![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > scmsuppfi | Structured version Visualization version GIF version |
Description: The support of a mapping of a scalar multiplication with a function of scalars is finite if the support of the function of scalars is finite. (Contributed by AV, 5-Apr-2019.) |
Ref | Expression |
---|---|
scmsuppfi.s | ⊢ 𝑆 = (Scalar‘𝑀) |
scmsuppfi.r | ⊢ 𝑅 = (Base‘𝑆) |
Ref | Expression |
---|---|
scmsuppfi | ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ (𝐴 supp (0g‘𝑆)) ∈ Fin) → ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) supp (0g‘𝑀)) ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1138 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ (𝐴 supp (0g‘𝑆)) ∈ Fin) → (𝐴 supp (0g‘𝑆)) ∈ Fin) | |
2 | simpll 766 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → 𝑀 ∈ LMod) | |
3 | simplr 768 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → 𝑉 ∈ 𝒫 (Base‘𝑀)) | |
4 | simpr 484 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → 𝐴 ∈ (𝑅 ↑m 𝑉)) | |
5 | 2, 3, 4 | 3jca 1128 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉))) |
6 | 5 | 3adant3 1132 | . . 3 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ (𝐴 supp (0g‘𝑆)) ∈ Fin) → (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉))) |
7 | scmsuppfi.s | . . . 4 ⊢ 𝑆 = (Scalar‘𝑀) | |
8 | scmsuppfi.r | . . . 4 ⊢ 𝑅 = (Base‘𝑆) | |
9 | 7, 8 | scmsuppss 48097 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) supp (0g‘𝑀)) ⊆ (𝐴 supp (0g‘𝑆))) |
10 | 6, 9 | syl 17 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ (𝐴 supp (0g‘𝑆)) ∈ Fin) → ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) supp (0g‘𝑀)) ⊆ (𝐴 supp (0g‘𝑆))) |
11 | ssfi 9240 | . 2 ⊢ (((𝐴 supp (0g‘𝑆)) ∈ Fin ∧ ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) supp (0g‘𝑀)) ⊆ (𝐴 supp (0g‘𝑆))) → ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) supp (0g‘𝑀)) ∈ Fin) | |
12 | 1, 10, 11 | syl2anc 583 | 1 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ (𝐴 supp (0g‘𝑆)) ∈ Fin) → ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) supp (0g‘𝑀)) ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 𝒫 cpw 4622 ↦ cmpt 5249 ‘cfv 6573 (class class class)co 7448 supp csupp 8201 ↑m cmap 8884 Fincfn 9003 Basecbs 17258 Scalarcsca 17314 ·𝑠 cvsca 17315 0gc0g 17499 LModclmod 20880 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-1o 8522 df-map 8886 df-en 9004 df-fin 9007 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-ring 20262 df-lmod 20882 |
This theorem is referenced by: scmfsupp 48103 |
Copyright terms: Public domain | W3C validator |