| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > acufl | Structured version Visualization version GIF version | ||
| Description: The axiom of choice implies the ultrafilter lemma. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| Ref | Expression |
|---|---|
| acufl | ⊢ (CHOICE → UFL = V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3461 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 2 | 1 | pwex 5348 | . . . . . 6 ⊢ 𝒫 𝑥 ∈ V |
| 3 | 2 | pwex 5348 | . . . . 5 ⊢ 𝒫 𝒫 𝑥 ∈ V |
| 4 | dfac10 10145 | . . . . . 6 ⊢ (CHOICE ↔ dom card = V) | |
| 5 | 4 | biimpi 216 | . . . . 5 ⊢ (CHOICE → dom card = V) |
| 6 | 3, 5 | eleqtrrid 2840 | . . . 4 ⊢ (CHOICE → 𝒫 𝒫 𝑥 ∈ dom card) |
| 7 | numufl 23840 | . . . 4 ⊢ (𝒫 𝒫 𝑥 ∈ dom card → 𝑥 ∈ UFL) | |
| 8 | 6, 7 | syl 17 | . . 3 ⊢ (CHOICE → 𝑥 ∈ UFL) |
| 9 | 1 | a1i 11 | . . 3 ⊢ (CHOICE → 𝑥 ∈ V) |
| 10 | 8, 9 | 2thd 265 | . 2 ⊢ (CHOICE → (𝑥 ∈ UFL ↔ 𝑥 ∈ V)) |
| 11 | 10 | eqrdv 2732 | 1 ⊢ (CHOICE → UFL = V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3457 𝒫 cpw 4573 dom cdm 5652 cardccrd 9942 CHOICEwac 10122 UFLcufl 23825 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-int 4921 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-se 5605 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-isom 6537 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-rpss 7712 df-om 7857 df-1st 7983 df-2nd 7984 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-1o 8475 df-2o 8476 df-oadd 8479 df-er 8714 df-en 8955 df-dom 8956 df-fin 8958 df-fi 9418 df-dju 9908 df-card 9946 df-ac 10123 df-fbas 21299 df-fg 21300 df-fil 23771 df-ufil 23826 df-ufl 23827 |
| This theorem is referenced by: ptcmp 23983 dfac21 43022 |
| Copyright terms: Public domain | W3C validator |