Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scmsuppfi Structured version   Visualization version   GIF version

Theorem scmsuppfi 43187
Description: The support of a mapping of a scalar multiplication with a function of scalars is finite if the support of the function of scalars is finite. (Contributed by AV, 5-Apr-2019.)
Hypotheses
Ref Expression
scmsuppfi.s 𝑆 = (Scalar‘𝑀)
scmsuppfi.r 𝑅 = (Base‘𝑆)
Assertion
Ref Expression
scmsuppfi (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅𝑚 𝑉) ∧ (𝐴 supp (0g𝑆)) ∈ Fin) → ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) supp (0g𝑀)) ∈ Fin)
Distinct variable groups:   𝑣,𝐴   𝑣,𝑀   𝑣,𝑅   𝑣,𝑉
Allowed substitution hint:   𝑆(𝑣)

Proof of Theorem scmsuppfi
StepHypRef Expression
1 simp3 1129 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅𝑚 𝑉) ∧ (𝐴 supp (0g𝑆)) ∈ Fin) → (𝐴 supp (0g𝑆)) ∈ Fin)
2 simpll 757 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) → 𝑀 ∈ LMod)
3 simplr 759 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) → 𝑉 ∈ 𝒫 (Base‘𝑀))
4 simpr 479 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) → 𝐴 ∈ (𝑅𝑚 𝑉))
52, 3, 43jca 1119 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) → (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)))
653adant3 1123 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅𝑚 𝑉) ∧ (𝐴 supp (0g𝑆)) ∈ Fin) → (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)))
7 scmsuppfi.s . . . 4 𝑆 = (Scalar‘𝑀)
8 scmsuppfi.r . . . 4 𝑅 = (Base‘𝑆)
97, 8scmsuppss 43182 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) → ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) supp (0g𝑀)) ⊆ (𝐴 supp (0g𝑆)))
106, 9syl 17 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅𝑚 𝑉) ∧ (𝐴 supp (0g𝑆)) ∈ Fin) → ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) supp (0g𝑀)) ⊆ (𝐴 supp (0g𝑆)))
11 ssfi 8470 . 2 (((𝐴 supp (0g𝑆)) ∈ Fin ∧ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) supp (0g𝑀)) ⊆ (𝐴 supp (0g𝑆))) → ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) supp (0g𝑀)) ∈ Fin)
121, 10, 11syl2anc 579 1 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅𝑚 𝑉) ∧ (𝐴 supp (0g𝑆)) ∈ Fin) → ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) supp (0g𝑀)) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1071   = wceq 1601  wcel 2107  wss 3792  𝒫 cpw 4379  cmpt 4967  cfv 6137  (class class class)co 6924   supp csupp 7578  𝑚 cmap 8142  Fincfn 8243  Basecbs 16266  Scalarcsca 16352   ·𝑠 cvsca 16353  0gc0g 16497  LModclmod 19266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-supp 7579  df-er 8028  df-map 8144  df-en 8244  df-fin 8247  df-0g 16499  df-mgm 17639  df-sgrp 17681  df-mnd 17692  df-grp 17823  df-ring 18947  df-lmod 19268
This theorem is referenced by:  scmfsupp  43188
  Copyright terms: Public domain W3C validator