MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acufl Structured version   Visualization version   GIF version

Theorem acufl 23641
Description: The axiom of choice implies the ultrafilter lemma. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
acufl (CHOICE → UFL = V)

Proof of Theorem acufl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3476 . . . . . . 7 𝑥 ∈ V
21pwex 5377 . . . . . 6 𝒫 𝑥 ∈ V
32pwex 5377 . . . . 5 𝒫 𝒫 𝑥 ∈ V
4 dfac10 10134 . . . . . 6 (CHOICE ↔ dom card = V)
54biimpi 215 . . . . 5 (CHOICE → dom card = V)
63, 5eleqtrrid 2838 . . . 4 (CHOICE → 𝒫 𝒫 𝑥 ∈ dom card)
7 numufl 23639 . . . 4 (𝒫 𝒫 𝑥 ∈ dom card → 𝑥 ∈ UFL)
86, 7syl 17 . . 3 (CHOICE𝑥 ∈ UFL)
91a1i 11 . . 3 (CHOICE𝑥 ∈ V)
108, 92thd 264 . 2 (CHOICE → (𝑥 ∈ UFL ↔ 𝑥 ∈ V))
1110eqrdv 2728 1 (CHOICE → UFL = V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2104  Vcvv 3472  𝒫 cpw 4601  dom cdm 5675  cardccrd 9932  CHOICEwac 10112  UFLcufl 23624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-rpss 7715  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-oadd 8472  df-er 8705  df-en 8942  df-dom 8943  df-fin 8945  df-fi 9408  df-dju 9898  df-card 9936  df-ac 10113  df-fbas 21141  df-fg 21142  df-fil 23570  df-ufil 23625  df-ufl 23626
This theorem is referenced by:  ptcmp  23782  dfac21  42110
  Copyright terms: Public domain W3C validator