Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sn-ltmul2d | Structured version Visualization version GIF version |
Description: ltmul2d 12743 without ax-mulcom 10866. (Contributed by SN, 26-Jun-2024.) |
Ref | Expression |
---|---|
sn-ltmul2d.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
sn-ltmul2d.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
sn-ltmul2d.c | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
sn-ltmul2d.1 | ⊢ (𝜑 → 0 < 𝐶) |
Ref | Expression |
---|---|
sn-ltmul2d | ⊢ (𝜑 → ((𝐶 · 𝐴) < (𝐶 · 𝐵) ↔ 𝐴 < 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sn-ltmul2d.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
2 | sn-ltmul2d.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | sn-ltmul2d.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
4 | rersubcl 40282 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 −ℝ 𝐴) ∈ ℝ) | |
5 | 2, 3, 4 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝐵 −ℝ 𝐴) ∈ ℝ) |
6 | sn-ltmul2d.1 | . . . 4 ⊢ (𝜑 → 0 < 𝐶) | |
7 | 1, 5, 6 | mulgt0b2d 40351 | . . 3 ⊢ (𝜑 → (0 < (𝐵 −ℝ 𝐴) ↔ 0 < (𝐶 · (𝐵 −ℝ 𝐴)))) |
8 | resubdi 40300 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐶 · (𝐵 −ℝ 𝐴)) = ((𝐶 · 𝐵) −ℝ (𝐶 · 𝐴))) | |
9 | 1, 2, 3, 8 | syl3anc 1369 | . . . 4 ⊢ (𝜑 → (𝐶 · (𝐵 −ℝ 𝐴)) = ((𝐶 · 𝐵) −ℝ (𝐶 · 𝐴))) |
10 | 9 | breq2d 5082 | . . 3 ⊢ (𝜑 → (0 < (𝐶 · (𝐵 −ℝ 𝐴)) ↔ 0 < ((𝐶 · 𝐵) −ℝ (𝐶 · 𝐴)))) |
11 | 7, 10 | bitr2d 279 | . 2 ⊢ (𝜑 → (0 < ((𝐶 · 𝐵) −ℝ (𝐶 · 𝐴)) ↔ 0 < (𝐵 −ℝ 𝐴))) |
12 | 1, 3 | remulcld 10936 | . . 3 ⊢ (𝜑 → (𝐶 · 𝐴) ∈ ℝ) |
13 | 1, 2 | remulcld 10936 | . . 3 ⊢ (𝜑 → (𝐶 · 𝐵) ∈ ℝ) |
14 | reposdif 40345 | . . 3 ⊢ (((𝐶 · 𝐴) ∈ ℝ ∧ (𝐶 · 𝐵) ∈ ℝ) → ((𝐶 · 𝐴) < (𝐶 · 𝐵) ↔ 0 < ((𝐶 · 𝐵) −ℝ (𝐶 · 𝐴)))) | |
15 | 12, 13, 14 | syl2anc 583 | . 2 ⊢ (𝜑 → ((𝐶 · 𝐴) < (𝐶 · 𝐵) ↔ 0 < ((𝐶 · 𝐵) −ℝ (𝐶 · 𝐴)))) |
16 | reposdif 40345 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵 −ℝ 𝐴))) | |
17 | 3, 2, 16 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵 −ℝ 𝐴))) |
18 | 11, 15, 17 | 3bitr4d 310 | 1 ⊢ (𝜑 → ((𝐶 · 𝐴) < (𝐶 · 𝐵) ↔ 𝐴 < 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 (class class class)co 7255 ℝcr 10801 0cc0 10802 · cmul 10807 < clt 10940 −ℝ cresub 40269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-2 11966 df-3 11967 df-resub 40270 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |