| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > slemul1ad | Structured version Visualization version GIF version | ||
| Description: Multiplication of both sides of surreal less-than or equal by a non-negative number. (Contributed by Scott Fenton, 17-Apr-2025.) |
| Ref | Expression |
|---|---|
| slemul1ad.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| slemul1ad.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
| slemul1ad.3 | ⊢ (𝜑 → 𝐶 ∈ No ) |
| slemul1ad.4 | ⊢ (𝜑 → 0s ≤s 𝐶) |
| slemul1ad.5 | ⊢ (𝜑 → 𝐴 ≤s 𝐵) |
| Ref | Expression |
|---|---|
| slemul1ad | ⊢ (𝜑 → (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | slemul1ad.5 | . . . 4 ⊢ (𝜑 → 𝐴 ≤s 𝐵) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 0s <s 𝐶) → 𝐴 ≤s 𝐵) |
| 3 | slemul1ad.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 0s <s 𝐶) → 𝐴 ∈ No ) |
| 5 | slemul1ad.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ No ) | |
| 6 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 0s <s 𝐶) → 𝐵 ∈ No ) |
| 7 | slemul1ad.3 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ No ) | |
| 8 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 0s <s 𝐶) → 𝐶 ∈ No ) |
| 9 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 0s <s 𝐶) → 0s <s 𝐶) | |
| 10 | 4, 6, 8, 9 | slemul1d 28130 | . . 3 ⊢ ((𝜑 ∧ 0s <s 𝐶) → (𝐴 ≤s 𝐵 ↔ (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶))) |
| 11 | 2, 10 | mpbid 232 | . 2 ⊢ ((𝜑 ∧ 0s <s 𝐶) → (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶)) |
| 12 | 0sno 27790 | . . . . . 6 ⊢ 0s ∈ No | |
| 13 | slerflex 27727 | . . . . . 6 ⊢ ( 0s ∈ No → 0s ≤s 0s ) | |
| 14 | 12, 13 | mp1i 13 | . . . . 5 ⊢ (𝜑 → 0s ≤s 0s ) |
| 15 | muls01 28067 | . . . . . 6 ⊢ (𝐴 ∈ No → (𝐴 ·s 0s ) = 0s ) | |
| 16 | 3, 15 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐴 ·s 0s ) = 0s ) |
| 17 | muls01 28067 | . . . . . 6 ⊢ (𝐵 ∈ No → (𝐵 ·s 0s ) = 0s ) | |
| 18 | 5, 17 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐵 ·s 0s ) = 0s ) |
| 19 | 14, 16, 18 | 3brtr4d 5151 | . . . 4 ⊢ (𝜑 → (𝐴 ·s 0s ) ≤s (𝐵 ·s 0s )) |
| 20 | oveq2 7413 | . . . . 5 ⊢ ( 0s = 𝐶 → (𝐴 ·s 0s ) = (𝐴 ·s 𝐶)) | |
| 21 | oveq2 7413 | . . . . 5 ⊢ ( 0s = 𝐶 → (𝐵 ·s 0s ) = (𝐵 ·s 𝐶)) | |
| 22 | 20, 21 | breq12d 5132 | . . . 4 ⊢ ( 0s = 𝐶 → ((𝐴 ·s 0s ) ≤s (𝐵 ·s 0s ) ↔ (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶))) |
| 23 | 19, 22 | syl5ibcom 245 | . . 3 ⊢ (𝜑 → ( 0s = 𝐶 → (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶))) |
| 24 | 23 | imp 406 | . 2 ⊢ ((𝜑 ∧ 0s = 𝐶) → (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶)) |
| 25 | slemul1ad.4 | . . 3 ⊢ (𝜑 → 0s ≤s 𝐶) | |
| 26 | sleloe 27718 | . . . 4 ⊢ (( 0s ∈ No ∧ 𝐶 ∈ No ) → ( 0s ≤s 𝐶 ↔ ( 0s <s 𝐶 ∨ 0s = 𝐶))) | |
| 27 | 12, 7, 26 | sylancr 587 | . . 3 ⊢ (𝜑 → ( 0s ≤s 𝐶 ↔ ( 0s <s 𝐶 ∨ 0s = 𝐶))) |
| 28 | 25, 27 | mpbid 232 | . 2 ⊢ (𝜑 → ( 0s <s 𝐶 ∨ 0s = 𝐶)) |
| 29 | 11, 24, 28 | mpjaodan 960 | 1 ⊢ (𝜑 → (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 (class class class)co 7405 No csur 27603 <s cslt 27604 ≤s csle 27708 0s c0s 27786 ·s cmuls 28061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-ot 4610 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-1o 8480 df-2o 8481 df-nadd 8678 df-no 27606 df-slt 27607 df-bday 27608 df-sle 27709 df-sslt 27745 df-scut 27747 df-0s 27788 df-made 27807 df-old 27808 df-left 27810 df-right 27811 df-norec 27897 df-norec2 27908 df-adds 27919 df-negs 27979 df-subs 27980 df-muls 28062 |
| This theorem is referenced by: sltmul12ad 28138 |
| Copyright terms: Public domain | W3C validator |