| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > itcoval0 | Structured version Visualization version GIF version | ||
| Description: A function iterated zero times (defined as identity function). (Contributed by AV, 2-May-2024.) |
| Ref | Expression |
|---|---|
| itcoval0 | ⊢ (𝐹 ∈ 𝑉 → ((IterComp‘𝐹)‘0) = ( I ↾ dom 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itcoval 48516 | . . 3 ⊢ (𝐹 ∈ 𝑉 → (IterComp‘𝐹) = seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))) | |
| 2 | 1 | fveq1d 6887 | . 2 ⊢ (𝐹 ∈ 𝑉 → ((IterComp‘𝐹)‘0) = (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘0)) |
| 3 | 0z 12606 | . . 3 ⊢ 0 ∈ ℤ | |
| 4 | eqidd 2735 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))) | |
| 5 | iftrue 4511 | . . . . 5 ⊢ (𝑖 = 0 → if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹) = ( I ↾ dom 𝐹)) | |
| 6 | 5 | adantl 481 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑖 = 0) → if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹) = ( I ↾ dom 𝐹)) |
| 7 | 0nn0 12523 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 8 | 7 | a1i 11 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → 0 ∈ ℕ0) |
| 9 | dmexg 7904 | . . . . 5 ⊢ (𝐹 ∈ 𝑉 → dom 𝐹 ∈ V) | |
| 10 | 9 | resiexd 7217 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → ( I ↾ dom 𝐹) ∈ V) |
| 11 | 4, 6, 8, 10 | fvmptd 7002 | . . 3 ⊢ (𝐹 ∈ 𝑉 → ((𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))‘0) = ( I ↾ dom 𝐹)) |
| 12 | 3, 11 | seq1i 14037 | . 2 ⊢ (𝐹 ∈ 𝑉 → (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘0) = ( I ↾ dom 𝐹)) |
| 13 | 2, 12 | eqtrd 2769 | 1 ⊢ (𝐹 ∈ 𝑉 → ((IterComp‘𝐹)‘0) = ( I ↾ dom 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ifcif 4505 ↦ cmpt 5205 I cid 5557 dom cdm 5665 ↾ cres 5667 ∘ ccom 5669 ‘cfv 6540 ∈ cmpo 7414 0cc0 11136 ℕ0cn0 12508 seqcseq 14023 IterCompcitco 48512 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-inf2 9662 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7869 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-nn 12248 df-n0 12509 df-z 12596 df-uz 12860 df-seq 14024 df-itco 48514 |
| This theorem is referenced by: itcoval1 48518 itcoval0mpt 48521 itcovalendof 48524 |
| Copyright terms: Public domain | W3C validator |