Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scmsuppfi Structured version   Visualization version   GIF version

Theorem scmsuppfi 47329
Description: The support of a mapping of a scalar multiplication with a function of scalars is finite if the support of the function of scalars is finite. (Contributed by AV, 5-Apr-2019.)
Hypotheses
Ref Expression
scmsuppfi.s 𝑆 = (Scalarβ€˜π‘€)
scmsuppfi.r 𝑅 = (Baseβ€˜π‘†)
Assertion
Ref Expression
scmsuppfi (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ (𝐴 supp (0gβ€˜π‘†)) ∈ Fin) β†’ ((𝑣 ∈ 𝑉 ↦ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣)) supp (0gβ€˜π‘€)) ∈ Fin)
Distinct variable groups:   𝑣,𝐴   𝑣,𝑀   𝑣,𝑅   𝑣,𝑉
Allowed substitution hint:   𝑆(𝑣)

Proof of Theorem scmsuppfi
StepHypRef Expression
1 simp3 1135 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ (𝐴 supp (0gβ€˜π‘†)) ∈ Fin) β†’ (𝐴 supp (0gβ€˜π‘†)) ∈ Fin)
2 simpll 764 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) β†’ 𝑀 ∈ LMod)
3 simplr 766 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) β†’ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€))
4 simpr 484 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) β†’ 𝐴 ∈ (𝑅 ↑m 𝑉))
52, 3, 43jca 1125 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) β†’ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)))
653adant3 1129 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ (𝐴 supp (0gβ€˜π‘†)) ∈ Fin) β†’ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)))
7 scmsuppfi.s . . . 4 𝑆 = (Scalarβ€˜π‘€)
8 scmsuppfi.r . . . 4 𝑅 = (Baseβ€˜π‘†)
97, 8scmsuppss 47324 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) β†’ ((𝑣 ∈ 𝑉 ↦ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣)) supp (0gβ€˜π‘€)) βŠ† (𝐴 supp (0gβ€˜π‘†)))
106, 9syl 17 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ (𝐴 supp (0gβ€˜π‘†)) ∈ Fin) β†’ ((𝑣 ∈ 𝑉 ↦ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣)) supp (0gβ€˜π‘€)) βŠ† (𝐴 supp (0gβ€˜π‘†)))
11 ssfi 9175 . 2 (((𝐴 supp (0gβ€˜π‘†)) ∈ Fin ∧ ((𝑣 ∈ 𝑉 ↦ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣)) supp (0gβ€˜π‘€)) βŠ† (𝐴 supp (0gβ€˜π‘†))) β†’ ((𝑣 ∈ 𝑉 ↦ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣)) supp (0gβ€˜π‘€)) ∈ Fin)
121, 10, 11syl2anc 583 1 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ (𝐴 supp (0gβ€˜π‘†)) ∈ Fin) β†’ ((𝑣 ∈ 𝑉 ↦ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣)) supp (0gβ€˜π‘€)) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   βŠ† wss 3943  π’« cpw 4597   ↦ cmpt 5224  β€˜cfv 6537  (class class class)co 7405   supp csupp 8146   ↑m cmap 8822  Fincfn 8941  Basecbs 17153  Scalarcsca 17209   ·𝑠 cvsca 17210  0gc0g 17394  LModclmod 20706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-supp 8147  df-1o 8467  df-map 8824  df-en 8942  df-fin 8945  df-0g 17396  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-grp 18866  df-ring 20140  df-lmod 20708
This theorem is referenced by:  scmfsupp  47330
  Copyright terms: Public domain W3C validator