![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > slemul1ad | Structured version Visualization version GIF version |
Description: Multiplication of both sides of surreal less-than or equal by a non-negative number. (Contributed by Scott Fenton, 17-Apr-2025.) |
Ref | Expression |
---|---|
slemul1ad.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
slemul1ad.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
slemul1ad.3 | ⊢ (𝜑 → 𝐶 ∈ No ) |
slemul1ad.4 | ⊢ (𝜑 → 0s ≤s 𝐶) |
slemul1ad.5 | ⊢ (𝜑 → 𝐴 ≤s 𝐵) |
Ref | Expression |
---|---|
slemul1ad | ⊢ (𝜑 → (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slemul1ad.5 | . . . 4 ⊢ (𝜑 → 𝐴 ≤s 𝐵) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 0s <s 𝐶) → 𝐴 ≤s 𝐵) |
3 | slemul1ad.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ No ) | |
4 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 0s <s 𝐶) → 𝐴 ∈ No ) |
5 | slemul1ad.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ No ) | |
6 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 0s <s 𝐶) → 𝐵 ∈ No ) |
7 | slemul1ad.3 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ No ) | |
8 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 0s <s 𝐶) → 𝐶 ∈ No ) |
9 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 0s <s 𝐶) → 0s <s 𝐶) | |
10 | 4, 6, 8, 9 | slemul1d 28219 | . . 3 ⊢ ((𝜑 ∧ 0s <s 𝐶) → (𝐴 ≤s 𝐵 ↔ (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶))) |
11 | 2, 10 | mpbid 232 | . 2 ⊢ ((𝜑 ∧ 0s <s 𝐶) → (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶)) |
12 | 0sno 27889 | . . . . . 6 ⊢ 0s ∈ No | |
13 | slerflex 27826 | . . . . . 6 ⊢ ( 0s ∈ No → 0s ≤s 0s ) | |
14 | 12, 13 | mp1i 13 | . . . . 5 ⊢ (𝜑 → 0s ≤s 0s ) |
15 | muls01 28156 | . . . . . 6 ⊢ (𝐴 ∈ No → (𝐴 ·s 0s ) = 0s ) | |
16 | 3, 15 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐴 ·s 0s ) = 0s ) |
17 | muls01 28156 | . . . . . 6 ⊢ (𝐵 ∈ No → (𝐵 ·s 0s ) = 0s ) | |
18 | 5, 17 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐵 ·s 0s ) = 0s ) |
19 | 14, 16, 18 | 3brtr4d 5198 | . . . 4 ⊢ (𝜑 → (𝐴 ·s 0s ) ≤s (𝐵 ·s 0s )) |
20 | oveq2 7456 | . . . . 5 ⊢ ( 0s = 𝐶 → (𝐴 ·s 0s ) = (𝐴 ·s 𝐶)) | |
21 | oveq2 7456 | . . . . 5 ⊢ ( 0s = 𝐶 → (𝐵 ·s 0s ) = (𝐵 ·s 𝐶)) | |
22 | 20, 21 | breq12d 5179 | . . . 4 ⊢ ( 0s = 𝐶 → ((𝐴 ·s 0s ) ≤s (𝐵 ·s 0s ) ↔ (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶))) |
23 | 19, 22 | syl5ibcom 245 | . . 3 ⊢ (𝜑 → ( 0s = 𝐶 → (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶))) |
24 | 23 | imp 406 | . 2 ⊢ ((𝜑 ∧ 0s = 𝐶) → (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶)) |
25 | slemul1ad.4 | . . 3 ⊢ (𝜑 → 0s ≤s 𝐶) | |
26 | sleloe 27817 | . . . 4 ⊢ (( 0s ∈ No ∧ 𝐶 ∈ No ) → ( 0s ≤s 𝐶 ↔ ( 0s <s 𝐶 ∨ 0s = 𝐶))) | |
27 | 12, 7, 26 | sylancr 586 | . . 3 ⊢ (𝜑 → ( 0s ≤s 𝐶 ↔ ( 0s <s 𝐶 ∨ 0s = 𝐶))) |
28 | 25, 27 | mpbid 232 | . 2 ⊢ (𝜑 → ( 0s <s 𝐶 ∨ 0s = 𝐶)) |
29 | 11, 24, 28 | mpjaodan 959 | 1 ⊢ (𝜑 → (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 (class class class)co 7448 No csur 27702 <s cslt 27703 ≤s csle 27807 0s c0s 27885 ·s cmuls 28150 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-ot 4657 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-1o 8522 df-2o 8523 df-nadd 8722 df-no 27705 df-slt 27706 df-bday 27707 df-sle 27808 df-sslt 27844 df-scut 27846 df-0s 27887 df-made 27904 df-old 27905 df-left 27907 df-right 27908 df-norec 27989 df-norec2 28000 df-adds 28011 df-negs 28071 df-subs 28072 df-muls 28151 |
This theorem is referenced by: sltmul12ad 28227 |
Copyright terms: Public domain | W3C validator |