Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scmsuppfi Structured version   Visualization version   GIF version

Theorem scmsuppfi 45601
Description: The support of a mapping of a scalar multiplication with a function of scalars is finite if the support of the function of scalars is finite. (Contributed by AV, 5-Apr-2019.)
Hypotheses
Ref Expression
scmsuppfi.s 𝑆 = (Scalar‘𝑀)
scmsuppfi.r 𝑅 = (Base‘𝑆)
Assertion
Ref Expression
scmsuppfi (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉) ∧ (𝐴 supp (0g𝑆)) ∈ Fin) → ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) supp (0g𝑀)) ∈ Fin)
Distinct variable groups:   𝑣,𝐴   𝑣,𝑀   𝑣,𝑅   𝑣,𝑉
Allowed substitution hint:   𝑆(𝑣)

Proof of Theorem scmsuppfi
StepHypRef Expression
1 simp3 1136 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉) ∧ (𝐴 supp (0g𝑆)) ∈ Fin) → (𝐴 supp (0g𝑆)) ∈ Fin)
2 simpll 763 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → 𝑀 ∈ LMod)
3 simplr 765 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → 𝑉 ∈ 𝒫 (Base‘𝑀))
4 simpr 484 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → 𝐴 ∈ (𝑅m 𝑉))
52, 3, 43jca 1126 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝐴 ∈ (𝑅m 𝑉)))
653adant3 1130 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉) ∧ (𝐴 supp (0g𝑆)) ∈ Fin) → (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝐴 ∈ (𝑅m 𝑉)))
7 scmsuppfi.s . . . 4 𝑆 = (Scalar‘𝑀)
8 scmsuppfi.r . . . 4 𝑅 = (Base‘𝑆)
97, 8scmsuppss 45596 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝐴 ∈ (𝑅m 𝑉)) → ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) supp (0g𝑀)) ⊆ (𝐴 supp (0g𝑆)))
106, 9syl 17 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉) ∧ (𝐴 supp (0g𝑆)) ∈ Fin) → ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) supp (0g𝑀)) ⊆ (𝐴 supp (0g𝑆)))
11 ssfi 8918 . 2 (((𝐴 supp (0g𝑆)) ∈ Fin ∧ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) supp (0g𝑀)) ⊆ (𝐴 supp (0g𝑆))) → ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) supp (0g𝑀)) ∈ Fin)
121, 10, 11syl2anc 583 1 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉) ∧ (𝐴 supp (0g𝑆)) ∈ Fin) → ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) supp (0g𝑀)) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wss 3883  𝒫 cpw 4530  cmpt 5153  cfv 6418  (class class class)co 7255   supp csupp 7948  m cmap 8573  Fincfn 8691  Basecbs 16840  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067  LModclmod 20038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-1o 8267  df-map 8575  df-en 8692  df-fin 8695  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-ring 19700  df-lmod 20040
This theorem is referenced by:  scmfsupp  45602
  Copyright terms: Public domain W3C validator