| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > submuladdmuld | Structured version Visualization version GIF version | ||
| Description: Transformation of a sum of a product of a difference and a product with the subtrahend of the difference. (Contributed by AV, 2-Feb-2023.) |
| Ref | Expression |
|---|---|
| submuladdmuld.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| submuladdmuld.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| submuladdmuld.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| submuladdmuld.d | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
| Ref | Expression |
|---|---|
| submuladdmuld | ⊢ (𝜑 → (((𝐴 − 𝐵) · 𝐶) + (𝐵 · 𝐷)) = ((𝐴 · 𝐶) + (𝐵 · (𝐷 − 𝐶)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | submuladdmuld.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | submuladdmuld.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | submuladdmuld.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | 1, 2, 3 | subdird 11702 | . . 3 ⊢ (𝜑 → ((𝐴 − 𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶))) |
| 5 | 4 | oveq1d 7428 | . 2 ⊢ (𝜑 → (((𝐴 − 𝐵) · 𝐶) + (𝐵 · 𝐷)) = (((𝐴 · 𝐶) − (𝐵 · 𝐶)) + (𝐵 · 𝐷))) |
| 6 | 1, 3 | mulcld 11263 | . . 3 ⊢ (𝜑 → (𝐴 · 𝐶) ∈ ℂ) |
| 7 | 2, 3 | mulcld 11263 | . . 3 ⊢ (𝜑 → (𝐵 · 𝐶) ∈ ℂ) |
| 8 | submuladdmuld.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
| 9 | 2, 8 | mulcld 11263 | . . 3 ⊢ (𝜑 → (𝐵 · 𝐷) ∈ ℂ) |
| 10 | 6, 7, 9 | subadd23d 11624 | . 2 ⊢ (𝜑 → (((𝐴 · 𝐶) − (𝐵 · 𝐶)) + (𝐵 · 𝐷)) = ((𝐴 · 𝐶) + ((𝐵 · 𝐷) − (𝐵 · 𝐶)))) |
| 11 | 2, 8, 3 | subdid 11701 | . . . 4 ⊢ (𝜑 → (𝐵 · (𝐷 − 𝐶)) = ((𝐵 · 𝐷) − (𝐵 · 𝐶))) |
| 12 | 11 | eqcomd 2740 | . . 3 ⊢ (𝜑 → ((𝐵 · 𝐷) − (𝐵 · 𝐶)) = (𝐵 · (𝐷 − 𝐶))) |
| 13 | 12 | oveq2d 7429 | . 2 ⊢ (𝜑 → ((𝐴 · 𝐶) + ((𝐵 · 𝐷) − (𝐵 · 𝐶))) = ((𝐴 · 𝐶) + (𝐵 · (𝐷 − 𝐶)))) |
| 14 | 5, 10, 13 | 3eqtrd 2773 | 1 ⊢ (𝜑 → (((𝐴 − 𝐵) · 𝐶) + (𝐵 · 𝐷)) = ((𝐴 · 𝐶) + (𝐵 · (𝐷 − 𝐶)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 (class class class)co 7413 ℂcc 11135 + caddc 11140 · cmul 11142 − cmin 11474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-po 5572 df-so 5573 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-ltxr 11282 df-sub 11476 |
| This theorem is referenced by: rrx2vlinest 48620 |
| Copyright terms: Public domain | W3C validator |