MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsubrng2 Structured version   Visualization version   GIF version

Theorem subsubrng2 20480
Description: The set of subrings of a subring are the smaller subrings. (Contributed by AV, 15-Feb-2025.)
Hypothesis
Ref Expression
subsubrng.s 𝑆 = (𝑅s 𝐴)
Assertion
Ref Expression
subsubrng2 (𝐴 ∈ (SubRng‘𝑅) → (SubRng‘𝑆) = ((SubRng‘𝑅) ∩ 𝒫 𝐴))

Proof of Theorem subsubrng2
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 subsubrng.s . . . 4 𝑆 = (𝑅s 𝐴)
21subsubrng 20479 . . 3 (𝐴 ∈ (SubRng‘𝑅) → (𝑎 ∈ (SubRng‘𝑆) ↔ (𝑎 ∈ (SubRng‘𝑅) ∧ 𝑎𝐴)))
3 elin 3933 . . . 4 (𝑎 ∈ ((SubRng‘𝑅) ∩ 𝒫 𝐴) ↔ (𝑎 ∈ (SubRng‘𝑅) ∧ 𝑎 ∈ 𝒫 𝐴))
4 velpw 4571 . . . . 5 (𝑎 ∈ 𝒫 𝐴𝑎𝐴)
54anbi2i 623 . . . 4 ((𝑎 ∈ (SubRng‘𝑅) ∧ 𝑎 ∈ 𝒫 𝐴) ↔ (𝑎 ∈ (SubRng‘𝑅) ∧ 𝑎𝐴))
63, 5bitr2i 276 . . 3 ((𝑎 ∈ (SubRng‘𝑅) ∧ 𝑎𝐴) ↔ 𝑎 ∈ ((SubRng‘𝑅) ∩ 𝒫 𝐴))
72, 6bitrdi 287 . 2 (𝐴 ∈ (SubRng‘𝑅) → (𝑎 ∈ (SubRng‘𝑆) ↔ 𝑎 ∈ ((SubRng‘𝑅) ∩ 𝒫 𝐴)))
87eqrdv 2728 1 (𝐴 ∈ (SubRng‘𝑅) → (SubRng‘𝑆) = ((SubRng‘𝑅) ∩ 𝒫 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cin 3916  wss 3917  𝒫 cpw 4566  cfv 6514  (class class class)co 7390  s cress 17207  SubRngcsubrng 20461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-1cn 11133  ax-addcl 11135
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-nn 12194  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-subg 19062  df-abl 19720  df-rng 20069  df-subrng 20462
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator