| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lkrscss | Structured version Visualization version GIF version | ||
| Description: The kernel of a scalar product of a functional includes the kernel of the functional. (The inclusion is proper for the zero product and equality otherwise.) (Contributed by NM, 9-Oct-2014.) |
| Ref | Expression |
|---|---|
| lkrsc.v | ⊢ 𝑉 = (Base‘𝑊) |
| lkrsc.d | ⊢ 𝐷 = (Scalar‘𝑊) |
| lkrsc.k | ⊢ 𝐾 = (Base‘𝐷) |
| lkrsc.t | ⊢ · = (.r‘𝐷) |
| lkrsc.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| lkrsc.l | ⊢ 𝐿 = (LKer‘𝑊) |
| lkrsc.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lkrsc.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| lkrsc.r | ⊢ (𝜑 → 𝑅 ∈ 𝐾) |
| Ref | Expression |
|---|---|
| lkrscss | ⊢ (𝜑 → (𝐿‘𝐺) ⊆ (𝐿‘(𝐺 ∘f · (𝑉 × {𝑅})))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lkrsc.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | lkrsc.f | . . . . . 6 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 3 | lkrsc.l | . . . . . 6 ⊢ 𝐿 = (LKer‘𝑊) | |
| 4 | lkrsc.w | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 5 | lveclmod 21042 | . . . . . . 7 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 6 | 4, 5 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 7 | lkrsc.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 8 | 1, 2, 3, 6, 7 | lkrssv 39216 | . . . . 5 ⊢ (𝜑 → (𝐿‘𝐺) ⊆ 𝑉) |
| 9 | lkrsc.d | . . . . . . . 8 ⊢ 𝐷 = (Scalar‘𝑊) | |
| 10 | lkrsc.k | . . . . . . . 8 ⊢ 𝐾 = (Base‘𝐷) | |
| 11 | lkrsc.t | . . . . . . . 8 ⊢ · = (.r‘𝐷) | |
| 12 | eqid 2733 | . . . . . . . 8 ⊢ (0g‘𝐷) = (0g‘𝐷) | |
| 13 | 1, 9, 2, 10, 11, 12, 6, 7 | lfl0sc 39202 | . . . . . . 7 ⊢ (𝜑 → (𝐺 ∘f · (𝑉 × {(0g‘𝐷)})) = (𝑉 × {(0g‘𝐷)})) |
| 14 | 13 | fveq2d 6832 | . . . . . 6 ⊢ (𝜑 → (𝐿‘(𝐺 ∘f · (𝑉 × {(0g‘𝐷)}))) = (𝐿‘(𝑉 × {(0g‘𝐷)}))) |
| 15 | eqid 2733 | . . . . . . 7 ⊢ (𝑉 × {(0g‘𝐷)}) = (𝑉 × {(0g‘𝐷)}) | |
| 16 | 9, 12, 1, 2 | lfl0f 39189 | . . . . . . . 8 ⊢ (𝑊 ∈ LMod → (𝑉 × {(0g‘𝐷)}) ∈ 𝐹) |
| 17 | 9, 12, 1, 2, 3 | lkr0f 39214 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ (𝑉 × {(0g‘𝐷)}) ∈ 𝐹) → ((𝐿‘(𝑉 × {(0g‘𝐷)})) = 𝑉 ↔ (𝑉 × {(0g‘𝐷)}) = (𝑉 × {(0g‘𝐷)}))) |
| 18 | 6, 16, 17 | syl2anc2 585 | . . . . . . 7 ⊢ (𝜑 → ((𝐿‘(𝑉 × {(0g‘𝐷)})) = 𝑉 ↔ (𝑉 × {(0g‘𝐷)}) = (𝑉 × {(0g‘𝐷)}))) |
| 19 | 15, 18 | mpbiri 258 | . . . . . 6 ⊢ (𝜑 → (𝐿‘(𝑉 × {(0g‘𝐷)})) = 𝑉) |
| 20 | 14, 19 | eqtr2d 2769 | . . . . 5 ⊢ (𝜑 → 𝑉 = (𝐿‘(𝐺 ∘f · (𝑉 × {(0g‘𝐷)})))) |
| 21 | 8, 20 | sseqtrd 3967 | . . . 4 ⊢ (𝜑 → (𝐿‘𝐺) ⊆ (𝐿‘(𝐺 ∘f · (𝑉 × {(0g‘𝐷)})))) |
| 22 | 21 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑅 = (0g‘𝐷)) → (𝐿‘𝐺) ⊆ (𝐿‘(𝐺 ∘f · (𝑉 × {(0g‘𝐷)})))) |
| 23 | sneq 4585 | . . . . . . 7 ⊢ (𝑅 = (0g‘𝐷) → {𝑅} = {(0g‘𝐷)}) | |
| 24 | 23 | xpeq2d 5649 | . . . . . 6 ⊢ (𝑅 = (0g‘𝐷) → (𝑉 × {𝑅}) = (𝑉 × {(0g‘𝐷)})) |
| 25 | 24 | oveq2d 7368 | . . . . 5 ⊢ (𝑅 = (0g‘𝐷) → (𝐺 ∘f · (𝑉 × {𝑅})) = (𝐺 ∘f · (𝑉 × {(0g‘𝐷)}))) |
| 26 | 25 | fveq2d 6832 | . . . 4 ⊢ (𝑅 = (0g‘𝐷) → (𝐿‘(𝐺 ∘f · (𝑉 × {𝑅}))) = (𝐿‘(𝐺 ∘f · (𝑉 × {(0g‘𝐷)})))) |
| 27 | 26 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑅 = (0g‘𝐷)) → (𝐿‘(𝐺 ∘f · (𝑉 × {𝑅}))) = (𝐿‘(𝐺 ∘f · (𝑉 × {(0g‘𝐷)})))) |
| 28 | 22, 27 | sseqtrrd 3968 | . 2 ⊢ ((𝜑 ∧ 𝑅 = (0g‘𝐷)) → (𝐿‘𝐺) ⊆ (𝐿‘(𝐺 ∘f · (𝑉 × {𝑅})))) |
| 29 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑅 ≠ (0g‘𝐷)) → 𝑊 ∈ LVec) |
| 30 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑅 ≠ (0g‘𝐷)) → 𝐺 ∈ 𝐹) |
| 31 | lkrsc.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ 𝐾) | |
| 32 | 31 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑅 ≠ (0g‘𝐷)) → 𝑅 ∈ 𝐾) |
| 33 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑅 ≠ (0g‘𝐷)) → 𝑅 ≠ (0g‘𝐷)) | |
| 34 | 1, 9, 10, 11, 2, 3, 29, 30, 32, 12, 33 | lkrsc 39217 | . . 3 ⊢ ((𝜑 ∧ 𝑅 ≠ (0g‘𝐷)) → (𝐿‘(𝐺 ∘f · (𝑉 × {𝑅}))) = (𝐿‘𝐺)) |
| 35 | eqimss2 3990 | . . 3 ⊢ ((𝐿‘(𝐺 ∘f · (𝑉 × {𝑅}))) = (𝐿‘𝐺) → (𝐿‘𝐺) ⊆ (𝐿‘(𝐺 ∘f · (𝑉 × {𝑅})))) | |
| 36 | 34, 35 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝑅 ≠ (0g‘𝐷)) → (𝐿‘𝐺) ⊆ (𝐿‘(𝐺 ∘f · (𝑉 × {𝑅})))) |
| 37 | 28, 36 | pm2.61dane 3016 | 1 ⊢ (𝜑 → (𝐿‘𝐺) ⊆ (𝐿‘(𝐺 ∘f · (𝑉 × {𝑅})))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ⊆ wss 3898 {csn 4575 × cxp 5617 ‘cfv 6486 (class class class)co 7352 ∘f cof 7614 Basecbs 17122 .rcmulr 17164 Scalarcsca 17166 0gc0g 17345 LModclmod 20795 LVecclvec 21038 LFnlclfn 39177 LKerclk 39205 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-0g 17347 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-minusg 18852 df-sbg 18853 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-oppr 20257 df-dvdsr 20277 df-unit 20278 df-invr 20308 df-nzr 20430 df-rlreg 20611 df-domn 20612 df-drng 20648 df-lmod 20797 df-lss 20867 df-lvec 21039 df-lfl 39178 df-lkr 39206 |
| This theorem is referenced by: lfl1dim 39241 lfl1dim2N 39242 lkrss 39288 |
| Copyright terms: Public domain | W3C validator |