![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > scmsuppfi | Structured version Visualization version GIF version |
Description: The support of a mapping of a scalar multiplication with a function of scalars is finite if the support of the function of scalars is finite. (Contributed by AV, 5-Apr-2019.) |
Ref | Expression |
---|---|
scmsuppfi.s | β’ π = (Scalarβπ) |
scmsuppfi.r | β’ π = (Baseβπ) |
Ref | Expression |
---|---|
scmsuppfi | β’ (((π β LMod β§ π β π« (Baseβπ)) β§ π΄ β (π βm π) β§ (π΄ supp (0gβπ)) β Fin) β ((π£ β π β¦ ((π΄βπ£)( Β·π βπ)π£)) supp (0gβπ)) β Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1135 | . 2 β’ (((π β LMod β§ π β π« (Baseβπ)) β§ π΄ β (π βm π) β§ (π΄ supp (0gβπ)) β Fin) β (π΄ supp (0gβπ)) β Fin) | |
2 | simpll 764 | . . . . 5 β’ (((π β LMod β§ π β π« (Baseβπ)) β§ π΄ β (π βm π)) β π β LMod) | |
3 | simplr 766 | . . . . 5 β’ (((π β LMod β§ π β π« (Baseβπ)) β§ π΄ β (π βm π)) β π β π« (Baseβπ)) | |
4 | simpr 484 | . . . . 5 β’ (((π β LMod β§ π β π« (Baseβπ)) β§ π΄ β (π βm π)) β π΄ β (π βm π)) | |
5 | 2, 3, 4 | 3jca 1125 | . . . 4 β’ (((π β LMod β§ π β π« (Baseβπ)) β§ π΄ β (π βm π)) β (π β LMod β§ π β π« (Baseβπ) β§ π΄ β (π βm π))) |
6 | 5 | 3adant3 1129 | . . 3 β’ (((π β LMod β§ π β π« (Baseβπ)) β§ π΄ β (π βm π) β§ (π΄ supp (0gβπ)) β Fin) β (π β LMod β§ π β π« (Baseβπ) β§ π΄ β (π βm π))) |
7 | scmsuppfi.s | . . . 4 β’ π = (Scalarβπ) | |
8 | scmsuppfi.r | . . . 4 β’ π = (Baseβπ) | |
9 | 7, 8 | scmsuppss 47324 | . . 3 β’ ((π β LMod β§ π β π« (Baseβπ) β§ π΄ β (π βm π)) β ((π£ β π β¦ ((π΄βπ£)( Β·π βπ)π£)) supp (0gβπ)) β (π΄ supp (0gβπ))) |
10 | 6, 9 | syl 17 | . 2 β’ (((π β LMod β§ π β π« (Baseβπ)) β§ π΄ β (π βm π) β§ (π΄ supp (0gβπ)) β Fin) β ((π£ β π β¦ ((π΄βπ£)( Β·π βπ)π£)) supp (0gβπ)) β (π΄ supp (0gβπ))) |
11 | ssfi 9175 | . 2 β’ (((π΄ supp (0gβπ)) β Fin β§ ((π£ β π β¦ ((π΄βπ£)( Β·π βπ)π£)) supp (0gβπ)) β (π΄ supp (0gβπ))) β ((π£ β π β¦ ((π΄βπ£)( Β·π βπ)π£)) supp (0gβπ)) β Fin) | |
12 | 1, 10, 11 | syl2anc 583 | 1 β’ (((π β LMod β§ π β π« (Baseβπ)) β§ π΄ β (π βm π) β§ (π΄ supp (0gβπ)) β Fin) β ((π£ β π β¦ ((π΄βπ£)( Β·π βπ)π£)) supp (0gβπ)) β Fin) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1084 = wceq 1533 β wcel 2098 β wss 3943 π« cpw 4597 β¦ cmpt 5224 βcfv 6537 (class class class)co 7405 supp csupp 8146 βm cmap 8822 Fincfn 8941 Basecbs 17153 Scalarcsca 17209 Β·π cvsca 17210 0gc0g 17394 LModclmod 20706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-supp 8147 df-1o 8467 df-map 8824 df-en 8942 df-fin 8945 df-0g 17396 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18866 df-ring 20140 df-lmod 20708 |
This theorem is referenced by: scmfsupp 47330 |
Copyright terms: Public domain | W3C validator |