![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lkrscss | Structured version Visualization version GIF version |
Description: The kernel of a scalar product of a functional includes the kernel of the functional. (The inclusion is proper for the zero product and equality otherwise.) (Contributed by NM, 9-Oct-2014.) |
Ref | Expression |
---|---|
lkrsc.v | β’ π = (Baseβπ) |
lkrsc.d | β’ π· = (Scalarβπ) |
lkrsc.k | β’ πΎ = (Baseβπ·) |
lkrsc.t | β’ Β· = (.rβπ·) |
lkrsc.f | β’ πΉ = (LFnlβπ) |
lkrsc.l | β’ πΏ = (LKerβπ) |
lkrsc.w | β’ (π β π β LVec) |
lkrsc.g | β’ (π β πΊ β πΉ) |
lkrsc.r | β’ (π β π β πΎ) |
Ref | Expression |
---|---|
lkrscss | β’ (π β (πΏβπΊ) β (πΏβ(πΊ βf Β· (π Γ {π })))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lkrsc.v | . . . . . 6 β’ π = (Baseβπ) | |
2 | lkrsc.f | . . . . . 6 β’ πΉ = (LFnlβπ) | |
3 | lkrsc.l | . . . . . 6 β’ πΏ = (LKerβπ) | |
4 | lkrsc.w | . . . . . . 7 β’ (π β π β LVec) | |
5 | lveclmod 20861 | . . . . . . 7 β’ (π β LVec β π β LMod) | |
6 | 4, 5 | syl 17 | . . . . . 6 β’ (π β π β LMod) |
7 | lkrsc.g | . . . . . 6 β’ (π β πΊ β πΉ) | |
8 | 1, 2, 3, 6, 7 | lkrssv 38269 | . . . . 5 β’ (π β (πΏβπΊ) β π) |
9 | lkrsc.d | . . . . . . . 8 β’ π· = (Scalarβπ) | |
10 | lkrsc.k | . . . . . . . 8 β’ πΎ = (Baseβπ·) | |
11 | lkrsc.t | . . . . . . . 8 β’ Β· = (.rβπ·) | |
12 | eqid 2732 | . . . . . . . 8 β’ (0gβπ·) = (0gβπ·) | |
13 | 1, 9, 2, 10, 11, 12, 6, 7 | lfl0sc 38255 | . . . . . . 7 β’ (π β (πΊ βf Β· (π Γ {(0gβπ·)})) = (π Γ {(0gβπ·)})) |
14 | 13 | fveq2d 6895 | . . . . . 6 β’ (π β (πΏβ(πΊ βf Β· (π Γ {(0gβπ·)}))) = (πΏβ(π Γ {(0gβπ·)}))) |
15 | eqid 2732 | . . . . . . 7 β’ (π Γ {(0gβπ·)}) = (π Γ {(0gβπ·)}) | |
16 | 9, 12, 1, 2 | lfl0f 38242 | . . . . . . . 8 β’ (π β LMod β (π Γ {(0gβπ·)}) β πΉ) |
17 | 9, 12, 1, 2, 3 | lkr0f 38267 | . . . . . . . 8 β’ ((π β LMod β§ (π Γ {(0gβπ·)}) β πΉ) β ((πΏβ(π Γ {(0gβπ·)})) = π β (π Γ {(0gβπ·)}) = (π Γ {(0gβπ·)}))) |
18 | 6, 16, 17 | syl2anc2 585 | . . . . . . 7 β’ (π β ((πΏβ(π Γ {(0gβπ·)})) = π β (π Γ {(0gβπ·)}) = (π Γ {(0gβπ·)}))) |
19 | 15, 18 | mpbiri 257 | . . . . . 6 β’ (π β (πΏβ(π Γ {(0gβπ·)})) = π) |
20 | 14, 19 | eqtr2d 2773 | . . . . 5 β’ (π β π = (πΏβ(πΊ βf Β· (π Γ {(0gβπ·)})))) |
21 | 8, 20 | sseqtrd 4022 | . . . 4 β’ (π β (πΏβπΊ) β (πΏβ(πΊ βf Β· (π Γ {(0gβπ·)})))) |
22 | 21 | adantr 481 | . . 3 β’ ((π β§ π = (0gβπ·)) β (πΏβπΊ) β (πΏβ(πΊ βf Β· (π Γ {(0gβπ·)})))) |
23 | sneq 4638 | . . . . . . 7 β’ (π = (0gβπ·) β {π } = {(0gβπ·)}) | |
24 | 23 | xpeq2d 5706 | . . . . . 6 β’ (π = (0gβπ·) β (π Γ {π }) = (π Γ {(0gβπ·)})) |
25 | 24 | oveq2d 7427 | . . . . 5 β’ (π = (0gβπ·) β (πΊ βf Β· (π Γ {π })) = (πΊ βf Β· (π Γ {(0gβπ·)}))) |
26 | 25 | fveq2d 6895 | . . . 4 β’ (π = (0gβπ·) β (πΏβ(πΊ βf Β· (π Γ {π }))) = (πΏβ(πΊ βf Β· (π Γ {(0gβπ·)})))) |
27 | 26 | adantl 482 | . . 3 β’ ((π β§ π = (0gβπ·)) β (πΏβ(πΊ βf Β· (π Γ {π }))) = (πΏβ(πΊ βf Β· (π Γ {(0gβπ·)})))) |
28 | 22, 27 | sseqtrrd 4023 | . 2 β’ ((π β§ π = (0gβπ·)) β (πΏβπΊ) β (πΏβ(πΊ βf Β· (π Γ {π })))) |
29 | 4 | adantr 481 | . . . 4 β’ ((π β§ π β (0gβπ·)) β π β LVec) |
30 | 7 | adantr 481 | . . . 4 β’ ((π β§ π β (0gβπ·)) β πΊ β πΉ) |
31 | lkrsc.r | . . . . 5 β’ (π β π β πΎ) | |
32 | 31 | adantr 481 | . . . 4 β’ ((π β§ π β (0gβπ·)) β π β πΎ) |
33 | simpr 485 | . . . 4 β’ ((π β§ π β (0gβπ·)) β π β (0gβπ·)) | |
34 | 1, 9, 10, 11, 2, 3, 29, 30, 32, 12, 33 | lkrsc 38270 | . . 3 β’ ((π β§ π β (0gβπ·)) β (πΏβ(πΊ βf Β· (π Γ {π }))) = (πΏβπΊ)) |
35 | eqimss2 4041 | . . 3 β’ ((πΏβ(πΊ βf Β· (π Γ {π }))) = (πΏβπΊ) β (πΏβπΊ) β (πΏβ(πΊ βf Β· (π Γ {π })))) | |
36 | 34, 35 | syl 17 | . 2 β’ ((π β§ π β (0gβπ·)) β (πΏβπΊ) β (πΏβ(πΊ βf Β· (π Γ {π })))) |
37 | 28, 36 | pm2.61dane 3029 | 1 β’ (π β (πΏβπΊ) β (πΏβ(πΊ βf Β· (π Γ {π })))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 β wne 2940 β wss 3948 {csn 4628 Γ cxp 5674 βcfv 6543 (class class class)co 7411 βf cof 7670 Basecbs 17148 .rcmulr 17202 Scalarcsca 17204 0gc0g 17389 LModclmod 20614 LVecclvec 20857 LFnlclfn 38230 LKerclk 38258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-of 7672 df-om 7858 df-1st 7977 df-2nd 7978 df-tpos 8213 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-mulr 17215 df-0g 17391 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-grp 18858 df-minusg 18859 df-sbg 18860 df-cmn 19691 df-abl 19692 df-mgp 20029 df-rng 20047 df-ur 20076 df-ring 20129 df-oppr 20225 df-dvdsr 20248 df-unit 20249 df-invr 20279 df-drng 20502 df-lmod 20616 df-lss 20687 df-lvec 20858 df-lfl 38231 df-lkr 38259 |
This theorem is referenced by: lfl1dim 38294 lfl1dim2N 38295 lkrss 38341 |
Copyright terms: Public domain | W3C validator |