![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > submuladdmuld | Structured version Visualization version GIF version |
Description: Transformation of a sum of a product of a difference and a product with the subtrahend of the difference. (Contributed by AV, 2-Feb-2023.) |
Ref | Expression |
---|---|
submuladdmuld.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
submuladdmuld.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
submuladdmuld.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
submuladdmuld.d | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
Ref | Expression |
---|---|
submuladdmuld | ⊢ (𝜑 → (((𝐴 − 𝐵) · 𝐶) + (𝐵 · 𝐷)) = ((𝐴 · 𝐶) + (𝐵 · (𝐷 − 𝐶)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | submuladdmuld.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | submuladdmuld.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | submuladdmuld.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | 1, 2, 3 | subdird 11712 | . . 3 ⊢ (𝜑 → ((𝐴 − 𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶))) |
5 | 4 | oveq1d 7431 | . 2 ⊢ (𝜑 → (((𝐴 − 𝐵) · 𝐶) + (𝐵 · 𝐷)) = (((𝐴 · 𝐶) − (𝐵 · 𝐶)) + (𝐵 · 𝐷))) |
6 | 1, 3 | mulcld 11275 | . . 3 ⊢ (𝜑 → (𝐴 · 𝐶) ∈ ℂ) |
7 | 2, 3 | mulcld 11275 | . . 3 ⊢ (𝜑 → (𝐵 · 𝐶) ∈ ℂ) |
8 | submuladdmuld.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
9 | 2, 8 | mulcld 11275 | . . 3 ⊢ (𝜑 → (𝐵 · 𝐷) ∈ ℂ) |
10 | 6, 7, 9 | subadd23d 11634 | . 2 ⊢ (𝜑 → (((𝐴 · 𝐶) − (𝐵 · 𝐶)) + (𝐵 · 𝐷)) = ((𝐴 · 𝐶) + ((𝐵 · 𝐷) − (𝐵 · 𝐶)))) |
11 | 2, 8, 3 | subdid 11711 | . . . 4 ⊢ (𝜑 → (𝐵 · (𝐷 − 𝐶)) = ((𝐵 · 𝐷) − (𝐵 · 𝐶))) |
12 | 11 | eqcomd 2732 | . . 3 ⊢ (𝜑 → ((𝐵 · 𝐷) − (𝐵 · 𝐶)) = (𝐵 · (𝐷 − 𝐶))) |
13 | 12 | oveq2d 7432 | . 2 ⊢ (𝜑 → ((𝐴 · 𝐶) + ((𝐵 · 𝐷) − (𝐵 · 𝐶))) = ((𝐴 · 𝐶) + (𝐵 · (𝐷 − 𝐶)))) |
14 | 5, 10, 13 | 3eqtrd 2770 | 1 ⊢ (𝜑 → (((𝐴 − 𝐵) · 𝐶) + (𝐵 · 𝐷)) = ((𝐴 · 𝐶) + (𝐵 · (𝐷 − 𝐶)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 (class class class)co 7416 ℂcc 11147 + caddc 11152 · cmul 11154 − cmin 11485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-po 5586 df-so 5587 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-pnf 11291 df-mnf 11292 df-ltxr 11294 df-sub 11487 |
This theorem is referenced by: rrx2vlinest 48165 |
Copyright terms: Public domain | W3C validator |