Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrscss Structured version   Visualization version   GIF version

Theorem lkrscss 37039
Description: The kernel of a scalar product of a functional includes the kernel of the functional. (The inclusion is proper for the zero product and equality otherwise.) (Contributed by NM, 9-Oct-2014.)
Hypotheses
Ref Expression
lkrsc.v 𝑉 = (Base‘𝑊)
lkrsc.d 𝐷 = (Scalar‘𝑊)
lkrsc.k 𝐾 = (Base‘𝐷)
lkrsc.t · = (.r𝐷)
lkrsc.f 𝐹 = (LFnl‘𝑊)
lkrsc.l 𝐿 = (LKer‘𝑊)
lkrsc.w (𝜑𝑊 ∈ LVec)
lkrsc.g (𝜑𝐺𝐹)
lkrsc.r (𝜑𝑅𝐾)
Assertion
Ref Expression
lkrscss (𝜑 → (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {𝑅}))))

Proof of Theorem lkrscss
StepHypRef Expression
1 lkrsc.v . . . . . 6 𝑉 = (Base‘𝑊)
2 lkrsc.f . . . . . 6 𝐹 = (LFnl‘𝑊)
3 lkrsc.l . . . . . 6 𝐿 = (LKer‘𝑊)
4 lkrsc.w . . . . . . 7 (𝜑𝑊 ∈ LVec)
5 lveclmod 20283 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
64, 5syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
7 lkrsc.g . . . . . 6 (𝜑𝐺𝐹)
81, 2, 3, 6, 7lkrssv 37037 . . . . 5 (𝜑 → (𝐿𝐺) ⊆ 𝑉)
9 lkrsc.d . . . . . . . 8 𝐷 = (Scalar‘𝑊)
10 lkrsc.k . . . . . . . 8 𝐾 = (Base‘𝐷)
11 lkrsc.t . . . . . . . 8 · = (.r𝐷)
12 eqid 2738 . . . . . . . 8 (0g𝐷) = (0g𝐷)
131, 9, 2, 10, 11, 12, 6, 7lfl0sc 37023 . . . . . . 7 (𝜑 → (𝐺f · (𝑉 × {(0g𝐷)})) = (𝑉 × {(0g𝐷)}))
1413fveq2d 6760 . . . . . 6 (𝜑 → (𝐿‘(𝐺f · (𝑉 × {(0g𝐷)}))) = (𝐿‘(𝑉 × {(0g𝐷)})))
15 eqid 2738 . . . . . . 7 (𝑉 × {(0g𝐷)}) = (𝑉 × {(0g𝐷)})
169, 12, 1, 2lfl0f 37010 . . . . . . . 8 (𝑊 ∈ LMod → (𝑉 × {(0g𝐷)}) ∈ 𝐹)
179, 12, 1, 2, 3lkr0f 37035 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑉 × {(0g𝐷)}) ∈ 𝐹) → ((𝐿‘(𝑉 × {(0g𝐷)})) = 𝑉 ↔ (𝑉 × {(0g𝐷)}) = (𝑉 × {(0g𝐷)})))
186, 16, 17syl2anc2 584 . . . . . . 7 (𝜑 → ((𝐿‘(𝑉 × {(0g𝐷)})) = 𝑉 ↔ (𝑉 × {(0g𝐷)}) = (𝑉 × {(0g𝐷)})))
1915, 18mpbiri 257 . . . . . 6 (𝜑 → (𝐿‘(𝑉 × {(0g𝐷)})) = 𝑉)
2014, 19eqtr2d 2779 . . . . 5 (𝜑𝑉 = (𝐿‘(𝐺f · (𝑉 × {(0g𝐷)}))))
218, 20sseqtrd 3957 . . . 4 (𝜑 → (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {(0g𝐷)}))))
2221adantr 480 . . 3 ((𝜑𝑅 = (0g𝐷)) → (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {(0g𝐷)}))))
23 sneq 4568 . . . . . . 7 (𝑅 = (0g𝐷) → {𝑅} = {(0g𝐷)})
2423xpeq2d 5610 . . . . . 6 (𝑅 = (0g𝐷) → (𝑉 × {𝑅}) = (𝑉 × {(0g𝐷)}))
2524oveq2d 7271 . . . . 5 (𝑅 = (0g𝐷) → (𝐺f · (𝑉 × {𝑅})) = (𝐺f · (𝑉 × {(0g𝐷)})))
2625fveq2d 6760 . . . 4 (𝑅 = (0g𝐷) → (𝐿‘(𝐺f · (𝑉 × {𝑅}))) = (𝐿‘(𝐺f · (𝑉 × {(0g𝐷)}))))
2726adantl 481 . . 3 ((𝜑𝑅 = (0g𝐷)) → (𝐿‘(𝐺f · (𝑉 × {𝑅}))) = (𝐿‘(𝐺f · (𝑉 × {(0g𝐷)}))))
2822, 27sseqtrrd 3958 . 2 ((𝜑𝑅 = (0g𝐷)) → (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {𝑅}))))
294adantr 480 . . . 4 ((𝜑𝑅 ≠ (0g𝐷)) → 𝑊 ∈ LVec)
307adantr 480 . . . 4 ((𝜑𝑅 ≠ (0g𝐷)) → 𝐺𝐹)
31 lkrsc.r . . . . 5 (𝜑𝑅𝐾)
3231adantr 480 . . . 4 ((𝜑𝑅 ≠ (0g𝐷)) → 𝑅𝐾)
33 simpr 484 . . . 4 ((𝜑𝑅 ≠ (0g𝐷)) → 𝑅 ≠ (0g𝐷))
341, 9, 10, 11, 2, 3, 29, 30, 32, 12, 33lkrsc 37038 . . 3 ((𝜑𝑅 ≠ (0g𝐷)) → (𝐿‘(𝐺f · (𝑉 × {𝑅}))) = (𝐿𝐺))
35 eqimss2 3974 . . 3 ((𝐿‘(𝐺f · (𝑉 × {𝑅}))) = (𝐿𝐺) → (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {𝑅}))))
3634, 35syl 17 . 2 ((𝜑𝑅 ≠ (0g𝐷)) → (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {𝑅}))))
3728, 36pm2.61dane 3031 1 (𝜑 → (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {𝑅}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wss 3883  {csn 4558   × cxp 5578  cfv 6418  (class class class)co 7255  f cof 7509  Basecbs 16840  .rcmulr 16889  Scalarcsca 16891  0gc0g 17067  LModclmod 20038  LVecclvec 20279  LFnlclfn 36998  LKerclk 37026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-drng 19908  df-lmod 20040  df-lss 20109  df-lvec 20280  df-lfl 36999  df-lkr 37027
This theorem is referenced by:  lfl1dim  37062  lfl1dim2N  37063  lkrss  37109
  Copyright terms: Public domain W3C validator