Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-ltmul2d Structured version   Visualization version   GIF version

Theorem sn-ltmul2d 40352
Description: ltmul2d 12743 without ax-mulcom 10866. (Contributed by SN, 26-Jun-2024.)
Hypotheses
Ref Expression
sn-ltmul2d.a (𝜑𝐴 ∈ ℝ)
sn-ltmul2d.b (𝜑𝐵 ∈ ℝ)
sn-ltmul2d.c (𝜑𝐶 ∈ ℝ)
sn-ltmul2d.1 (𝜑 → 0 < 𝐶)
Assertion
Ref Expression
sn-ltmul2d (𝜑 → ((𝐶 · 𝐴) < (𝐶 · 𝐵) ↔ 𝐴 < 𝐵))

Proof of Theorem sn-ltmul2d
StepHypRef Expression
1 sn-ltmul2d.c . . . 4 (𝜑𝐶 ∈ ℝ)
2 sn-ltmul2d.b . . . . 5 (𝜑𝐵 ∈ ℝ)
3 sn-ltmul2d.a . . . . 5 (𝜑𝐴 ∈ ℝ)
4 rersubcl 40282 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 𝐴) ∈ ℝ)
52, 3, 4syl2anc 583 . . . 4 (𝜑 → (𝐵 𝐴) ∈ ℝ)
6 sn-ltmul2d.1 . . . 4 (𝜑 → 0 < 𝐶)
71, 5, 6mulgt0b2d 40351 . . 3 (𝜑 → (0 < (𝐵 𝐴) ↔ 0 < (𝐶 · (𝐵 𝐴))))
8 resubdi 40300 . . . . 5 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐶 · (𝐵 𝐴)) = ((𝐶 · 𝐵) − (𝐶 · 𝐴)))
91, 2, 3, 8syl3anc 1369 . . . 4 (𝜑 → (𝐶 · (𝐵 𝐴)) = ((𝐶 · 𝐵) − (𝐶 · 𝐴)))
109breq2d 5082 . . 3 (𝜑 → (0 < (𝐶 · (𝐵 𝐴)) ↔ 0 < ((𝐶 · 𝐵) − (𝐶 · 𝐴))))
117, 10bitr2d 279 . 2 (𝜑 → (0 < ((𝐶 · 𝐵) − (𝐶 · 𝐴)) ↔ 0 < (𝐵 𝐴)))
121, 3remulcld 10936 . . 3 (𝜑 → (𝐶 · 𝐴) ∈ ℝ)
131, 2remulcld 10936 . . 3 (𝜑 → (𝐶 · 𝐵) ∈ ℝ)
14 reposdif 40345 . . 3 (((𝐶 · 𝐴) ∈ ℝ ∧ (𝐶 · 𝐵) ∈ ℝ) → ((𝐶 · 𝐴) < (𝐶 · 𝐵) ↔ 0 < ((𝐶 · 𝐵) − (𝐶 · 𝐴))))
1512, 13, 14syl2anc 583 . 2 (𝜑 → ((𝐶 · 𝐴) < (𝐶 · 𝐵) ↔ 0 < ((𝐶 · 𝐵) − (𝐶 · 𝐴))))
16 reposdif 40345 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵 𝐴)))
173, 2, 16syl2anc 583 . 2 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵 𝐴)))
1811, 15, 173bitr4d 310 1 (𝜑 → ((𝐶 · 𝐴) < (𝐶 · 𝐵) ↔ 𝐴 < 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108   class class class wbr 5070  (class class class)co 7255  cr 10801  0cc0 10802   · cmul 10807   < clt 10940   cresub 40269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-ltxr 10945  df-2 11966  df-3 11967  df-resub 40270
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator