| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > slemul1ad | Structured version Visualization version GIF version | ||
| Description: Multiplication of both sides of surreal less-than or equal by a non-negative number. (Contributed by Scott Fenton, 17-Apr-2025.) |
| Ref | Expression |
|---|---|
| slemul1ad.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| slemul1ad.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
| slemul1ad.3 | ⊢ (𝜑 → 𝐶 ∈ No ) |
| slemul1ad.4 | ⊢ (𝜑 → 0s ≤s 𝐶) |
| slemul1ad.5 | ⊢ (𝜑 → 𝐴 ≤s 𝐵) |
| Ref | Expression |
|---|---|
| slemul1ad | ⊢ (𝜑 → (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | slemul1ad.5 | . . . 4 ⊢ (𝜑 → 𝐴 ≤s 𝐵) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 0s <s 𝐶) → 𝐴 ≤s 𝐵) |
| 3 | slemul1ad.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 0s <s 𝐶) → 𝐴 ∈ No ) |
| 5 | slemul1ad.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ No ) | |
| 6 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 0s <s 𝐶) → 𝐵 ∈ No ) |
| 7 | slemul1ad.3 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ No ) | |
| 8 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 0s <s 𝐶) → 𝐶 ∈ No ) |
| 9 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 0s <s 𝐶) → 0s <s 𝐶) | |
| 10 | 4, 6, 8, 9 | slemul1d 28101 | . . 3 ⊢ ((𝜑 ∧ 0s <s 𝐶) → (𝐴 ≤s 𝐵 ↔ (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶))) |
| 11 | 2, 10 | mpbid 232 | . 2 ⊢ ((𝜑 ∧ 0s <s 𝐶) → (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶)) |
| 12 | 0sno 27758 | . . . . . 6 ⊢ 0s ∈ No | |
| 13 | slerflex 27691 | . . . . . 6 ⊢ ( 0s ∈ No → 0s ≤s 0s ) | |
| 14 | 12, 13 | mp1i 13 | . . . . 5 ⊢ (𝜑 → 0s ≤s 0s ) |
| 15 | muls01 28038 | . . . . . 6 ⊢ (𝐴 ∈ No → (𝐴 ·s 0s ) = 0s ) | |
| 16 | 3, 15 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐴 ·s 0s ) = 0s ) |
| 17 | muls01 28038 | . . . . . 6 ⊢ (𝐵 ∈ No → (𝐵 ·s 0s ) = 0s ) | |
| 18 | 5, 17 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐵 ·s 0s ) = 0s ) |
| 19 | 14, 16, 18 | 3brtr4d 5127 | . . . 4 ⊢ (𝜑 → (𝐴 ·s 0s ) ≤s (𝐵 ·s 0s )) |
| 20 | oveq2 7361 | . . . . 5 ⊢ ( 0s = 𝐶 → (𝐴 ·s 0s ) = (𝐴 ·s 𝐶)) | |
| 21 | oveq2 7361 | . . . . 5 ⊢ ( 0s = 𝐶 → (𝐵 ·s 0s ) = (𝐵 ·s 𝐶)) | |
| 22 | 20, 21 | breq12d 5108 | . . . 4 ⊢ ( 0s = 𝐶 → ((𝐴 ·s 0s ) ≤s (𝐵 ·s 0s ) ↔ (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶))) |
| 23 | 19, 22 | syl5ibcom 245 | . . 3 ⊢ (𝜑 → ( 0s = 𝐶 → (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶))) |
| 24 | 23 | imp 406 | . 2 ⊢ ((𝜑 ∧ 0s = 𝐶) → (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶)) |
| 25 | slemul1ad.4 | . . 3 ⊢ (𝜑 → 0s ≤s 𝐶) | |
| 26 | sleloe 27682 | . . . 4 ⊢ (( 0s ∈ No ∧ 𝐶 ∈ No ) → ( 0s ≤s 𝐶 ↔ ( 0s <s 𝐶 ∨ 0s = 𝐶))) | |
| 27 | 12, 7, 26 | sylancr 587 | . . 3 ⊢ (𝜑 → ( 0s ≤s 𝐶 ↔ ( 0s <s 𝐶 ∨ 0s = 𝐶))) |
| 28 | 25, 27 | mpbid 232 | . 2 ⊢ (𝜑 → ( 0s <s 𝐶 ∨ 0s = 𝐶)) |
| 29 | 11, 24, 28 | mpjaodan 960 | 1 ⊢ (𝜑 → (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 class class class wbr 5095 (class class class)co 7353 No csur 27567 <s cslt 27568 ≤s csle 27672 0s c0s 27754 ·s cmuls 28032 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-ot 4588 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-1o 8395 df-2o 8396 df-nadd 8591 df-no 27570 df-slt 27571 df-bday 27572 df-sle 27673 df-sslt 27710 df-scut 27712 df-0s 27756 df-made 27775 df-old 27776 df-left 27778 df-right 27779 df-norec 27868 df-norec2 27879 df-adds 27890 df-negs 27950 df-subs 27951 df-muls 28033 |
| This theorem is referenced by: sltmul12ad 28109 |
| Copyright terms: Public domain | W3C validator |