| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lkrscss | Structured version Visualization version GIF version | ||
| Description: The kernel of a scalar product of a functional includes the kernel of the functional. (The inclusion is proper for the zero product and equality otherwise.) (Contributed by NM, 9-Oct-2014.) |
| Ref | Expression |
|---|---|
| lkrsc.v | ⊢ 𝑉 = (Base‘𝑊) |
| lkrsc.d | ⊢ 𝐷 = (Scalar‘𝑊) |
| lkrsc.k | ⊢ 𝐾 = (Base‘𝐷) |
| lkrsc.t | ⊢ · = (.r‘𝐷) |
| lkrsc.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| lkrsc.l | ⊢ 𝐿 = (LKer‘𝑊) |
| lkrsc.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lkrsc.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| lkrsc.r | ⊢ (𝜑 → 𝑅 ∈ 𝐾) |
| Ref | Expression |
|---|---|
| lkrscss | ⊢ (𝜑 → (𝐿‘𝐺) ⊆ (𝐿‘(𝐺 ∘f · (𝑉 × {𝑅})))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lkrsc.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | lkrsc.f | . . . . . 6 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 3 | lkrsc.l | . . . . . 6 ⊢ 𝐿 = (LKer‘𝑊) | |
| 4 | lkrsc.w | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 5 | lveclmod 21013 | . . . . . . 7 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 6 | 4, 5 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 7 | lkrsc.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 8 | 1, 2, 3, 6, 7 | lkrssv 39089 | . . . . 5 ⊢ (𝜑 → (𝐿‘𝐺) ⊆ 𝑉) |
| 9 | lkrsc.d | . . . . . . . 8 ⊢ 𝐷 = (Scalar‘𝑊) | |
| 10 | lkrsc.k | . . . . . . . 8 ⊢ 𝐾 = (Base‘𝐷) | |
| 11 | lkrsc.t | . . . . . . . 8 ⊢ · = (.r‘𝐷) | |
| 12 | eqid 2729 | . . . . . . . 8 ⊢ (0g‘𝐷) = (0g‘𝐷) | |
| 13 | 1, 9, 2, 10, 11, 12, 6, 7 | lfl0sc 39075 | . . . . . . 7 ⊢ (𝜑 → (𝐺 ∘f · (𝑉 × {(0g‘𝐷)})) = (𝑉 × {(0g‘𝐷)})) |
| 14 | 13 | fveq2d 6862 | . . . . . 6 ⊢ (𝜑 → (𝐿‘(𝐺 ∘f · (𝑉 × {(0g‘𝐷)}))) = (𝐿‘(𝑉 × {(0g‘𝐷)}))) |
| 15 | eqid 2729 | . . . . . . 7 ⊢ (𝑉 × {(0g‘𝐷)}) = (𝑉 × {(0g‘𝐷)}) | |
| 16 | 9, 12, 1, 2 | lfl0f 39062 | . . . . . . . 8 ⊢ (𝑊 ∈ LMod → (𝑉 × {(0g‘𝐷)}) ∈ 𝐹) |
| 17 | 9, 12, 1, 2, 3 | lkr0f 39087 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ (𝑉 × {(0g‘𝐷)}) ∈ 𝐹) → ((𝐿‘(𝑉 × {(0g‘𝐷)})) = 𝑉 ↔ (𝑉 × {(0g‘𝐷)}) = (𝑉 × {(0g‘𝐷)}))) |
| 18 | 6, 16, 17 | syl2anc2 585 | . . . . . . 7 ⊢ (𝜑 → ((𝐿‘(𝑉 × {(0g‘𝐷)})) = 𝑉 ↔ (𝑉 × {(0g‘𝐷)}) = (𝑉 × {(0g‘𝐷)}))) |
| 19 | 15, 18 | mpbiri 258 | . . . . . 6 ⊢ (𝜑 → (𝐿‘(𝑉 × {(0g‘𝐷)})) = 𝑉) |
| 20 | 14, 19 | eqtr2d 2765 | . . . . 5 ⊢ (𝜑 → 𝑉 = (𝐿‘(𝐺 ∘f · (𝑉 × {(0g‘𝐷)})))) |
| 21 | 8, 20 | sseqtrd 3983 | . . . 4 ⊢ (𝜑 → (𝐿‘𝐺) ⊆ (𝐿‘(𝐺 ∘f · (𝑉 × {(0g‘𝐷)})))) |
| 22 | 21 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑅 = (0g‘𝐷)) → (𝐿‘𝐺) ⊆ (𝐿‘(𝐺 ∘f · (𝑉 × {(0g‘𝐷)})))) |
| 23 | sneq 4599 | . . . . . . 7 ⊢ (𝑅 = (0g‘𝐷) → {𝑅} = {(0g‘𝐷)}) | |
| 24 | 23 | xpeq2d 5668 | . . . . . 6 ⊢ (𝑅 = (0g‘𝐷) → (𝑉 × {𝑅}) = (𝑉 × {(0g‘𝐷)})) |
| 25 | 24 | oveq2d 7403 | . . . . 5 ⊢ (𝑅 = (0g‘𝐷) → (𝐺 ∘f · (𝑉 × {𝑅})) = (𝐺 ∘f · (𝑉 × {(0g‘𝐷)}))) |
| 26 | 25 | fveq2d 6862 | . . . 4 ⊢ (𝑅 = (0g‘𝐷) → (𝐿‘(𝐺 ∘f · (𝑉 × {𝑅}))) = (𝐿‘(𝐺 ∘f · (𝑉 × {(0g‘𝐷)})))) |
| 27 | 26 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑅 = (0g‘𝐷)) → (𝐿‘(𝐺 ∘f · (𝑉 × {𝑅}))) = (𝐿‘(𝐺 ∘f · (𝑉 × {(0g‘𝐷)})))) |
| 28 | 22, 27 | sseqtrrd 3984 | . 2 ⊢ ((𝜑 ∧ 𝑅 = (0g‘𝐷)) → (𝐿‘𝐺) ⊆ (𝐿‘(𝐺 ∘f · (𝑉 × {𝑅})))) |
| 29 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑅 ≠ (0g‘𝐷)) → 𝑊 ∈ LVec) |
| 30 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑅 ≠ (0g‘𝐷)) → 𝐺 ∈ 𝐹) |
| 31 | lkrsc.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ 𝐾) | |
| 32 | 31 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑅 ≠ (0g‘𝐷)) → 𝑅 ∈ 𝐾) |
| 33 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑅 ≠ (0g‘𝐷)) → 𝑅 ≠ (0g‘𝐷)) | |
| 34 | 1, 9, 10, 11, 2, 3, 29, 30, 32, 12, 33 | lkrsc 39090 | . . 3 ⊢ ((𝜑 ∧ 𝑅 ≠ (0g‘𝐷)) → (𝐿‘(𝐺 ∘f · (𝑉 × {𝑅}))) = (𝐿‘𝐺)) |
| 35 | eqimss2 4006 | . . 3 ⊢ ((𝐿‘(𝐺 ∘f · (𝑉 × {𝑅}))) = (𝐿‘𝐺) → (𝐿‘𝐺) ⊆ (𝐿‘(𝐺 ∘f · (𝑉 × {𝑅})))) | |
| 36 | 34, 35 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝑅 ≠ (0g‘𝐷)) → (𝐿‘𝐺) ⊆ (𝐿‘(𝐺 ∘f · (𝑉 × {𝑅})))) |
| 37 | 28, 36 | pm2.61dane 3012 | 1 ⊢ (𝜑 → (𝐿‘𝐺) ⊆ (𝐿‘(𝐺 ∘f · (𝑉 × {𝑅})))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ⊆ wss 3914 {csn 4589 × cxp 5636 ‘cfv 6511 (class class class)co 7387 ∘f cof 7651 Basecbs 17179 .rcmulr 17221 Scalarcsca 17223 0gc0g 17402 LModclmod 20766 LVecclvec 21009 LFnlclfn 39050 LKerclk 39078 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-sbg 18870 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-nzr 20422 df-rlreg 20603 df-domn 20604 df-drng 20640 df-lmod 20768 df-lss 20838 df-lvec 21010 df-lfl 39051 df-lkr 39079 |
| This theorem is referenced by: lfl1dim 39114 lfl1dim2N 39115 lkrss 39161 |
| Copyright terms: Public domain | W3C validator |