MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsubrng2 Structured version   Visualization version   GIF version

Theorem subsubrng2 20529
Description: The set of subrings of a subring are the smaller subrings. (Contributed by AV, 15-Feb-2025.)
Hypothesis
Ref Expression
subsubrng.s 𝑆 = (𝑅s 𝐴)
Assertion
Ref Expression
subsubrng2 (𝐴 ∈ (SubRng‘𝑅) → (SubRng‘𝑆) = ((SubRng‘𝑅) ∩ 𝒫 𝐴))

Proof of Theorem subsubrng2
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 subsubrng.s . . . 4 𝑆 = (𝑅s 𝐴)
21subsubrng 20528 . . 3 (𝐴 ∈ (SubRng‘𝑅) → (𝑎 ∈ (SubRng‘𝑆) ↔ (𝑎 ∈ (SubRng‘𝑅) ∧ 𝑎𝐴)))
3 elin 3947 . . . 4 (𝑎 ∈ ((SubRng‘𝑅) ∩ 𝒫 𝐴) ↔ (𝑎 ∈ (SubRng‘𝑅) ∧ 𝑎 ∈ 𝒫 𝐴))
4 velpw 4585 . . . . 5 (𝑎 ∈ 𝒫 𝐴𝑎𝐴)
54anbi2i 623 . . . 4 ((𝑎 ∈ (SubRng‘𝑅) ∧ 𝑎 ∈ 𝒫 𝐴) ↔ (𝑎 ∈ (SubRng‘𝑅) ∧ 𝑎𝐴))
63, 5bitr2i 276 . . 3 ((𝑎 ∈ (SubRng‘𝑅) ∧ 𝑎𝐴) ↔ 𝑎 ∈ ((SubRng‘𝑅) ∩ 𝒫 𝐴))
72, 6bitrdi 287 . 2 (𝐴 ∈ (SubRng‘𝑅) → (𝑎 ∈ (SubRng‘𝑆) ↔ 𝑎 ∈ ((SubRng‘𝑅) ∩ 𝒫 𝐴)))
87eqrdv 2734 1 (𝐴 ∈ (SubRng‘𝑅) → (SubRng‘𝑆) = ((SubRng‘𝑅) ∩ 𝒫 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cin 3930  wss 3931  𝒫 cpw 4580  cfv 6536  (class class class)co 7410  s cress 17256  SubRngcsubrng 20510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-1cn 11192  ax-addcl 11194
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-nn 12246  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-subg 19111  df-abl 19769  df-rng 20118  df-subrng 20511
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator