Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2plordso Structured version   Visualization version   GIF version

Theorem rrx2plordso 48458
Description: The lexicographical ordering for points in the two dimensional Euclidean plane is a strict total ordering. (Contributed by AV, 12-Mar-2023.)
Hypotheses
Ref Expression
rrx2plord.o 𝑂 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑅𝑦𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))}
rrx2plord2.r 𝑅 = (ℝ ↑m {1, 2})
Assertion
Ref Expression
rrx2plordso 𝑂 Or 𝑅
Distinct variable group:   𝑥,𝑅,𝑦
Allowed substitution hints:   𝑂(𝑥,𝑦)

Proof of Theorem rrx2plordso
StepHypRef Expression
1 ltso 11370 . . 3 < Or ℝ
2 eqid 2740 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}
32soxp 8170 . . 3 (( < Or ℝ ∧ < Or ℝ) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))} Or (ℝ × ℝ))
41, 1, 3mp2an 691 . 2 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))} Or (ℝ × ℝ)
5 rrx2plord.o . . . 4 𝑂 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑅𝑦𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))}
6 rrx2plord2.r . . . 4 𝑅 = (ℝ ↑m {1, 2})
7 eqid 2740 . . . 4 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})
85, 6, 7, 2rrx2plordisom 48457 . . 3 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) Isom {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}, 𝑂((ℝ × ℝ), 𝑅)
9 isoso 7384 . . 3 ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) Isom {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}, 𝑂((ℝ × ℝ), 𝑅) → ({⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))} Or (ℝ × ℝ) ↔ 𝑂 Or 𝑅))
108, 9ax-mp 5 . 2 ({⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))} Or (ℝ × ℝ) ↔ 𝑂 Or 𝑅)
114, 10mpbi 230 1 𝑂 Or 𝑅
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  {cpr 4650  cop 4654   class class class wbr 5166  {copab 5228   Or wor 5606   × cxp 5698  cfv 6573   Isom wiso 6574  (class class class)co 7448  cmpo 7450  1st c1st 8028  2nd c2nd 8029  m cmap 8884  cr 11183  1c1 11185   < clt 11324  2c2 12348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-2 12356
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator