MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acufl Structured version   Visualization version   GIF version

Theorem acufl 22090
Description: The axiom of choice implies the ultrafilter lemma. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
acufl (CHOICE → UFL = V)

Proof of Theorem acufl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3416 . . . . . . 7 𝑥 ∈ V
21pwex 5079 . . . . . 6 𝒫 𝑥 ∈ V
32pwex 5079 . . . . 5 𝒫 𝒫 𝑥 ∈ V
4 dfac10 9273 . . . . . 6 (CHOICE ↔ dom card = V)
54biimpi 208 . . . . 5 (CHOICE → dom card = V)
63, 5syl5eleqr 2912 . . . 4 (CHOICE → 𝒫 𝒫 𝑥 ∈ dom card)
7 numufl 22088 . . . 4 (𝒫 𝒫 𝑥 ∈ dom card → 𝑥 ∈ UFL)
86, 7syl 17 . . 3 (CHOICE𝑥 ∈ UFL)
91a1i 11 . . 3 (CHOICE𝑥 ∈ V)
108, 92thd 257 . 2 (CHOICE → (𝑥 ∈ UFL ↔ 𝑥 ∈ V))
1110eqrdv 2822 1 (CHOICE → UFL = V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1658  wcel 2166  Vcvv 3413  𝒫 cpw 4377  dom cdm 5341  cardccrd 9073  CHOICEwac 9250  UFLcufl 22073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-rep 4993  ax-sep 5004  ax-nul 5012  ax-pow 5064  ax-pr 5126  ax-un 7208
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-nel 3102  df-ral 3121  df-rex 3122  df-reu 3123  df-rmo 3124  df-rab 3125  df-v 3415  df-sbc 3662  df-csb 3757  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-pss 3813  df-nul 4144  df-if 4306  df-pw 4379  df-sn 4397  df-pr 4399  df-tp 4401  df-op 4403  df-uni 4658  df-int 4697  df-iun 4741  df-br 4873  df-opab 4935  df-mpt 4952  df-tr 4975  df-id 5249  df-eprel 5254  df-po 5262  df-so 5263  df-fr 5300  df-se 5301  df-we 5302  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-rn 5352  df-res 5353  df-ima 5354  df-pred 5919  df-ord 5965  df-on 5966  df-lim 5967  df-suc 5968  df-iota 6085  df-fun 6124  df-fn 6125  df-f 6126  df-f1 6127  df-fo 6128  df-f1o 6129  df-fv 6130  df-isom 6131  df-riota 6865  df-ov 6907  df-oprab 6908  df-mpt2 6909  df-rpss 7196  df-om 7326  df-wrecs 7671  df-recs 7733  df-rdg 7771  df-1o 7825  df-oadd 7829  df-er 8008  df-en 8222  df-dom 8223  df-fin 8225  df-fi 8585  df-card 9077  df-ac 9251  df-cda 9304  df-fbas 20102  df-fg 20103  df-fil 22019  df-ufil 22074  df-ufl 22075
This theorem is referenced by:  ptcmp  22231  dfac21  38478
  Copyright terms: Public domain W3C validator