Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmsuppfi Structured version   Visualization version   GIF version

Theorem rmsuppfi 44701
 Description: The support of a mapping of a multiplication of a constant with a function into a ring is finite if the support of the function is finite. (Contributed by AV, 11-Apr-2019.)
Hypothesis
Ref Expression
rmsuppfi.r 𝑅 = (Base‘𝑀)
Assertion
Ref Expression
rmsuppfi (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉) ∧ (𝐴 supp (0g𝑀)) ∈ Fin) → ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) supp (0g𝑀)) ∈ Fin)
Distinct variable groups:   𝑣,𝐴   𝑣,𝐶   𝑣,𝑀   𝑣,𝑅   𝑣,𝑋   𝑣,𝑉

Proof of Theorem rmsuppfi
StepHypRef Expression
1 simp3 1135 . 2 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉) ∧ (𝐴 supp (0g𝑀)) ∈ Fin) → (𝐴 supp (0g𝑀)) ∈ Fin)
2 rmsuppfi.r . . . 4 𝑅 = (Base‘𝑀)
32rmsuppss 44698 . . 3 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉)) → ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) supp (0g𝑀)) ⊆ (𝐴 supp (0g𝑀)))
433adant3 1129 . 2 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉) ∧ (𝐴 supp (0g𝑀)) ∈ Fin) → ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) supp (0g𝑀)) ⊆ (𝐴 supp (0g𝑀)))
5 ssfi 8735 . 2 (((𝐴 supp (0g𝑀)) ∈ Fin ∧ ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) supp (0g𝑀)) ⊆ (𝐴 supp (0g𝑀))) → ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) supp (0g𝑀)) ∈ Fin)
61, 4, 5syl2anc 587 1 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉) ∧ (𝐴 supp (0g𝑀)) ∈ Fin) → ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) supp (0g𝑀)) ∈ Fin)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115   ⊆ wss 3919   ↦ cmpt 5132  ‘cfv 6343  (class class class)co 7149   supp csupp 7826   ↑m cmap 8402  Fincfn 8505  Basecbs 16483  .rcmulr 16566  0gc0g 16713  Ringcrg 19297 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-supp 7827  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8285  df-map 8404  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-2 11697  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-plusg 16578  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-mgp 19240  df-ring 19299 This theorem is referenced by:  rmfsupp  44702
 Copyright terms: Public domain W3C validator