Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > submuladdmuld | Structured version Visualization version GIF version |
Description: Transformation of a sum of a product of a difference and a product with the subtrahend of the difference. (Contributed by AV, 2-Feb-2023.) |
Ref | Expression |
---|---|
submuladdmuld.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
submuladdmuld.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
submuladdmuld.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
submuladdmuld.d | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
Ref | Expression |
---|---|
submuladdmuld | ⊢ (𝜑 → (((𝐴 − 𝐵) · 𝐶) + (𝐵 · 𝐷)) = ((𝐴 · 𝐶) + (𝐵 · (𝐷 − 𝐶)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | submuladdmuld.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | submuladdmuld.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | submuladdmuld.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | 1, 2, 3 | subdird 11512 | . . 3 ⊢ (𝜑 → ((𝐴 − 𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶))) |
5 | 4 | oveq1d 7332 | . 2 ⊢ (𝜑 → (((𝐴 − 𝐵) · 𝐶) + (𝐵 · 𝐷)) = (((𝐴 · 𝐶) − (𝐵 · 𝐶)) + (𝐵 · 𝐷))) |
6 | 1, 3 | mulcld 11075 | . . 3 ⊢ (𝜑 → (𝐴 · 𝐶) ∈ ℂ) |
7 | 2, 3 | mulcld 11075 | . . 3 ⊢ (𝜑 → (𝐵 · 𝐶) ∈ ℂ) |
8 | submuladdmuld.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
9 | 2, 8 | mulcld 11075 | . . 3 ⊢ (𝜑 → (𝐵 · 𝐷) ∈ ℂ) |
10 | 6, 7, 9 | subadd23d 11434 | . 2 ⊢ (𝜑 → (((𝐴 · 𝐶) − (𝐵 · 𝐶)) + (𝐵 · 𝐷)) = ((𝐴 · 𝐶) + ((𝐵 · 𝐷) − (𝐵 · 𝐶)))) |
11 | 2, 8, 3 | subdid 11511 | . . . 4 ⊢ (𝜑 → (𝐵 · (𝐷 − 𝐶)) = ((𝐵 · 𝐷) − (𝐵 · 𝐶))) |
12 | 11 | eqcomd 2743 | . . 3 ⊢ (𝜑 → ((𝐵 · 𝐷) − (𝐵 · 𝐶)) = (𝐵 · (𝐷 − 𝐶))) |
13 | 12 | oveq2d 7333 | . 2 ⊢ (𝜑 → ((𝐴 · 𝐶) + ((𝐵 · 𝐷) − (𝐵 · 𝐶))) = ((𝐴 · 𝐶) + (𝐵 · (𝐷 − 𝐶)))) |
14 | 5, 10, 13 | 3eqtrd 2781 | 1 ⊢ (𝜑 → (((𝐴 − 𝐵) · 𝐶) + (𝐵 · 𝐷)) = ((𝐴 · 𝐶) + (𝐵 · (𝐷 − 𝐶)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 (class class class)co 7317 ℂcc 10949 + caddc 10954 · cmul 10956 − cmin 11285 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-resscn 11008 ax-1cn 11009 ax-icn 11010 ax-addcl 11011 ax-addrcl 11012 ax-mulcl 11013 ax-mulrcl 11014 ax-mulcom 11015 ax-addass 11016 ax-mulass 11017 ax-distr 11018 ax-i2m1 11019 ax-1ne0 11020 ax-1rid 11021 ax-rnegex 11022 ax-rrecex 11023 ax-cnre 11024 ax-pre-lttri 11025 ax-pre-lttrn 11026 ax-pre-ltadd 11027 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-po 5521 df-so 5522 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-riota 7274 df-ov 7320 df-oprab 7321 df-mpo 7322 df-er 8548 df-en 8784 df-dom 8785 df-sdom 8786 df-pnf 11091 df-mnf 11092 df-ltxr 11094 df-sub 11287 |
This theorem is referenced by: rrx2vlinest 46352 |
Copyright terms: Public domain | W3C validator |