Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrscss Structured version   Visualization version   GIF version

Theorem lkrscss 39054
Description: The kernel of a scalar product of a functional includes the kernel of the functional. (The inclusion is proper for the zero product and equality otherwise.) (Contributed by NM, 9-Oct-2014.)
Hypotheses
Ref Expression
lkrsc.v 𝑉 = (Base‘𝑊)
lkrsc.d 𝐷 = (Scalar‘𝑊)
lkrsc.k 𝐾 = (Base‘𝐷)
lkrsc.t · = (.r𝐷)
lkrsc.f 𝐹 = (LFnl‘𝑊)
lkrsc.l 𝐿 = (LKer‘𝑊)
lkrsc.w (𝜑𝑊 ∈ LVec)
lkrsc.g (𝜑𝐺𝐹)
lkrsc.r (𝜑𝑅𝐾)
Assertion
Ref Expression
lkrscss (𝜑 → (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {𝑅}))))

Proof of Theorem lkrscss
StepHypRef Expression
1 lkrsc.v . . . . . 6 𝑉 = (Base‘𝑊)
2 lkrsc.f . . . . . 6 𝐹 = (LFnl‘𝑊)
3 lkrsc.l . . . . . 6 𝐿 = (LKer‘𝑊)
4 lkrsc.w . . . . . . 7 (𝜑𝑊 ∈ LVec)
5 lveclmod 21128 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
64, 5syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
7 lkrsc.g . . . . . 6 (𝜑𝐺𝐹)
81, 2, 3, 6, 7lkrssv 39052 . . . . 5 (𝜑 → (𝐿𝐺) ⊆ 𝑉)
9 lkrsc.d . . . . . . . 8 𝐷 = (Scalar‘𝑊)
10 lkrsc.k . . . . . . . 8 𝐾 = (Base‘𝐷)
11 lkrsc.t . . . . . . . 8 · = (.r𝐷)
12 eqid 2740 . . . . . . . 8 (0g𝐷) = (0g𝐷)
131, 9, 2, 10, 11, 12, 6, 7lfl0sc 39038 . . . . . . 7 (𝜑 → (𝐺f · (𝑉 × {(0g𝐷)})) = (𝑉 × {(0g𝐷)}))
1413fveq2d 6924 . . . . . 6 (𝜑 → (𝐿‘(𝐺f · (𝑉 × {(0g𝐷)}))) = (𝐿‘(𝑉 × {(0g𝐷)})))
15 eqid 2740 . . . . . . 7 (𝑉 × {(0g𝐷)}) = (𝑉 × {(0g𝐷)})
169, 12, 1, 2lfl0f 39025 . . . . . . . 8 (𝑊 ∈ LMod → (𝑉 × {(0g𝐷)}) ∈ 𝐹)
179, 12, 1, 2, 3lkr0f 39050 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑉 × {(0g𝐷)}) ∈ 𝐹) → ((𝐿‘(𝑉 × {(0g𝐷)})) = 𝑉 ↔ (𝑉 × {(0g𝐷)}) = (𝑉 × {(0g𝐷)})))
186, 16, 17syl2anc2 584 . . . . . . 7 (𝜑 → ((𝐿‘(𝑉 × {(0g𝐷)})) = 𝑉 ↔ (𝑉 × {(0g𝐷)}) = (𝑉 × {(0g𝐷)})))
1915, 18mpbiri 258 . . . . . 6 (𝜑 → (𝐿‘(𝑉 × {(0g𝐷)})) = 𝑉)
2014, 19eqtr2d 2781 . . . . 5 (𝜑𝑉 = (𝐿‘(𝐺f · (𝑉 × {(0g𝐷)}))))
218, 20sseqtrd 4049 . . . 4 (𝜑 → (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {(0g𝐷)}))))
2221adantr 480 . . 3 ((𝜑𝑅 = (0g𝐷)) → (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {(0g𝐷)}))))
23 sneq 4658 . . . . . . 7 (𝑅 = (0g𝐷) → {𝑅} = {(0g𝐷)})
2423xpeq2d 5730 . . . . . 6 (𝑅 = (0g𝐷) → (𝑉 × {𝑅}) = (𝑉 × {(0g𝐷)}))
2524oveq2d 7464 . . . . 5 (𝑅 = (0g𝐷) → (𝐺f · (𝑉 × {𝑅})) = (𝐺f · (𝑉 × {(0g𝐷)})))
2625fveq2d 6924 . . . 4 (𝑅 = (0g𝐷) → (𝐿‘(𝐺f · (𝑉 × {𝑅}))) = (𝐿‘(𝐺f · (𝑉 × {(0g𝐷)}))))
2726adantl 481 . . 3 ((𝜑𝑅 = (0g𝐷)) → (𝐿‘(𝐺f · (𝑉 × {𝑅}))) = (𝐿‘(𝐺f · (𝑉 × {(0g𝐷)}))))
2822, 27sseqtrrd 4050 . 2 ((𝜑𝑅 = (0g𝐷)) → (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {𝑅}))))
294adantr 480 . . . 4 ((𝜑𝑅 ≠ (0g𝐷)) → 𝑊 ∈ LVec)
307adantr 480 . . . 4 ((𝜑𝑅 ≠ (0g𝐷)) → 𝐺𝐹)
31 lkrsc.r . . . . 5 (𝜑𝑅𝐾)
3231adantr 480 . . . 4 ((𝜑𝑅 ≠ (0g𝐷)) → 𝑅𝐾)
33 simpr 484 . . . 4 ((𝜑𝑅 ≠ (0g𝐷)) → 𝑅 ≠ (0g𝐷))
341, 9, 10, 11, 2, 3, 29, 30, 32, 12, 33lkrsc 39053 . . 3 ((𝜑𝑅 ≠ (0g𝐷)) → (𝐿‘(𝐺f · (𝑉 × {𝑅}))) = (𝐿𝐺))
35 eqimss2 4068 . . 3 ((𝐿‘(𝐺f · (𝑉 × {𝑅}))) = (𝐿𝐺) → (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {𝑅}))))
3634, 35syl 17 . 2 ((𝜑𝑅 ≠ (0g𝐷)) → (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {𝑅}))))
3728, 36pm2.61dane 3035 1 (𝜑 → (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {𝑅}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wss 3976  {csn 4648   × cxp 5698  cfv 6573  (class class class)co 7448  f cof 7712  Basecbs 17258  .rcmulr 17312  Scalarcsca 17314  0gc0g 17499  LModclmod 20880  LVecclvec 21124  LFnlclfn 39013  LKerclk 39041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-nzr 20539  df-rlreg 20716  df-domn 20717  df-drng 20753  df-lmod 20882  df-lss 20953  df-lvec 21125  df-lfl 39014  df-lkr 39042
This theorem is referenced by:  lfl1dim  39077  lfl1dim2N  39078  lkrss  39124
  Copyright terms: Public domain W3C validator