| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > itcoval0 | Structured version Visualization version GIF version | ||
| Description: A function iterated zero times (defined as identity function). (Contributed by AV, 2-May-2024.) |
| Ref | Expression |
|---|---|
| itcoval0 | ⊢ (𝐹 ∈ 𝑉 → ((IterComp‘𝐹)‘0) = ( I ↾ dom 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itcoval 48654 | . . 3 ⊢ (𝐹 ∈ 𝑉 → (IterComp‘𝐹) = seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))) | |
| 2 | 1 | fveq1d 6863 | . 2 ⊢ (𝐹 ∈ 𝑉 → ((IterComp‘𝐹)‘0) = (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘0)) |
| 3 | 0z 12547 | . . 3 ⊢ 0 ∈ ℤ | |
| 4 | eqidd 2731 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))) | |
| 5 | iftrue 4497 | . . . . 5 ⊢ (𝑖 = 0 → if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹) = ( I ↾ dom 𝐹)) | |
| 6 | 5 | adantl 481 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑖 = 0) → if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹) = ( I ↾ dom 𝐹)) |
| 7 | 0nn0 12464 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 8 | 7 | a1i 11 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → 0 ∈ ℕ0) |
| 9 | dmexg 7880 | . . . . 5 ⊢ (𝐹 ∈ 𝑉 → dom 𝐹 ∈ V) | |
| 10 | 9 | resiexd 7193 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → ( I ↾ dom 𝐹) ∈ V) |
| 11 | 4, 6, 8, 10 | fvmptd 6978 | . . 3 ⊢ (𝐹 ∈ 𝑉 → ((𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))‘0) = ( I ↾ dom 𝐹)) |
| 12 | 3, 11 | seq1i 13987 | . 2 ⊢ (𝐹 ∈ 𝑉 → (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘0) = ( I ↾ dom 𝐹)) |
| 13 | 2, 12 | eqtrd 2765 | 1 ⊢ (𝐹 ∈ 𝑉 → ((IterComp‘𝐹)‘0) = ( I ↾ dom 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ifcif 4491 ↦ cmpt 5191 I cid 5535 dom cdm 5641 ↾ cres 5643 ∘ ccom 5645 ‘cfv 6514 ∈ cmpo 7392 0cc0 11075 ℕ0cn0 12449 seqcseq 13973 IterCompcitco 48650 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-seq 13974 df-itco 48652 |
| This theorem is referenced by: itcoval1 48656 itcoval0mpt 48659 itcovalendof 48662 |
| Copyright terms: Public domain | W3C validator |