| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sn-ltmul2d | Structured version Visualization version GIF version | ||
| Description: ltmul2d 13037 without ax-mulcom 11132. (Contributed by SN, 26-Jun-2024.) |
| Ref | Expression |
|---|---|
| sn-ltmul2d.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| sn-ltmul2d.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| sn-ltmul2d.c | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| sn-ltmul2d.1 | ⊢ (𝜑 → 0 < 𝐶) |
| Ref | Expression |
|---|---|
| sn-ltmul2d | ⊢ (𝜑 → ((𝐶 · 𝐴) < (𝐶 · 𝐵) ↔ 𝐴 < 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sn-ltmul2d.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 2 | sn-ltmul2d.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | sn-ltmul2d.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 4 | rersubcl 42366 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 −ℝ 𝐴) ∈ ℝ) | |
| 5 | 2, 3, 4 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐵 −ℝ 𝐴) ∈ ℝ) |
| 6 | sn-ltmul2d.1 | . . . 4 ⊢ (𝜑 → 0 < 𝐶) | |
| 7 | 1, 5, 6 | mulgt0b1d 42460 | . . 3 ⊢ (𝜑 → (0 < (𝐵 −ℝ 𝐴) ↔ 0 < (𝐶 · (𝐵 −ℝ 𝐴)))) |
| 8 | resubdi 42384 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐶 · (𝐵 −ℝ 𝐴)) = ((𝐶 · 𝐵) −ℝ (𝐶 · 𝐴))) | |
| 9 | 1, 2, 3, 8 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝐶 · (𝐵 −ℝ 𝐴)) = ((𝐶 · 𝐵) −ℝ (𝐶 · 𝐴))) |
| 10 | 9 | breq2d 5119 | . . 3 ⊢ (𝜑 → (0 < (𝐶 · (𝐵 −ℝ 𝐴)) ↔ 0 < ((𝐶 · 𝐵) −ℝ (𝐶 · 𝐴)))) |
| 11 | 7, 10 | bitr2d 280 | . 2 ⊢ (𝜑 → (0 < ((𝐶 · 𝐵) −ℝ (𝐶 · 𝐴)) ↔ 0 < (𝐵 −ℝ 𝐴))) |
| 12 | 1, 3 | remulcld 11204 | . . 3 ⊢ (𝜑 → (𝐶 · 𝐴) ∈ ℝ) |
| 13 | 1, 2 | remulcld 11204 | . . 3 ⊢ (𝜑 → (𝐶 · 𝐵) ∈ ℝ) |
| 14 | reposdif 42443 | . . 3 ⊢ (((𝐶 · 𝐴) ∈ ℝ ∧ (𝐶 · 𝐵) ∈ ℝ) → ((𝐶 · 𝐴) < (𝐶 · 𝐵) ↔ 0 < ((𝐶 · 𝐵) −ℝ (𝐶 · 𝐴)))) | |
| 15 | 12, 13, 14 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝐶 · 𝐴) < (𝐶 · 𝐵) ↔ 0 < ((𝐶 · 𝐵) −ℝ (𝐶 · 𝐴)))) |
| 16 | reposdif 42443 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵 −ℝ 𝐴))) | |
| 17 | 3, 2, 16 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵 −ℝ 𝐴))) |
| 18 | 11, 15, 17 | 3bitr4d 311 | 1 ⊢ (𝜑 → ((𝐶 · 𝐴) < (𝐶 · 𝐵) ↔ 𝐴 < 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 (class class class)co 7387 ℝcr 11067 0cc0 11068 · cmul 11073 < clt 11208 −ℝ cresub 42353 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 df-2 12249 df-3 12250 df-resub 42354 |
| This theorem is referenced by: sn-ltmulgt11d 42462 |
| Copyright terms: Public domain | W3C validator |