 · π)))) / ((2 · π) · (sin‘((𝑥 + (2 · π)) / 2))))
6961, 68syl6eq 2815 . . . . . . 7 (¬ ((𝑥 + 𝑇) mod (2 · π)) = 0 → if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))) = ((sin‘((𝑁 + (1 / 2)) · (𝑥 + (2 · π)))) / ((2 · π) · (sin‘((𝑥 + (2 · π)) / 2)))))
7060, 69syl 17 . . . . . 6 ((𝑥 ∈ ℝ ∧ ¬ (𝑥 mod (2 · π)) = 0) → if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))) = ((sin‘((𝑁 + (1 / 2)) · (𝑥 + (2 · π)))) / ((2 · π) · (sin‘((𝑥 + (2 · π)) / 2)))))
7170adantll 705 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 mod (2 · π)) = 0) → if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))) = ((sin‘((𝑁 + (1 / 2)) · (𝑥 + (2 · π)))) / ((2 · π) · (sin‘((𝑥 + (2 · π)) / 2)))))
7244a1i 11 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (2 · π) ∈ ℂ)
7334, 36, 72adddird 10323 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((𝑁 + (1 / 2)) · (2 · π)) = ((𝑁 · (2 · π)) + ((1 / 2) · (2 · π))))
74 ax-1cn 10251 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
75 2cnne0 11492 . . . . . . . . . . . . . . . 16 (2 ∈ ℂ ∧ 2 ≠ 0)
76 2cn 11351 . . . . . . . . . . . . . . . . 17 2 ∈ ℂ
77 picn 24517 . . . . . . . . . . . . . . . . 17 π ∈ ℂ
7876, 77mulcli 10305 . . . . . . . . . . . . . . . 16 (2 · π) ∈ ℂ
79 div32 10963 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 · π) ∈ ℂ) → ((1 / 2) · (2 · π)) = (1 · ((2 · π) / 2)))
8074, 75, 78, 79mp3an 1585 . . . . . . . . . . . . . . 15 ((1 / 2) · (2 · π)) = (1 · ((2 · π) / 2))
81 2ne0 11387 . . . . . . . . . . . . . . . . . 18 2 ≠ 0
8278, 76, 81divcli 11025 . . . . . . . . . . . . . . . . 17 ((2 · π) / 2) ∈ ℂ
8382mulid2i 10303 . . . . . . . . . . . . . . . 16 (1 · ((2 · π) / 2)) = ((2 · π) / 2)
8477, 76, 81divcan3i 11029 . . . . . . . . . . . . . . . 16 ((2 · π) / 2) = π
8583, 84eqtri 2787 . . . . . . . . . . . . . . 15 (1 · ((2 · π) / 2)) = π
8680, 85eqtri 2787 . . . . . . . . . . . . . 14 ((1 / 2) · (2 · π)) = π
8786oveq2i 6857 . . . . . . . . . . . . 13 ((𝑁 · (2 · π)) + ((1 / 2) · (2 · π))) = ((𝑁 · (2 · π)) + π)
8873, 87syl6eq 2815 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ((𝑁 + (1 / 2)) · (2 · π)) = ((𝑁 · (2 · π)) + π))
8988oveq2d 6862 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (((𝑁 + (1 / 2)) · 𝑥) + ((𝑁 + (1 / 2)) · (2 · π))) = (((𝑁 + (1 / 2)) · 𝑥) + ((𝑁 · (2 · π)) + π)))
9089adantr 472 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (((𝑁 + (1 / 2)) · 𝑥) + ((𝑁 + (1 / 2)) · (2 · π))) = (((𝑁 + (1 / 2)) · 𝑥) + ((𝑁 · (2 · π)) + π)))
9138, 40, 45adddid 10322 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((𝑁 + (1 / 2)) · (𝑥 + (2 · π))) = (((𝑁 + (1 / 2)) · 𝑥) + ((𝑁 + (1 / 2)) · (2 · π))))
9234, 72mulcld 10318 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 · (2 · π)) ∈ ℂ)
9392adantr 472 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝑁 · (2 · π)) ∈ ℂ)
9477a1i 11 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → π ∈ ℂ)
9541, 93, 94addassd 10320 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π))) + π) = (((𝑁 + (1 / 2)) · 𝑥) + ((𝑁 · (2 · π)) + π)))
9690, 91, 953eqtr4d 2809 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((𝑁 + (1 / 2)) · (𝑥 + (2 · π))) = ((((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π))) + π))
9796fveq2d 6383 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (sin‘((𝑁 + (1 / 2)) · (𝑥 + (2 · π)))) = (sin‘((((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π))) + π)))
9841, 93addcld 10317 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π))) ∈ ℂ)
99 sinppi 24547 . . . . . . . . 9 ((((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π))) ∈ ℂ → (sin‘((((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π))) + π)) = -(sin‘(((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π)))))
10098, 99syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (sin‘((((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π))) + π)) = -(sin‘(((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π)))))
101 simpl 474 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → 𝑁 ∈ ℕ)
102101nnzd 11733 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → 𝑁 ∈ ℤ)
103 sinper 24539 . . . . . . . . . 10 ((((𝑁 + (1 / 2)) · 𝑥) ∈ ℂ ∧ 𝑁 ∈ ℤ) → (sin‘(((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π)))) = (sin‘((𝑁 + (1 / 2)) · 𝑥)))
10441, 102, 103syl2anc 579 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (sin‘(((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π)))) = (sin‘((𝑁 + (1 / 2)) · 𝑥)))
105104negeqd 10533 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → -(sin‘(((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π)))) = -(sin‘((𝑁 + (1 / 2)) · 𝑥)))
10697, 100, 1053eqtrd 2803 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (sin‘((𝑁 + (1 / 2)) · (𝑥 + (2 · π)))) = -(sin‘((𝑁 + (1 / 2)) · 𝑥)))
10744a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (2 · π) ∈ ℂ)
10876a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → 2 ∈ ℂ)
10981a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → 2 ≠ 0)
11039, 107, 108, 109divdird 11097 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → ((𝑥 + (2 · π)) / 2) = ((𝑥 / 2) + ((2 · π) / 2)))
11184a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → ((2 · π) / 2) = π)
112111oveq2d 6862 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → ((𝑥 / 2) + ((2 · π) / 2)) = ((𝑥 / 2) + π))
113110, 112eqtrd 2799 . . . . . . . . . . 11 (𝑥 ∈ ℝ → ((𝑥 + (2 · π)) / 2) = ((𝑥 / 2) + π))
114113fveq2d 6383 . . . . . . . . . 10 (𝑥 ∈ ℝ → (sin‘((𝑥 + (2 · π)) / 2)) = (sin‘((𝑥 / 2) + π)))
11539halfcld 11527 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (𝑥 / 2) ∈ ℂ)
116 sinppi 24547 . . . . . . . . . . 11 ((𝑥 / 2) ∈ ℂ → (sin‘((𝑥 / 2) + π)) = -(sin‘(𝑥 / 2)))
117115, 116syl 17 . . . . . . . . . 10 (𝑥 ∈ ℝ → (sin‘((𝑥 / 2) + π)) = -(sin‘(𝑥 / 2)))
118114, 117eqtrd 2799 . . . . . . . . 9 (𝑥 ∈ ℝ → (sin‘((𝑥 + (2 · π)) / 2)) = -(sin‘(𝑥 / 2)))
119118oveq2d 6862 . . . . . . . 8 (𝑥 ∈ ℝ → ((2 · π) · (sin‘((𝑥 + (2 · π)) / 2))) = ((2 · π) · -(sin‘(𝑥 / 2))))
120119adantl 473 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((2 · π) · (sin‘((𝑥 + (2 · π)) / 2))) = ((2 · π) · -(sin‘(𝑥 / 2))))
121106, 120oveq12d 6864 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((sin‘((𝑁 + (1 / 2)) · (𝑥 + (2 · π)))) / ((2 · π) · (sin‘((𝑥 + (2 · π)) / 2)))) = (-(sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · -(sin‘(𝑥 / 2)))))
122121adantr 472 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 mod (2 · π)) = 0) → ((sin‘((𝑁 + (1 / 2)) · (𝑥 + (2 · π)))) / ((2 · π) · (sin‘((𝑥 + (2 · π)) / 2)))) = (-(sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · -(sin‘(𝑥 / 2)))))
123115sincld 15156 . . . . . . . 8 (𝑥 ∈ ℝ → (sin‘(𝑥 / 2)) ∈ ℂ)
124107, 123mulneg2d 10742 . . . . . . 7 (𝑥 ∈ ℝ → ((2 · π) · -(sin‘(𝑥 / 2))) = -((2 · π) · (sin‘(𝑥 / 2))))
125124oveq2d 6862 . . . . . 6 (𝑥 ∈ ℝ → (-(sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · -(sin‘(𝑥 / 2)))) = (-(sin‘((𝑁 + (1 / 2)) · 𝑥)) / -((2 · π) · (sin‘(𝑥 / 2)))))
126125ad2antlr 718 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 mod (2 · π)) = 0) → (-(sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · -(sin‘(𝑥 / 2)))) = (-(sin‘((𝑁 + (1 / 2)) · 𝑥)) / -((2 · π) · (sin‘(𝑥 / 2)))))
12771, 122, 1263eqtrrd 2804 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 mod (2 · π)) = 0) → (-(sin‘((𝑁 + (1 / 2)) · 𝑥)) / -((2 · π) · (sin‘(𝑥 / 2)))) = if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))))
12833, 52, 1273eqtr2rd 2806 . . 3 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 mod (2 · π)) = 0) → if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))) = if((𝑥 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2))))))
12931, 128pm2.61dan 847 . 2 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))) = if((𝑥 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2))))))
1307a1i 11 . . . 4 (𝑥 ∈ ℝ → 𝑇 ∈ ℝ)
13115, 130readdcld 10327 . . 3 (𝑥 ∈ ℝ → (𝑥 + 𝑇) ∈ ℝ)
132 dirkerper.1 . . . 4 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
133132dirkerval2 40972 . . 3 ((𝑁 ∈ ℕ ∧ (𝑥 + 𝑇) ∈ ℝ) → ((𝐷𝑁)‘(𝑥 + 𝑇)) = if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))))
134131, 133sylan2 586 . 2 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((𝐷𝑁)‘(𝑥 + 𝑇)) = if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))))
135132dirkerval2 40972 . 2 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((𝐷𝑁)‘𝑥) = if((𝑥 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2))))))
136129, 134, 1353eqtr4d 2809 1 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((𝐷𝑁)‘(𝑥 + 𝑇)) = ((𝐷𝑁)‘𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1652  wcel 2155  wne 2937  ifcif 4245  cmpt 4890  cfv 6070  (class class class)co 6846  cc 10191  cr 10192  0cc0 10193  1c1 10194   + caddc 10196   · cmul 10198  -cneg 10525   / cdiv 10942  cn 11278  2c2 11331  cz 11628  +crp 12033   mod cmo 12881  sincsin 15090  πcpi 15093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-inf2 8757  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270  ax-pre-sup 10271  ax-addf 10272  ax-mulf 10273
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-iin 4681  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-se 5239  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-isom 6079  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-of 7099  df-om 7268  df-1st 7370  df-2nd 7371  df-supp 7502  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-1o 7768  df-2o 7769  df-oadd 7772  df-er 7951  df-map 8066  df-pm 8067  df-ixp 8118  df-en 8165  df-dom 8166  df-sdom 8167  df-fin 8168  df-fsupp 8487  df-fi 8528  df-sup 8559  df-inf 8560  df-oi 8626  df-card 9020  df-cda 9247  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10526  df-neg 10527  df-div 10943  df-nn 11279  df-2 11339  df-3 11340  df-4 11341  df-5 11342  df-6 11343  df-7 11344  df-8 11345  df-9 11346  df-n0 11543  df-z 11629  df-dec 11746  df-uz 11892  df-q 11995  df-rp 12034  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12386  df-ioc 12387  df-ico 12388  df-icc 12389  df-fz 12539  df-fzo 12679  df-fl 12806  df-mod 12882  df-seq 13014  df-exp 13073  df-fac 13270  df-bc 13299  df-hash 13327  df-shft 14106  df-cj 14138  df-re 14139  df-im 14140  df-sqrt 14274  df-abs 14275  df-limsup 14501  df-clim 14518  df-rlim 14519  df-sum 14716  df-ef 15094  df-sin 15096  df-cos 15097  df-pi 15099  df-struct 16146  df-ndx 16147  df-slot 16148  df-base 16150  df-sets 16151  df-ress 16152  df-plusg 16241  df-mulr 16242  df-starv 16243  df-sca 16244  df-vsca 16245  df-ip 16246  df-tset 16247  df-ple 16248  df-ds 16250  df-unif 16251  df-hom 16252  df-cco 16253  df-rest 16363  df-topn 16364  df-0g 16382  df-gsum 16383  df-topgen 16384  df-pt 16385  df-prds 16388  df-xrs 16442  df-qtop 16447  df-imas 16448  df-xps 16450  df-mre 16526  df-mrc 16527  df-acs 16529  df-mgm 17522  df-sgrp 17564  df-mnd 17575  df-submnd 17616  df-mulg 17822  df-cntz 18027  df-cmn 18475  df-psmet 20025  df-xmet 20026  df-met 20027  df-bl 20028  df-mopn 20029  df-fbas 20030  df-fg 20031  df-cnfld 20034  df-top 20992  df-topon 21009  df-topsp 21031  df-bases 21044  df-cld 21117  df-ntr 21118  df-cls 21119  df-nei 21196  df-lp 21234  df-perf 21235  df-cn 21325  df-cnp 21326  df-haus 21413  df-tx 21659  df-hmeo 21852  df-fil 21943  df-fm 22035  df-flim 22036  df-flf 22037  df-xms 22418  df-ms 22419  df-tms 22420  df-cncf 22974  df-limc 23935  df-dv 23936
This theorem is referenced by:  fourierdlem111  41095
  Copyright terms: Public domain W3C validator