![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subsubrng2 | Structured version Visualization version GIF version |
Description: The set of subrings of a subring are the smaller subrings. (Contributed by AV, 15-Feb-2025.) |
Ref | Expression |
---|---|
subsubrng.s | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
Ref | Expression |
---|---|
subsubrng2 | ⊢ (𝐴 ∈ (SubRng‘𝑅) → (SubRng‘𝑆) = ((SubRng‘𝑅) ∩ 𝒫 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subsubrng.s | . . . 4 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
2 | 1 | subsubrng 20504 | . . 3 ⊢ (𝐴 ∈ (SubRng‘𝑅) → (𝑎 ∈ (SubRng‘𝑆) ↔ (𝑎 ∈ (SubRng‘𝑅) ∧ 𝑎 ⊆ 𝐴))) |
3 | elin 3955 | . . . 4 ⊢ (𝑎 ∈ ((SubRng‘𝑅) ∩ 𝒫 𝐴) ↔ (𝑎 ∈ (SubRng‘𝑅) ∧ 𝑎 ∈ 𝒫 𝐴)) | |
4 | velpw 4603 | . . . . 5 ⊢ (𝑎 ∈ 𝒫 𝐴 ↔ 𝑎 ⊆ 𝐴) | |
5 | 4 | anbi2i 621 | . . . 4 ⊢ ((𝑎 ∈ (SubRng‘𝑅) ∧ 𝑎 ∈ 𝒫 𝐴) ↔ (𝑎 ∈ (SubRng‘𝑅) ∧ 𝑎 ⊆ 𝐴)) |
6 | 3, 5 | bitr2i 275 | . . 3 ⊢ ((𝑎 ∈ (SubRng‘𝑅) ∧ 𝑎 ⊆ 𝐴) ↔ 𝑎 ∈ ((SubRng‘𝑅) ∩ 𝒫 𝐴)) |
7 | 2, 6 | bitrdi 286 | . 2 ⊢ (𝐴 ∈ (SubRng‘𝑅) → (𝑎 ∈ (SubRng‘𝑆) ↔ 𝑎 ∈ ((SubRng‘𝑅) ∩ 𝒫 𝐴))) |
8 | 7 | eqrdv 2723 | 1 ⊢ (𝐴 ∈ (SubRng‘𝑅) → (SubRng‘𝑆) = ((SubRng‘𝑅) ∩ 𝒫 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∩ cin 3938 ⊆ wss 3939 𝒫 cpw 4598 ‘cfv 6543 (class class class)co 7416 ↾s cress 17208 SubRngcsubrng 20486 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-cnex 11194 ax-1cn 11196 ax-addcl 11198 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3959 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-2nd 7992 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-nn 12243 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-ress 17209 df-subg 19082 df-abl 19742 df-rng 20097 df-subrng 20487 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |