Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dirkerper Structured version   Visualization version   GIF version

Theorem dirkerper 42258
Description: the Dirichlet Kernel has period . (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dirkerper.1 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
dirkerper.2 𝑇 = (2 · π)
Assertion
Ref Expression
dirkerper ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((𝐷𝑁)‘(𝑥 + 𝑇)) = ((𝐷𝑁)‘𝑥))
Distinct variable groups:   𝑦,𝑁   𝑦,𝑛
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑛)   𝑇(𝑥,𝑦,𝑛)   𝑁(𝑥,𝑛)

Proof of Theorem dirkerper
StepHypRef Expression
1 dirkerper.2 . . . . . . . . . . . . 13 𝑇 = (2 · π)
21eqcomi 2827 . . . . . . . . . . . 12 (2 · π) = 𝑇
32oveq2i 7156 . . . . . . . . . . 11 (1 · (2 · π)) = (1 · 𝑇)
4 2re 11699 . . . . . . . . . . . . . . 15 2 ∈ ℝ
5 pire 24971 . . . . . . . . . . . . . . 15 π ∈ ℝ
64, 5remulcli 10645 . . . . . . . . . . . . . 14 (2 · π) ∈ ℝ
71, 6eqeltri 2906 . . . . . . . . . . . . 13 𝑇 ∈ ℝ
87recni 10643 . . . . . . . . . . . 12 𝑇 ∈ ℂ
98mulid2i 10634 . . . . . . . . . . 11 (1 · 𝑇) = 𝑇
103, 9eqtri 2841 . . . . . . . . . 10 (1 · (2 · π)) = 𝑇
1110oveq2i 7156 . . . . . . . . 9 (𝑥 + (1 · (2 · π))) = (𝑥 + 𝑇)
1211eqcomi 2827 . . . . . . . 8 (𝑥 + 𝑇) = (𝑥 + (1 · (2 · π)))
1312oveq1i 7155 . . . . . . 7 ((𝑥 + 𝑇) mod (2 · π)) = ((𝑥 + (1 · (2 · π))) mod (2 · π))
1413a1i 11 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ (𝑥 mod (2 · π)) = 0) → ((𝑥 + 𝑇) mod (2 · π)) = ((𝑥 + (1 · (2 · π))) mod (2 · π)))
15 id 22 . . . . . . . 8 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ)
1615ad2antlr 723 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ (𝑥 mod (2 · π)) = 0) → 𝑥 ∈ ℝ)
17 2rp 12382 . . . . . . . . 9 2 ∈ ℝ+
18 pirp 24974 . . . . . . . . 9 π ∈ ℝ+
19 rpmulcl 12400 . . . . . . . . 9 ((2 ∈ ℝ+ ∧ π ∈ ℝ+) → (2 · π) ∈ ℝ+)
2017, 18, 19mp2an 688 . . . . . . . 8 (2 · π) ∈ ℝ+
2120a1i 11 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ (𝑥 mod (2 · π)) = 0) → (2 · π) ∈ ℝ+)
22 1z 12000 . . . . . . . 8 1 ∈ ℤ
2322a1i 11 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ (𝑥 mod (2 · π)) = 0) → 1 ∈ ℤ)
24 modcyc 13262 . . . . . . 7 ((𝑥 ∈ ℝ ∧ (2 · π) ∈ ℝ+ ∧ 1 ∈ ℤ) → ((𝑥 + (1 · (2 · π))) mod (2 · π)) = (𝑥 mod (2 · π)))
2516, 21, 23, 24syl3anc 1363 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ (𝑥 mod (2 · π)) = 0) → ((𝑥 + (1 · (2 · π))) mod (2 · π)) = (𝑥 mod (2 · π)))
26 simpr 485 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ (𝑥 mod (2 · π)) = 0) → (𝑥 mod (2 · π)) = 0)
2714, 25, 263eqtrd 2857 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ (𝑥 mod (2 · π)) = 0) → ((𝑥 + 𝑇) mod (2 · π)) = 0)
2827iftrued 4471 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ (𝑥 mod (2 · π)) = 0) → if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))) = (((2 · 𝑁) + 1) / (2 · π)))
29 iftrue 4469 . . . . 5 ((𝑥 mod (2 · π)) = 0 → if((𝑥 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2))))) = (((2 · 𝑁) + 1) / (2 · π)))
3029adantl 482 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ (𝑥 mod (2 · π)) = 0) → if((𝑥 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2))))) = (((2 · 𝑁) + 1) / (2 · π)))
3128, 30eqtr4d 2856 . . 3 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ (𝑥 mod (2 · π)) = 0) → if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))) = if((𝑥 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2))))))
32 iffalse 4472 . . . . 5 (¬ (𝑥 mod (2 · π)) = 0 → if((𝑥 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2))))) = ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2)))))
3332adantl 482 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 mod (2 · π)) = 0) → if((𝑥 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2))))) = ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2)))))
34 nncn 11634 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
35 halfcn 11840 . . . . . . . . . . 11 (1 / 2) ∈ ℂ
3635a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ → (1 / 2) ∈ ℂ)
3734, 36addcld 10648 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 + (1 / 2)) ∈ ℂ)
3837adantr 481 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝑁 + (1 / 2)) ∈ ℂ)
39 recn 10615 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
4039adantl 482 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
4138, 40mulcld 10649 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((𝑁 + (1 / 2)) · 𝑥) ∈ ℂ)
4241sincld 15471 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (sin‘((𝑁 + (1 / 2)) · 𝑥)) ∈ ℂ)
4342adantr 481 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 mod (2 · π)) = 0) → (sin‘((𝑁 + (1 / 2)) · 𝑥)) ∈ ℂ)
446recni 10643 . . . . . . . 8 (2 · π) ∈ ℂ
4544a1i 11 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (2 · π) ∈ ℂ)
4640halfcld 11870 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝑥 / 2) ∈ ℂ)
4746sincld 15471 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (sin‘(𝑥 / 2)) ∈ ℂ)
4845, 47mulcld 10649 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((2 · π) · (sin‘(𝑥 / 2))) ∈ ℂ)
4948adantr 481 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 mod (2 · π)) = 0) → ((2 · π) · (sin‘(𝑥 / 2))) ∈ ℂ)
50 dirkerdenne0 42255 . . . . . 6 ((𝑥 ∈ ℝ ∧ ¬ (𝑥 mod (2 · π)) = 0) → ((2 · π) · (sin‘(𝑥 / 2))) ≠ 0)
5150adantll 710 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 mod (2 · π)) = 0) → ((2 · π) · (sin‘(𝑥 / 2))) ≠ 0)
5243, 49, 51div2negd 11419 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 mod (2 · π)) = 0) → (-(sin‘((𝑁 + (1 / 2)) · 𝑥)) / -((2 · π) · (sin‘(𝑥 / 2)))) = ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2)))))
5313a1i 11 . . . . . . . . . . 11 (𝑥 ∈ ℝ → ((𝑥 + 𝑇) mod (2 · π)) = ((𝑥 + (1 · (2 · π))) mod (2 · π)))
5420, 22, 24mp3an23 1444 . . . . . . . . . . 11 (𝑥 ∈ ℝ → ((𝑥 + (1 · (2 · π))) mod (2 · π)) = (𝑥 mod (2 · π)))
5553, 54eqtrd 2853 . . . . . . . . . 10 (𝑥 ∈ ℝ → ((𝑥 + 𝑇) mod (2 · π)) = (𝑥 mod (2 · π)))
5655adantr 481 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ ¬ (𝑥 mod (2 · π)) = 0) → ((𝑥 + 𝑇) mod (2 · π)) = (𝑥 mod (2 · π)))
57 simpr 485 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ ¬ (𝑥 mod (2 · π)) = 0) → ¬ (𝑥 mod (2 · π)) = 0)
5857neqned 3020 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ ¬ (𝑥 mod (2 · π)) = 0) → (𝑥 mod (2 · π)) ≠ 0)
5956, 58eqnetrd 3080 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ ¬ (𝑥 mod (2 · π)) = 0) → ((𝑥 + 𝑇) mod (2 · π)) ≠ 0)
6059neneqd 3018 . . . . . . 7 ((𝑥 ∈ ℝ ∧ ¬ (𝑥 mod (2 · π)) = 0) → ¬ ((𝑥 + 𝑇) mod (2 · π)) = 0)
61 iffalse 4472 . . . . . . . 8 (¬ ((𝑥 + 𝑇) mod (2 · π)) = 0 → if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))) = ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2)))))
621oveq2i 7156 . . . . . . . . . . 11 (𝑥 + 𝑇) = (𝑥 + (2 · π))
6362oveq2i 7156 . . . . . . . . . 10 ((𝑁 + (1 / 2)) · (𝑥 + 𝑇)) = ((𝑁 + (1 / 2)) · (𝑥 + (2 · π)))
6463fveq2i 6666 . . . . . . . . 9 (sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) = (sin‘((𝑁 + (1 / 2)) · (𝑥 + (2 · π))))
6562oveq1i 7155 . . . . . . . . . . 11 ((𝑥 + 𝑇) / 2) = ((𝑥 + (2 · π)) / 2)
6665fveq2i 6666 . . . . . . . . . 10 (sin‘((𝑥 + 𝑇) / 2)) = (sin‘((𝑥 + (2 · π)) / 2))
6766oveq2i 7156 . . . . . . . . 9 ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))) = ((2 · π) · (sin‘((𝑥 + (2 · π)) / 2)))
6864, 67oveq12i 7157 . . . . . . . 8 ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2)))) = ((sin‘((𝑁 + (1 / 2)) · (𝑥 + (2 · π)))) / ((2 · π) · (sin‘((𝑥 + (2 · π)) / 2))))
6961, 68syl6eq 2869 . . . . . . 7 (¬ ((𝑥 + 𝑇) mod (2 · π)) = 0 → if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))) = ((sin‘((𝑁 + (1 / 2)) · (𝑥 + (2 · π)))) / ((2 · π) · (sin‘((𝑥 + (2 · π)) / 2)))))
7060, 69syl 17 . . . . . 6 ((𝑥 ∈ ℝ ∧ ¬ (𝑥 mod (2 · π)) = 0) → if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))) = ((sin‘((𝑁 + (1 / 2)) · (𝑥 + (2 · π)))) / ((2 · π) · (sin‘((𝑥 + (2 · π)) / 2)))))
7170adantll 710 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 mod (2 · π)) = 0) → if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))) = ((sin‘((𝑁 + (1 / 2)) · (𝑥 + (2 · π)))) / ((2 · π) · (sin‘((𝑥 + (2 · π)) / 2)))))
7244a1i 11 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (2 · π) ∈ ℂ)
7334, 36, 72adddird 10654 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((𝑁 + (1 / 2)) · (2 · π)) = ((𝑁 · (2 · π)) + ((1 / 2) · (2 · π))))
74 ax-1cn 10583 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
75 2cnne0 11835 . . . . . . . . . . . . . . . 16 (2 ∈ ℂ ∧ 2 ≠ 0)
76 2cn 11700 . . . . . . . . . . . . . . . . 17 2 ∈ ℂ
77 picn 24972 . . . . . . . . . . . . . . . . 17 π ∈ ℂ
7876, 77mulcli 10636 . . . . . . . . . . . . . . . 16 (2 · π) ∈ ℂ
79 div32 11306 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 · π) ∈ ℂ) → ((1 / 2) · (2 · π)) = (1 · ((2 · π) / 2)))
8074, 75, 78, 79mp3an 1452 . . . . . . . . . . . . . . 15 ((1 / 2) · (2 · π)) = (1 · ((2 · π) / 2))
81 2ne0 11729 . . . . . . . . . . . . . . . . . 18 2 ≠ 0
8278, 76, 81divcli 11370 . . . . . . . . . . . . . . . . 17 ((2 · π) / 2) ∈ ℂ
8382mulid2i 10634 . . . . . . . . . . . . . . . 16 (1 · ((2 · π) / 2)) = ((2 · π) / 2)
8477, 76, 81divcan3i 11374 . . . . . . . . . . . . . . . 16 ((2 · π) / 2) = π
8583, 84eqtri 2841 . . . . . . . . . . . . . . 15 (1 · ((2 · π) / 2)) = π
8680, 85eqtri 2841 . . . . . . . . . . . . . 14 ((1 / 2) · (2 · π)) = π
8786oveq2i 7156 . . . . . . . . . . . . 13 ((𝑁 · (2 · π)) + ((1 / 2) · (2 · π))) = ((𝑁 · (2 · π)) + π)
8873, 87syl6eq 2869 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ((𝑁 + (1 / 2)) · (2 · π)) = ((𝑁 · (2 · π)) + π))
8988oveq2d 7161 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (((𝑁 + (1 / 2)) · 𝑥) + ((𝑁 + (1 / 2)) · (2 · π))) = (((𝑁 + (1 / 2)) · 𝑥) + ((𝑁 · (2 · π)) + π)))
9089adantr 481 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (((𝑁 + (1 / 2)) · 𝑥) + ((𝑁 + (1 / 2)) · (2 · π))) = (((𝑁 + (1 / 2)) · 𝑥) + ((𝑁 · (2 · π)) + π)))
9138, 40, 45adddid 10653 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((𝑁 + (1 / 2)) · (𝑥 + (2 · π))) = (((𝑁 + (1 / 2)) · 𝑥) + ((𝑁 + (1 / 2)) · (2 · π))))
9234, 72mulcld 10649 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 · (2 · π)) ∈ ℂ)
9392adantr 481 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝑁 · (2 · π)) ∈ ℂ)
9477a1i 11 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → π ∈ ℂ)
9541, 93, 94addassd 10651 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π))) + π) = (((𝑁 + (1 / 2)) · 𝑥) + ((𝑁 · (2 · π)) + π)))
9690, 91, 953eqtr4d 2863 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((𝑁 + (1 / 2)) · (𝑥 + (2 · π))) = ((((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π))) + π))
9796fveq2d 6667 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (sin‘((𝑁 + (1 / 2)) · (𝑥 + (2 · π)))) = (sin‘((((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π))) + π)))
9841, 93addcld 10648 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π))) ∈ ℂ)
99 sinppi 25002 . . . . . . . . 9 ((((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π))) ∈ ℂ → (sin‘((((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π))) + π)) = -(sin‘(((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π)))))
10098, 99syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (sin‘((((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π))) + π)) = -(sin‘(((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π)))))
101 simpl 483 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → 𝑁 ∈ ℕ)
102101nnzd 12074 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → 𝑁 ∈ ℤ)
103 sinper 24994 . . . . . . . . . 10 ((((𝑁 + (1 / 2)) · 𝑥) ∈ ℂ ∧ 𝑁 ∈ ℤ) → (sin‘(((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π)))) = (sin‘((𝑁 + (1 / 2)) · 𝑥)))
10441, 102, 103syl2anc 584 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (sin‘(((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π)))) = (sin‘((𝑁 + (1 / 2)) · 𝑥)))
105104negeqd 10868 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → -(sin‘(((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π)))) = -(sin‘((𝑁 + (1 / 2)) · 𝑥)))
10697, 100, 1053eqtrd 2857 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (sin‘((𝑁 + (1 / 2)) · (𝑥 + (2 · π)))) = -(sin‘((𝑁 + (1 / 2)) · 𝑥)))
10744a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (2 · π) ∈ ℂ)
10876a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → 2 ∈ ℂ)
10981a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → 2 ≠ 0)
11039, 107, 108, 109divdird 11442 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → ((𝑥 + (2 · π)) / 2) = ((𝑥 / 2) + ((2 · π) / 2)))
11184a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → ((2 · π) / 2) = π)
112111oveq2d 7161 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → ((𝑥 / 2) + ((2 · π) / 2)) = ((𝑥 / 2) + π))
113110, 112eqtrd 2853 . . . . . . . . . . 11 (𝑥 ∈ ℝ → ((𝑥 + (2 · π)) / 2) = ((𝑥 / 2) + π))
114113fveq2d 6667 . . . . . . . . . 10 (𝑥 ∈ ℝ → (sin‘((𝑥 + (2 · π)) / 2)) = (sin‘((𝑥 / 2) + π)))
11539halfcld 11870 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (𝑥 / 2) ∈ ℂ)
116 sinppi 25002 . . . . . . . . . . 11 ((𝑥 / 2) ∈ ℂ → (sin‘((𝑥 / 2) + π)) = -(sin‘(𝑥 / 2)))
117115, 116syl 17 . . . . . . . . . 10 (𝑥 ∈ ℝ → (sin‘((𝑥 / 2) + π)) = -(sin‘(𝑥 / 2)))
118114, 117eqtrd 2853 . . . . . . . . 9 (𝑥 ∈ ℝ → (sin‘((𝑥 + (2 · π)) / 2)) = -(sin‘(𝑥 / 2)))
119118oveq2d 7161 . . . . . . . 8 (𝑥 ∈ ℝ → ((2 · π) · (sin‘((𝑥 + (2 · π)) / 2))) = ((2 · π) · -(sin‘(𝑥 / 2))))
120119adantl 482 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((2 · π) · (sin‘((𝑥 + (2 · π)) / 2))) = ((2 · π) · -(sin‘(𝑥 / 2))))
121106, 120oveq12d 7163 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((sin‘((𝑁 + (1 / 2)) · (𝑥 + (2 · π)))) / ((2 · π) · (sin‘((𝑥 + (2 · π)) / 2)))) = (-(sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · -(sin‘(𝑥 / 2)))))
122121adantr 481 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 mod (2 · π)) = 0) → ((sin‘((𝑁 + (1 / 2)) · (𝑥 + (2 · π)))) / ((2 · π) · (sin‘((𝑥 + (2 · π)) / 2)))) = (-(sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · -(sin‘(𝑥 / 2)))))
123115sincld 15471 . . . . . . . 8 (𝑥 ∈ ℝ → (sin‘(𝑥 / 2)) ∈ ℂ)
124107, 123mulneg2d 11082 . . . . . . 7 (𝑥 ∈ ℝ → ((2 · π) · -(sin‘(𝑥 / 2))) = -((2 · π) · (sin‘(𝑥 / 2))))
125124oveq2d 7161 . . . . . 6 (𝑥 ∈ ℝ → (-(sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · -(sin‘(𝑥 / 2)))) = (-(sin‘((𝑁 + (1 / 2)) · 𝑥)) / -((2 · π) · (sin‘(𝑥 / 2)))))
126125ad2antlr 723 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 mod (2 · π)) = 0) → (-(sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · -(sin‘(𝑥 / 2)))) = (-(sin‘((𝑁 + (1 / 2)) · 𝑥)) / -((2 · π) · (sin‘(𝑥 / 2)))))
12771, 122, 1263eqtrrd 2858 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 mod (2 · π)) = 0) → (-(sin‘((𝑁 + (1 / 2)) · 𝑥)) / -((2 · π) · (sin‘(𝑥 / 2)))) = if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))))
12833, 52, 1273eqtr2rd 2860 . . 3 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 mod (2 · π)) = 0) → if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))) = if((𝑥 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2))))))
12931, 128pm2.61dan 809 . 2 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))) = if((𝑥 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2))))))
1307a1i 11 . . . 4 (𝑥 ∈ ℝ → 𝑇 ∈ ℝ)
13115, 130readdcld 10658 . . 3 (𝑥 ∈ ℝ → (𝑥 + 𝑇) ∈ ℝ)
132 dirkerper.1 . . . 4 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
133132dirkerval2 42256 . . 3 ((𝑁 ∈ ℕ ∧ (𝑥 + 𝑇) ∈ ℝ) → ((𝐷𝑁)‘(𝑥 + 𝑇)) = if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))))
134131, 133sylan2 592 . 2 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((𝐷𝑁)‘(𝑥 + 𝑇)) = if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))))
135132dirkerval2 42256 . 2 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((𝐷𝑁)‘𝑥) = if((𝑥 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2))))))
136129, 134, 1353eqtr4d 2863 1 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((𝐷𝑁)‘(𝑥 + 𝑇)) = ((𝐷𝑁)‘𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1528  wcel 2105  wne 3013  ifcif 4463  cmpt 5137  cfv 6348  (class class class)co 7145  cc 10523  cr 10524  0cc0 10525  1c1 10526   + caddc 10528   · cmul 10530  -cneg 10859   / cdiv 11285  cn 11626  2c2 11680  cz 11969  +crp 12377   mod cmo 13225  sincsin 15405  πcpi 15408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12881  df-fzo 13022  df-fl 13150  df-mod 13226  df-seq 13358  df-exp 13418  df-fac 13622  df-bc 13651  df-hash 13679  df-shft 14414  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-limsup 14816  df-clim 14833  df-rlim 14834  df-sum 15031  df-ef 15409  df-sin 15411  df-cos 15412  df-pi 15414  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-hom 16577  df-cco 16578  df-rest 16684  df-topn 16685  df-0g 16703  df-gsum 16704  df-topgen 16705  df-pt 16706  df-prds 16709  df-xrs 16763  df-qtop 16768  df-imas 16769  df-xps 16771  df-mre 16845  df-mrc 16846  df-acs 16848  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-submnd 17945  df-mulg 18163  df-cntz 18385  df-cmn 18837  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-fbas 20470  df-fg 20471  df-cnfld 20474  df-top 21430  df-topon 21447  df-topsp 21469  df-bases 21482  df-cld 21555  df-ntr 21556  df-cls 21557  df-nei 21634  df-lp 21672  df-perf 21673  df-cn 21763  df-cnp 21764  df-haus 21851  df-tx 22098  df-hmeo 22291  df-fil 22382  df-fm 22474  df-flim 22475  df-flf 22476  df-xms 22857  df-ms 22858  df-tms 22859  df-cncf 23413  df-limc 24391  df-dv 24392
This theorem is referenced by:  fourierdlem111  42379
  Copyright terms: Public domain W3C validator