Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lkrscss | Structured version Visualization version GIF version |
Description: The kernel of a scalar product of a functional includes the kernel of the functional. (The inclusion is proper for the zero product and equality otherwise.) (Contributed by NM, 9-Oct-2014.) |
Ref | Expression |
---|---|
lkrsc.v | ⊢ 𝑉 = (Base‘𝑊) |
lkrsc.d | ⊢ 𝐷 = (Scalar‘𝑊) |
lkrsc.k | ⊢ 𝐾 = (Base‘𝐷) |
lkrsc.t | ⊢ · = (.r‘𝐷) |
lkrsc.f | ⊢ 𝐹 = (LFnl‘𝑊) |
lkrsc.l | ⊢ 𝐿 = (LKer‘𝑊) |
lkrsc.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lkrsc.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
lkrsc.r | ⊢ (𝜑 → 𝑅 ∈ 𝐾) |
Ref | Expression |
---|---|
lkrscss | ⊢ (𝜑 → (𝐿‘𝐺) ⊆ (𝐿‘(𝐺 ∘f · (𝑉 × {𝑅})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lkrsc.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
2 | lkrsc.f | . . . . . 6 ⊢ 𝐹 = (LFnl‘𝑊) | |
3 | lkrsc.l | . . . . . 6 ⊢ 𝐿 = (LKer‘𝑊) | |
4 | lkrsc.w | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
5 | lveclmod 19946 | . . . . . . 7 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
6 | 4, 5 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LMod) |
7 | lkrsc.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
8 | 1, 2, 3, 6, 7 | lkrssv 36672 | . . . . 5 ⊢ (𝜑 → (𝐿‘𝐺) ⊆ 𝑉) |
9 | lkrsc.d | . . . . . . . 8 ⊢ 𝐷 = (Scalar‘𝑊) | |
10 | lkrsc.k | . . . . . . . 8 ⊢ 𝐾 = (Base‘𝐷) | |
11 | lkrsc.t | . . . . . . . 8 ⊢ · = (.r‘𝐷) | |
12 | eqid 2758 | . . . . . . . 8 ⊢ (0g‘𝐷) = (0g‘𝐷) | |
13 | 1, 9, 2, 10, 11, 12, 6, 7 | lfl0sc 36658 | . . . . . . 7 ⊢ (𝜑 → (𝐺 ∘f · (𝑉 × {(0g‘𝐷)})) = (𝑉 × {(0g‘𝐷)})) |
14 | 13 | fveq2d 6662 | . . . . . 6 ⊢ (𝜑 → (𝐿‘(𝐺 ∘f · (𝑉 × {(0g‘𝐷)}))) = (𝐿‘(𝑉 × {(0g‘𝐷)}))) |
15 | eqid 2758 | . . . . . . 7 ⊢ (𝑉 × {(0g‘𝐷)}) = (𝑉 × {(0g‘𝐷)}) | |
16 | 9, 12, 1, 2 | lfl0f 36645 | . . . . . . . 8 ⊢ (𝑊 ∈ LMod → (𝑉 × {(0g‘𝐷)}) ∈ 𝐹) |
17 | 9, 12, 1, 2, 3 | lkr0f 36670 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ (𝑉 × {(0g‘𝐷)}) ∈ 𝐹) → ((𝐿‘(𝑉 × {(0g‘𝐷)})) = 𝑉 ↔ (𝑉 × {(0g‘𝐷)}) = (𝑉 × {(0g‘𝐷)}))) |
18 | 6, 16, 17 | syl2anc2 588 | . . . . . . 7 ⊢ (𝜑 → ((𝐿‘(𝑉 × {(0g‘𝐷)})) = 𝑉 ↔ (𝑉 × {(0g‘𝐷)}) = (𝑉 × {(0g‘𝐷)}))) |
19 | 15, 18 | mpbiri 261 | . . . . . 6 ⊢ (𝜑 → (𝐿‘(𝑉 × {(0g‘𝐷)})) = 𝑉) |
20 | 14, 19 | eqtr2d 2794 | . . . . 5 ⊢ (𝜑 → 𝑉 = (𝐿‘(𝐺 ∘f · (𝑉 × {(0g‘𝐷)})))) |
21 | 8, 20 | sseqtrd 3932 | . . . 4 ⊢ (𝜑 → (𝐿‘𝐺) ⊆ (𝐿‘(𝐺 ∘f · (𝑉 × {(0g‘𝐷)})))) |
22 | 21 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑅 = (0g‘𝐷)) → (𝐿‘𝐺) ⊆ (𝐿‘(𝐺 ∘f · (𝑉 × {(0g‘𝐷)})))) |
23 | sneq 4532 | . . . . . . 7 ⊢ (𝑅 = (0g‘𝐷) → {𝑅} = {(0g‘𝐷)}) | |
24 | 23 | xpeq2d 5554 | . . . . . 6 ⊢ (𝑅 = (0g‘𝐷) → (𝑉 × {𝑅}) = (𝑉 × {(0g‘𝐷)})) |
25 | 24 | oveq2d 7166 | . . . . 5 ⊢ (𝑅 = (0g‘𝐷) → (𝐺 ∘f · (𝑉 × {𝑅})) = (𝐺 ∘f · (𝑉 × {(0g‘𝐷)}))) |
26 | 25 | fveq2d 6662 | . . . 4 ⊢ (𝑅 = (0g‘𝐷) → (𝐿‘(𝐺 ∘f · (𝑉 × {𝑅}))) = (𝐿‘(𝐺 ∘f · (𝑉 × {(0g‘𝐷)})))) |
27 | 26 | adantl 485 | . . 3 ⊢ ((𝜑 ∧ 𝑅 = (0g‘𝐷)) → (𝐿‘(𝐺 ∘f · (𝑉 × {𝑅}))) = (𝐿‘(𝐺 ∘f · (𝑉 × {(0g‘𝐷)})))) |
28 | 22, 27 | sseqtrrd 3933 | . 2 ⊢ ((𝜑 ∧ 𝑅 = (0g‘𝐷)) → (𝐿‘𝐺) ⊆ (𝐿‘(𝐺 ∘f · (𝑉 × {𝑅})))) |
29 | 4 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑅 ≠ (0g‘𝐷)) → 𝑊 ∈ LVec) |
30 | 7 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑅 ≠ (0g‘𝐷)) → 𝐺 ∈ 𝐹) |
31 | lkrsc.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ 𝐾) | |
32 | 31 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑅 ≠ (0g‘𝐷)) → 𝑅 ∈ 𝐾) |
33 | simpr 488 | . . . 4 ⊢ ((𝜑 ∧ 𝑅 ≠ (0g‘𝐷)) → 𝑅 ≠ (0g‘𝐷)) | |
34 | 1, 9, 10, 11, 2, 3, 29, 30, 32, 12, 33 | lkrsc 36673 | . . 3 ⊢ ((𝜑 ∧ 𝑅 ≠ (0g‘𝐷)) → (𝐿‘(𝐺 ∘f · (𝑉 × {𝑅}))) = (𝐿‘𝐺)) |
35 | eqimss2 3949 | . . 3 ⊢ ((𝐿‘(𝐺 ∘f · (𝑉 × {𝑅}))) = (𝐿‘𝐺) → (𝐿‘𝐺) ⊆ (𝐿‘(𝐺 ∘f · (𝑉 × {𝑅})))) | |
36 | 34, 35 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝑅 ≠ (0g‘𝐷)) → (𝐿‘𝐺) ⊆ (𝐿‘(𝐺 ∘f · (𝑉 × {𝑅})))) |
37 | 28, 36 | pm2.61dane 3038 | 1 ⊢ (𝜑 → (𝐿‘𝐺) ⊆ (𝐿‘(𝐺 ∘f · (𝑉 × {𝑅})))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ⊆ wss 3858 {csn 4522 × cxp 5522 ‘cfv 6335 (class class class)co 7150 ∘f cof 7403 Basecbs 16541 .rcmulr 16624 Scalarcsca 16626 0gc0g 16771 LModclmod 19702 LVecclvec 19942 LFnlclfn 36633 LKerclk 36661 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-of 7405 df-om 7580 df-1st 7693 df-2nd 7694 df-tpos 7902 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-er 8299 df-map 8418 df-en 8528 df-dom 8529 df-sdom 8530 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-2 11737 df-3 11738 df-ndx 16544 df-slot 16545 df-base 16547 df-sets 16548 df-ress 16549 df-plusg 16636 df-mulr 16637 df-0g 16773 df-mgm 17918 df-sgrp 17967 df-mnd 17978 df-grp 18172 df-minusg 18173 df-sbg 18174 df-mgp 19308 df-ur 19320 df-ring 19367 df-oppr 19444 df-dvdsr 19462 df-unit 19463 df-invr 19493 df-drng 19572 df-lmod 19704 df-lss 19772 df-lvec 19943 df-lfl 36634 df-lkr 36662 |
This theorem is referenced by: lfl1dim 36697 lfl1dim2N 36698 lkrss 36744 |
Copyright terms: Public domain | W3C validator |