Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rightirr | Structured version Visualization version GIF version |
Description: No surreal is a member of its right set. (Contributed by Scott Fenton, 9-Oct-2024.) |
Ref | Expression |
---|---|
rightirr | ⊢ ¬ 𝑋 ∈ ( R ‘𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oldirr 27130 | . 2 ⊢ ¬ 𝑋 ∈ ( O ‘( bday ‘𝑋)) | |
2 | rightssold 27120 | . . 3 ⊢ ( R ‘𝑋) ⊆ ( O ‘( bday ‘𝑋)) | |
3 | 2 | sseli 3938 | . 2 ⊢ (𝑋 ∈ ( R ‘𝑋) → 𝑋 ∈ ( O ‘( bday ‘𝑋))) |
4 | 1, 3 | mto 196 | 1 ⊢ ¬ 𝑋 ∈ ( R ‘𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2106 ‘cfv 6491 bday cbday 26903 O cold 27085 R cright 27088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5240 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 ax-un 7662 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3738 df-csb 3854 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-pss 3927 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-tp 4589 df-op 4591 df-uni 4864 df-int 4906 df-iun 4954 df-br 5104 df-opab 5166 df-mpt 5187 df-tr 5221 df-id 5528 df-eprel 5534 df-po 5542 df-so 5543 df-fr 5585 df-we 5587 df-xp 5636 df-rel 5637 df-cnv 5638 df-co 5639 df-dm 5640 df-rn 5641 df-res 5642 df-ima 5643 df-pred 6249 df-ord 6316 df-on 6317 df-suc 6319 df-iota 6443 df-fun 6493 df-fn 6494 df-f 6495 df-f1 6496 df-fo 6497 df-f1o 6498 df-fv 6499 df-riota 7305 df-ov 7352 df-oprab 7353 df-mpo 7354 df-2nd 7912 df-frecs 8179 df-wrecs 8210 df-recs 8284 df-1o 8379 df-2o 8380 df-no 26904 df-slt 26905 df-bday 26906 df-sslt 27034 df-scut 27036 df-made 27089 df-old 27090 df-right 27093 |
This theorem is referenced by: addsval 34232 |
Copyright terms: Public domain | W3C validator |