Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrscss Structured version   Visualization version   GIF version

Theorem lkrscss 39143
Description: The kernel of a scalar product of a functional includes the kernel of the functional. (The inclusion is proper for the zero product and equality otherwise.) (Contributed by NM, 9-Oct-2014.)
Hypotheses
Ref Expression
lkrsc.v 𝑉 = (Base‘𝑊)
lkrsc.d 𝐷 = (Scalar‘𝑊)
lkrsc.k 𝐾 = (Base‘𝐷)
lkrsc.t · = (.r𝐷)
lkrsc.f 𝐹 = (LFnl‘𝑊)
lkrsc.l 𝐿 = (LKer‘𝑊)
lkrsc.w (𝜑𝑊 ∈ LVec)
lkrsc.g (𝜑𝐺𝐹)
lkrsc.r (𝜑𝑅𝐾)
Assertion
Ref Expression
lkrscss (𝜑 → (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {𝑅}))))

Proof of Theorem lkrscss
StepHypRef Expression
1 lkrsc.v . . . . . 6 𝑉 = (Base‘𝑊)
2 lkrsc.f . . . . . 6 𝐹 = (LFnl‘𝑊)
3 lkrsc.l . . . . . 6 𝐿 = (LKer‘𝑊)
4 lkrsc.w . . . . . . 7 (𝜑𝑊 ∈ LVec)
5 lveclmod 21041 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
64, 5syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
7 lkrsc.g . . . . . 6 (𝜑𝐺𝐹)
81, 2, 3, 6, 7lkrssv 39141 . . . . 5 (𝜑 → (𝐿𝐺) ⊆ 𝑉)
9 lkrsc.d . . . . . . . 8 𝐷 = (Scalar‘𝑊)
10 lkrsc.k . . . . . . . 8 𝐾 = (Base‘𝐷)
11 lkrsc.t . . . . . . . 8 · = (.r𝐷)
12 eqid 2731 . . . . . . . 8 (0g𝐷) = (0g𝐷)
131, 9, 2, 10, 11, 12, 6, 7lfl0sc 39127 . . . . . . 7 (𝜑 → (𝐺f · (𝑉 × {(0g𝐷)})) = (𝑉 × {(0g𝐷)}))
1413fveq2d 6826 . . . . . 6 (𝜑 → (𝐿‘(𝐺f · (𝑉 × {(0g𝐷)}))) = (𝐿‘(𝑉 × {(0g𝐷)})))
15 eqid 2731 . . . . . . 7 (𝑉 × {(0g𝐷)}) = (𝑉 × {(0g𝐷)})
169, 12, 1, 2lfl0f 39114 . . . . . . . 8 (𝑊 ∈ LMod → (𝑉 × {(0g𝐷)}) ∈ 𝐹)
179, 12, 1, 2, 3lkr0f 39139 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑉 × {(0g𝐷)}) ∈ 𝐹) → ((𝐿‘(𝑉 × {(0g𝐷)})) = 𝑉 ↔ (𝑉 × {(0g𝐷)}) = (𝑉 × {(0g𝐷)})))
186, 16, 17syl2anc2 585 . . . . . . 7 (𝜑 → ((𝐿‘(𝑉 × {(0g𝐷)})) = 𝑉 ↔ (𝑉 × {(0g𝐷)}) = (𝑉 × {(0g𝐷)})))
1915, 18mpbiri 258 . . . . . 6 (𝜑 → (𝐿‘(𝑉 × {(0g𝐷)})) = 𝑉)
2014, 19eqtr2d 2767 . . . . 5 (𝜑𝑉 = (𝐿‘(𝐺f · (𝑉 × {(0g𝐷)}))))
218, 20sseqtrd 3971 . . . 4 (𝜑 → (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {(0g𝐷)}))))
2221adantr 480 . . 3 ((𝜑𝑅 = (0g𝐷)) → (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {(0g𝐷)}))))
23 sneq 4586 . . . . . . 7 (𝑅 = (0g𝐷) → {𝑅} = {(0g𝐷)})
2423xpeq2d 5646 . . . . . 6 (𝑅 = (0g𝐷) → (𝑉 × {𝑅}) = (𝑉 × {(0g𝐷)}))
2524oveq2d 7362 . . . . 5 (𝑅 = (0g𝐷) → (𝐺f · (𝑉 × {𝑅})) = (𝐺f · (𝑉 × {(0g𝐷)})))
2625fveq2d 6826 . . . 4 (𝑅 = (0g𝐷) → (𝐿‘(𝐺f · (𝑉 × {𝑅}))) = (𝐿‘(𝐺f · (𝑉 × {(0g𝐷)}))))
2726adantl 481 . . 3 ((𝜑𝑅 = (0g𝐷)) → (𝐿‘(𝐺f · (𝑉 × {𝑅}))) = (𝐿‘(𝐺f · (𝑉 × {(0g𝐷)}))))
2822, 27sseqtrrd 3972 . 2 ((𝜑𝑅 = (0g𝐷)) → (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {𝑅}))))
294adantr 480 . . . 4 ((𝜑𝑅 ≠ (0g𝐷)) → 𝑊 ∈ LVec)
307adantr 480 . . . 4 ((𝜑𝑅 ≠ (0g𝐷)) → 𝐺𝐹)
31 lkrsc.r . . . . 5 (𝜑𝑅𝐾)
3231adantr 480 . . . 4 ((𝜑𝑅 ≠ (0g𝐷)) → 𝑅𝐾)
33 simpr 484 . . . 4 ((𝜑𝑅 ≠ (0g𝐷)) → 𝑅 ≠ (0g𝐷))
341, 9, 10, 11, 2, 3, 29, 30, 32, 12, 33lkrsc 39142 . . 3 ((𝜑𝑅 ≠ (0g𝐷)) → (𝐿‘(𝐺f · (𝑉 × {𝑅}))) = (𝐿𝐺))
35 eqimss2 3994 . . 3 ((𝐿‘(𝐺f · (𝑉 × {𝑅}))) = (𝐿𝐺) → (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {𝑅}))))
3634, 35syl 17 . 2 ((𝜑𝑅 ≠ (0g𝐷)) → (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {𝑅}))))
3728, 36pm2.61dane 3015 1 (𝜑 → (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {𝑅}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wss 3902  {csn 4576   × cxp 5614  cfv 6481  (class class class)co 7346  f cof 7608  Basecbs 17120  .rcmulr 17162  Scalarcsca 17164  0gc0g 17343  LModclmod 20794  LVecclvec 21037  LFnlclfn 39102  LKerclk 39130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-sbg 18851  df-cmn 19695  df-abl 19696  df-mgp 20060  df-rng 20072  df-ur 20101  df-ring 20154  df-oppr 20256  df-dvdsr 20276  df-unit 20277  df-invr 20307  df-nzr 20429  df-rlreg 20610  df-domn 20611  df-drng 20647  df-lmod 20796  df-lss 20866  df-lvec 21038  df-lfl 39103  df-lkr 39131
This theorem is referenced by:  lfl1dim  39166  lfl1dim2N  39167  lkrss  39213
  Copyright terms: Public domain W3C validator