MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slemul1ad Structured version   Visualization version   GIF version

Theorem slemul1ad 28222
Description: Multiplication of both sides of surreal less-than or equal by a non-negative number. (Contributed by Scott Fenton, 17-Apr-2025.)
Hypotheses
Ref Expression
slemul1ad.1 (𝜑𝐴 No )
slemul1ad.2 (𝜑𝐵 No )
slemul1ad.3 (𝜑𝐶 No )
slemul1ad.4 (𝜑 → 0s ≤s 𝐶)
slemul1ad.5 (𝜑𝐴 ≤s 𝐵)
Assertion
Ref Expression
slemul1ad (𝜑 → (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶))

Proof of Theorem slemul1ad
StepHypRef Expression
1 slemul1ad.5 . . . 4 (𝜑𝐴 ≤s 𝐵)
21adantr 480 . . 3 ((𝜑 ∧ 0s <s 𝐶) → 𝐴 ≤s 𝐵)
3 slemul1ad.1 . . . . 5 (𝜑𝐴 No )
43adantr 480 . . . 4 ((𝜑 ∧ 0s <s 𝐶) → 𝐴 No )
5 slemul1ad.2 . . . . 5 (𝜑𝐵 No )
65adantr 480 . . . 4 ((𝜑 ∧ 0s <s 𝐶) → 𝐵 No )
7 slemul1ad.3 . . . . 5 (𝜑𝐶 No )
87adantr 480 . . . 4 ((𝜑 ∧ 0s <s 𝐶) → 𝐶 No )
9 simpr 484 . . . 4 ((𝜑 ∧ 0s <s 𝐶) → 0s <s 𝐶)
104, 6, 8, 9slemul1d 28215 . . 3 ((𝜑 ∧ 0s <s 𝐶) → (𝐴 ≤s 𝐵 ↔ (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶)))
112, 10mpbid 232 . 2 ((𝜑 ∧ 0s <s 𝐶) → (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶))
12 0sno 27885 . . . . . 6 0s No
13 slerflex 27822 . . . . . 6 ( 0s No → 0s ≤s 0s )
1412, 13mp1i 13 . . . . 5 (𝜑 → 0s ≤s 0s )
15 muls01 28152 . . . . . 6 (𝐴 No → (𝐴 ·s 0s ) = 0s )
163, 15syl 17 . . . . 5 (𝜑 → (𝐴 ·s 0s ) = 0s )
17 muls01 28152 . . . . . 6 (𝐵 No → (𝐵 ·s 0s ) = 0s )
185, 17syl 17 . . . . 5 (𝜑 → (𝐵 ·s 0s ) = 0s )
1914, 16, 183brtr4d 5179 . . . 4 (𝜑 → (𝐴 ·s 0s ) ≤s (𝐵 ·s 0s ))
20 oveq2 7438 . . . . 5 ( 0s = 𝐶 → (𝐴 ·s 0s ) = (𝐴 ·s 𝐶))
21 oveq2 7438 . . . . 5 ( 0s = 𝐶 → (𝐵 ·s 0s ) = (𝐵 ·s 𝐶))
2220, 21breq12d 5160 . . . 4 ( 0s = 𝐶 → ((𝐴 ·s 0s ) ≤s (𝐵 ·s 0s ) ↔ (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶)))
2319, 22syl5ibcom 245 . . 3 (𝜑 → ( 0s = 𝐶 → (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶)))
2423imp 406 . 2 ((𝜑 ∧ 0s = 𝐶) → (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶))
25 slemul1ad.4 . . 3 (𝜑 → 0s ≤s 𝐶)
26 sleloe 27813 . . . 4 (( 0s No 𝐶 No ) → ( 0s ≤s 𝐶 ↔ ( 0s <s 𝐶 ∨ 0s = 𝐶)))
2712, 7, 26sylancr 587 . . 3 (𝜑 → ( 0s ≤s 𝐶 ↔ ( 0s <s 𝐶 ∨ 0s = 𝐶)))
2825, 27mpbid 232 . 2 (𝜑 → ( 0s <s 𝐶 ∨ 0s = 𝐶))
2911, 24, 28mpjaodan 960 1 (𝜑 → (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1536  wcel 2105   class class class wbr 5147  (class class class)co 7430   No csur 27698   <s cslt 27699   ≤s csle 27803   0s c0s 27881   ·s cmuls 28146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-ot 4639  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-1o 8504  df-2o 8505  df-nadd 8702  df-no 27701  df-slt 27702  df-bday 27703  df-sle 27804  df-sslt 27840  df-scut 27842  df-0s 27883  df-made 27900  df-old 27901  df-left 27903  df-right 27904  df-norec 27985  df-norec2 27996  df-adds 28007  df-negs 28067  df-subs 28068  df-muls 28147
This theorem is referenced by:  sltmul12ad  28223
  Copyright terms: Public domain W3C validator