![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > submuladdmuld | Structured version Visualization version GIF version |
Description: Transformation of a sum of a product of a difference and a product with the subtrahend of the difference. (Contributed by AV, 2-Feb-2023.) |
Ref | Expression |
---|---|
submuladdmuld.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
submuladdmuld.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
submuladdmuld.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
submuladdmuld.d | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
Ref | Expression |
---|---|
submuladdmuld | ⊢ (𝜑 → (((𝐴 − 𝐵) · 𝐶) + (𝐵 · 𝐷)) = ((𝐴 · 𝐶) + (𝐵 · (𝐷 − 𝐶)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | submuladdmuld.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | submuladdmuld.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | submuladdmuld.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | 1, 2, 3 | subdird 11727 | . . 3 ⊢ (𝜑 → ((𝐴 − 𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶))) |
5 | 4 | oveq1d 7453 | . 2 ⊢ (𝜑 → (((𝐴 − 𝐵) · 𝐶) + (𝐵 · 𝐷)) = (((𝐴 · 𝐶) − (𝐵 · 𝐶)) + (𝐵 · 𝐷))) |
6 | 1, 3 | mulcld 11288 | . . 3 ⊢ (𝜑 → (𝐴 · 𝐶) ∈ ℂ) |
7 | 2, 3 | mulcld 11288 | . . 3 ⊢ (𝜑 → (𝐵 · 𝐶) ∈ ℂ) |
8 | submuladdmuld.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
9 | 2, 8 | mulcld 11288 | . . 3 ⊢ (𝜑 → (𝐵 · 𝐷) ∈ ℂ) |
10 | 6, 7, 9 | subadd23d 11649 | . 2 ⊢ (𝜑 → (((𝐴 · 𝐶) − (𝐵 · 𝐶)) + (𝐵 · 𝐷)) = ((𝐴 · 𝐶) + ((𝐵 · 𝐷) − (𝐵 · 𝐶)))) |
11 | 2, 8, 3 | subdid 11726 | . . . 4 ⊢ (𝜑 → (𝐵 · (𝐷 − 𝐶)) = ((𝐵 · 𝐷) − (𝐵 · 𝐶))) |
12 | 11 | eqcomd 2743 | . . 3 ⊢ (𝜑 → ((𝐵 · 𝐷) − (𝐵 · 𝐶)) = (𝐵 · (𝐷 − 𝐶))) |
13 | 12 | oveq2d 7454 | . 2 ⊢ (𝜑 → ((𝐴 · 𝐶) + ((𝐵 · 𝐷) − (𝐵 · 𝐶))) = ((𝐴 · 𝐶) + (𝐵 · (𝐷 − 𝐶)))) |
14 | 5, 10, 13 | 3eqtrd 2781 | 1 ⊢ (𝜑 → (((𝐴 − 𝐵) · 𝐶) + (𝐵 · 𝐷)) = ((𝐴 · 𝐶) + (𝐵 · (𝐷 − 𝐶)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 (class class class)co 7438 ℂcc 11160 + caddc 11165 · cmul 11167 − cmin 11499 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-po 5601 df-so 5602 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-er 8753 df-en 8994 df-dom 8995 df-sdom 8996 df-pnf 11304 df-mnf 11305 df-ltxr 11307 df-sub 11501 |
This theorem is referenced by: rrx2vlinest 48629 |
Copyright terms: Public domain | W3C validator |