| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > slemul1ad | Structured version Visualization version GIF version | ||
| Description: Multiplication of both sides of surreal less-than or equal by a non-negative number. (Contributed by Scott Fenton, 17-Apr-2025.) |
| Ref | Expression |
|---|---|
| slemul1ad.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| slemul1ad.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
| slemul1ad.3 | ⊢ (𝜑 → 𝐶 ∈ No ) |
| slemul1ad.4 | ⊢ (𝜑 → 0s ≤s 𝐶) |
| slemul1ad.5 | ⊢ (𝜑 → 𝐴 ≤s 𝐵) |
| Ref | Expression |
|---|---|
| slemul1ad | ⊢ (𝜑 → (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | slemul1ad.5 | . . . 4 ⊢ (𝜑 → 𝐴 ≤s 𝐵) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 0s <s 𝐶) → 𝐴 ≤s 𝐵) |
| 3 | slemul1ad.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 0s <s 𝐶) → 𝐴 ∈ No ) |
| 5 | slemul1ad.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ No ) | |
| 6 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 0s <s 𝐶) → 𝐵 ∈ No ) |
| 7 | slemul1ad.3 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ No ) | |
| 8 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 0s <s 𝐶) → 𝐶 ∈ No ) |
| 9 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 0s <s 𝐶) → 0s <s 𝐶) | |
| 10 | 4, 6, 8, 9 | slemul1d 28112 | . . 3 ⊢ ((𝜑 ∧ 0s <s 𝐶) → (𝐴 ≤s 𝐵 ↔ (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶))) |
| 11 | 2, 10 | mpbid 232 | . 2 ⊢ ((𝜑 ∧ 0s <s 𝐶) → (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶)) |
| 12 | 0sno 27768 | . . . . . 6 ⊢ 0s ∈ No | |
| 13 | slerflex 27700 | . . . . . 6 ⊢ ( 0s ∈ No → 0s ≤s 0s ) | |
| 14 | 12, 13 | mp1i 13 | . . . . 5 ⊢ (𝜑 → 0s ≤s 0s ) |
| 15 | muls01 28049 | . . . . . 6 ⊢ (𝐴 ∈ No → (𝐴 ·s 0s ) = 0s ) | |
| 16 | 3, 15 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐴 ·s 0s ) = 0s ) |
| 17 | muls01 28049 | . . . . . 6 ⊢ (𝐵 ∈ No → (𝐵 ·s 0s ) = 0s ) | |
| 18 | 5, 17 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐵 ·s 0s ) = 0s ) |
| 19 | 14, 16, 18 | 3brtr4d 5123 | . . . 4 ⊢ (𝜑 → (𝐴 ·s 0s ) ≤s (𝐵 ·s 0s )) |
| 20 | oveq2 7354 | . . . . 5 ⊢ ( 0s = 𝐶 → (𝐴 ·s 0s ) = (𝐴 ·s 𝐶)) | |
| 21 | oveq2 7354 | . . . . 5 ⊢ ( 0s = 𝐶 → (𝐵 ·s 0s ) = (𝐵 ·s 𝐶)) | |
| 22 | 20, 21 | breq12d 5104 | . . . 4 ⊢ ( 0s = 𝐶 → ((𝐴 ·s 0s ) ≤s (𝐵 ·s 0s ) ↔ (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶))) |
| 23 | 19, 22 | syl5ibcom 245 | . . 3 ⊢ (𝜑 → ( 0s = 𝐶 → (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶))) |
| 24 | 23 | imp 406 | . 2 ⊢ ((𝜑 ∧ 0s = 𝐶) → (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶)) |
| 25 | slemul1ad.4 | . . 3 ⊢ (𝜑 → 0s ≤s 𝐶) | |
| 26 | sleloe 27691 | . . . 4 ⊢ (( 0s ∈ No ∧ 𝐶 ∈ No ) → ( 0s ≤s 𝐶 ↔ ( 0s <s 𝐶 ∨ 0s = 𝐶))) | |
| 27 | 12, 7, 26 | sylancr 587 | . . 3 ⊢ (𝜑 → ( 0s ≤s 𝐶 ↔ ( 0s <s 𝐶 ∨ 0s = 𝐶))) |
| 28 | 25, 27 | mpbid 232 | . 2 ⊢ (𝜑 → ( 0s <s 𝐶 ∨ 0s = 𝐶)) |
| 29 | 11, 24, 28 | mpjaodan 960 | 1 ⊢ (𝜑 → (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 class class class wbr 5091 (class class class)co 7346 No csur 27576 <s cslt 27577 ≤s csle 27681 0s c0s 27764 ·s cmuls 28043 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-ot 4585 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-1o 8385 df-2o 8386 df-nadd 8581 df-no 27579 df-slt 27580 df-bday 27581 df-sle 27682 df-sslt 27719 df-scut 27721 df-0s 27766 df-made 27786 df-old 27787 df-left 27789 df-right 27790 df-norec 27879 df-norec2 27890 df-adds 27901 df-negs 27961 df-subs 27962 df-muls 28044 |
| This theorem is referenced by: sltmul12ad 28120 |
| Copyright terms: Public domain | W3C validator |