![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > scmsuppfi | Structured version Visualization version GIF version |
Description: The support of a mapping of a scalar multiplication with a function of scalars is finite if the support of the function of scalars is finite. (Contributed by AV, 5-Apr-2019.) |
Ref | Expression |
---|---|
scmsuppfi.s | β’ π = (Scalarβπ) |
scmsuppfi.r | β’ π = (Baseβπ) |
Ref | Expression |
---|---|
scmsuppfi | β’ (((π β LMod β§ π β π« (Baseβπ)) β§ π΄ β (π βm π) β§ (π΄ supp (0gβπ)) β Fin) β ((π£ β π β¦ ((π΄βπ£)( Β·π βπ)π£)) supp (0gβπ)) β Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1135 | . 2 β’ (((π β LMod β§ π β π« (Baseβπ)) β§ π΄ β (π βm π) β§ (π΄ supp (0gβπ)) β Fin) β (π΄ supp (0gβπ)) β Fin) | |
2 | simpll 765 | . . . . 5 β’ (((π β LMod β§ π β π« (Baseβπ)) β§ π΄ β (π βm π)) β π β LMod) | |
3 | simplr 767 | . . . . 5 β’ (((π β LMod β§ π β π« (Baseβπ)) β§ π΄ β (π βm π)) β π β π« (Baseβπ)) | |
4 | simpr 483 | . . . . 5 β’ (((π β LMod β§ π β π« (Baseβπ)) β§ π΄ β (π βm π)) β π΄ β (π βm π)) | |
5 | 2, 3, 4 | 3jca 1125 | . . . 4 β’ (((π β LMod β§ π β π« (Baseβπ)) β§ π΄ β (π βm π)) β (π β LMod β§ π β π« (Baseβπ) β§ π΄ β (π βm π))) |
6 | 5 | 3adant3 1129 | . . 3 β’ (((π β LMod β§ π β π« (Baseβπ)) β§ π΄ β (π βm π) β§ (π΄ supp (0gβπ)) β Fin) β (π β LMod β§ π β π« (Baseβπ) β§ π΄ β (π βm π))) |
7 | scmsuppfi.s | . . . 4 β’ π = (Scalarβπ) | |
8 | scmsuppfi.r | . . . 4 β’ π = (Baseβπ) | |
9 | 7, 8 | scmsuppss 47548 | . . 3 β’ ((π β LMod β§ π β π« (Baseβπ) β§ π΄ β (π βm π)) β ((π£ β π β¦ ((π΄βπ£)( Β·π βπ)π£)) supp (0gβπ)) β (π΄ supp (0gβπ))) |
10 | 6, 9 | syl 17 | . 2 β’ (((π β LMod β§ π β π« (Baseβπ)) β§ π΄ β (π βm π) β§ (π΄ supp (0gβπ)) β Fin) β ((π£ β π β¦ ((π΄βπ£)( Β·π βπ)π£)) supp (0gβπ)) β (π΄ supp (0gβπ))) |
11 | ssfi 9196 | . 2 β’ (((π΄ supp (0gβπ)) β Fin β§ ((π£ β π β¦ ((π΄βπ£)( Β·π βπ)π£)) supp (0gβπ)) β (π΄ supp (0gβπ))) β ((π£ β π β¦ ((π΄βπ£)( Β·π βπ)π£)) supp (0gβπ)) β Fin) | |
12 | 1, 10, 11 | syl2anc 582 | 1 β’ (((π β LMod β§ π β π« (Baseβπ)) β§ π΄ β (π βm π) β§ (π΄ supp (0gβπ)) β Fin) β ((π£ β π β¦ ((π΄βπ£)( Β·π βπ)π£)) supp (0gβπ)) β Fin) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 β§ w3a 1084 = wceq 1533 β wcel 2098 β wss 3939 π« cpw 4598 β¦ cmpt 5226 βcfv 6543 (class class class)co 7416 supp csupp 8163 βm cmap 8843 Fincfn 8962 Basecbs 17179 Scalarcsca 17235 Β·π cvsca 17236 0gc0g 17420 LModclmod 20747 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3959 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7991 df-2nd 7992 df-supp 8164 df-1o 8485 df-map 8845 df-en 8963 df-fin 8966 df-0g 17422 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-grp 18897 df-ring 20179 df-lmod 20749 |
This theorem is referenced by: scmfsupp 47554 |
Copyright terms: Public domain | W3C validator |