Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itcoval0 Structured version   Visualization version   GIF version

Theorem itcoval0 45426
Description: A function iterated zero times (defined as identity function). (Contributed by AV, 2-May-2024.)
Assertion
Ref Expression
itcoval0 (𝐹𝑉 → ((IterComp‘𝐹)‘0) = ( I ↾ dom 𝐹))

Proof of Theorem itcoval0
Dummy variables 𝑔 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itcoval 45425 . . 3 (𝐹𝑉 → (IterComp‘𝐹) = seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))))
21fveq1d 6653 . 2 (𝐹𝑉 → ((IterComp‘𝐹)‘0) = (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘0))
3 0z 12016 . . 3 0 ∈ ℤ
4 eqidd 2760 . . . 4 (𝐹𝑉 → (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))
5 iftrue 4419 . . . . 5 (𝑖 = 0 → if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹) = ( I ↾ dom 𝐹))
65adantl 486 . . . 4 ((𝐹𝑉𝑖 = 0) → if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹) = ( I ↾ dom 𝐹))
7 0nn0 11934 . . . . 5 0 ∈ ℕ0
87a1i 11 . . . 4 (𝐹𝑉 → 0 ∈ ℕ0)
9 dmexg 7606 . . . . 5 (𝐹𝑉 → dom 𝐹 ∈ V)
109resiexd 6963 . . . 4 (𝐹𝑉 → ( I ↾ dom 𝐹) ∈ V)
114, 6, 8, 10fvmptd 6759 . . 3 (𝐹𝑉 → ((𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))‘0) = ( I ↾ dom 𝐹))
123, 11seq1i 13417 . 2 (𝐹𝑉 → (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘0) = ( I ↾ dom 𝐹))
132, 12eqtrd 2794 1 (𝐹𝑉 → ((IterComp‘𝐹)‘0) = ( I ↾ dom 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2112  Vcvv 3407  ifcif 4413  cmpt 5105   I cid 5422  dom cdm 5517  cres 5519  ccom 5521  cfv 6328  cmpo 7145  0cc0 10560  0cn0 11919  seqcseq 13403  IterCompcitco 45421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5149  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-inf2 9122  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-om 7573  df-2nd 7687  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8521  df-dom 8522  df-sdom 8523  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-nn 11660  df-n0 11920  df-z 12006  df-uz 12268  df-seq 13404  df-itco 45423
This theorem is referenced by:  itcoval1  45427  itcoval0mpt  45430  itcovalendof  45433
  Copyright terms: Public domain W3C validator