MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acufl Structured version   Visualization version   GIF version

Theorem acufl 23842
Description: The axiom of choice implies the ultrafilter lemma. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
acufl (CHOICE → UFL = V)

Proof of Theorem acufl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3461 . . . . . . 7 𝑥 ∈ V
21pwex 5348 . . . . . 6 𝒫 𝑥 ∈ V
32pwex 5348 . . . . 5 𝒫 𝒫 𝑥 ∈ V
4 dfac10 10145 . . . . . 6 (CHOICE ↔ dom card = V)
54biimpi 216 . . . . 5 (CHOICE → dom card = V)
63, 5eleqtrrid 2840 . . . 4 (CHOICE → 𝒫 𝒫 𝑥 ∈ dom card)
7 numufl 23840 . . . 4 (𝒫 𝒫 𝑥 ∈ dom card → 𝑥 ∈ UFL)
86, 7syl 17 . . 3 (CHOICE𝑥 ∈ UFL)
91a1i 11 . . 3 (CHOICE𝑥 ∈ V)
108, 92thd 265 . 2 (CHOICE → (𝑥 ∈ UFL ↔ 𝑥 ∈ V))
1110eqrdv 2732 1 (CHOICE → UFL = V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  Vcvv 3457  𝒫 cpw 4573  dom cdm 5652  cardccrd 9942  CHOICEwac 10122  UFLcufl 23825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-int 4921  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-se 5605  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-isom 6537  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-rpss 7712  df-om 7857  df-1st 7983  df-2nd 7984  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-1o 8475  df-2o 8476  df-oadd 8479  df-er 8714  df-en 8955  df-dom 8956  df-fin 8958  df-fi 9418  df-dju 9908  df-card 9946  df-ac 10123  df-fbas 21299  df-fg 21300  df-fil 23771  df-ufil 23826  df-ufl 23827
This theorem is referenced by:  ptcmp  23983  dfac21  43022
  Copyright terms: Public domain W3C validator