Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-ltmul2d Structured version   Visualization version   GIF version

Theorem sn-ltmul2d 40431
Description: ltmul2d 12814 without ax-mulcom 10935. (Contributed by SN, 26-Jun-2024.)
Hypotheses
Ref Expression
sn-ltmul2d.a (𝜑𝐴 ∈ ℝ)
sn-ltmul2d.b (𝜑𝐵 ∈ ℝ)
sn-ltmul2d.c (𝜑𝐶 ∈ ℝ)
sn-ltmul2d.1 (𝜑 → 0 < 𝐶)
Assertion
Ref Expression
sn-ltmul2d (𝜑 → ((𝐶 · 𝐴) < (𝐶 · 𝐵) ↔ 𝐴 < 𝐵))

Proof of Theorem sn-ltmul2d
StepHypRef Expression
1 sn-ltmul2d.c . . . 4 (𝜑𝐶 ∈ ℝ)
2 sn-ltmul2d.b . . . . 5 (𝜑𝐵 ∈ ℝ)
3 sn-ltmul2d.a . . . . 5 (𝜑𝐴 ∈ ℝ)
4 rersubcl 40361 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 𝐴) ∈ ℝ)
52, 3, 4syl2anc 584 . . . 4 (𝜑 → (𝐵 𝐴) ∈ ℝ)
6 sn-ltmul2d.1 . . . 4 (𝜑 → 0 < 𝐶)
71, 5, 6mulgt0b2d 40430 . . 3 (𝜑 → (0 < (𝐵 𝐴) ↔ 0 < (𝐶 · (𝐵 𝐴))))
8 resubdi 40379 . . . . 5 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐶 · (𝐵 𝐴)) = ((𝐶 · 𝐵) − (𝐶 · 𝐴)))
91, 2, 3, 8syl3anc 1370 . . . 4 (𝜑 → (𝐶 · (𝐵 𝐴)) = ((𝐶 · 𝐵) − (𝐶 · 𝐴)))
109breq2d 5086 . . 3 (𝜑 → (0 < (𝐶 · (𝐵 𝐴)) ↔ 0 < ((𝐶 · 𝐵) − (𝐶 · 𝐴))))
117, 10bitr2d 279 . 2 (𝜑 → (0 < ((𝐶 · 𝐵) − (𝐶 · 𝐴)) ↔ 0 < (𝐵 𝐴)))
121, 3remulcld 11005 . . 3 (𝜑 → (𝐶 · 𝐴) ∈ ℝ)
131, 2remulcld 11005 . . 3 (𝜑 → (𝐶 · 𝐵) ∈ ℝ)
14 reposdif 40424 . . 3 (((𝐶 · 𝐴) ∈ ℝ ∧ (𝐶 · 𝐵) ∈ ℝ) → ((𝐶 · 𝐴) < (𝐶 · 𝐵) ↔ 0 < ((𝐶 · 𝐵) − (𝐶 · 𝐴))))
1512, 13, 14syl2anc 584 . 2 (𝜑 → ((𝐶 · 𝐴) < (𝐶 · 𝐵) ↔ 0 < ((𝐶 · 𝐵) − (𝐶 · 𝐴))))
16 reposdif 40424 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵 𝐴)))
173, 2, 16syl2anc 584 . 2 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵 𝐴)))
1811, 15, 173bitr4d 311 1 (𝜑 → ((𝐶 · 𝐴) < (𝐶 · 𝐵) ↔ 𝐴 < 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2106   class class class wbr 5074  (class class class)co 7275  cr 10870  0cc0 10871   · cmul 10876   < clt 11009   cresub 40348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-ltxr 11014  df-2 12036  df-3 12037  df-resub 40349
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator