Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrscss Structured version   Visualization version   GIF version

Theorem lkrscss 39080
Description: The kernel of a scalar product of a functional includes the kernel of the functional. (The inclusion is proper for the zero product and equality otherwise.) (Contributed by NM, 9-Oct-2014.)
Hypotheses
Ref Expression
lkrsc.v 𝑉 = (Base‘𝑊)
lkrsc.d 𝐷 = (Scalar‘𝑊)
lkrsc.k 𝐾 = (Base‘𝐷)
lkrsc.t · = (.r𝐷)
lkrsc.f 𝐹 = (LFnl‘𝑊)
lkrsc.l 𝐿 = (LKer‘𝑊)
lkrsc.w (𝜑𝑊 ∈ LVec)
lkrsc.g (𝜑𝐺𝐹)
lkrsc.r (𝜑𝑅𝐾)
Assertion
Ref Expression
lkrscss (𝜑 → (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {𝑅}))))

Proof of Theorem lkrscss
StepHypRef Expression
1 lkrsc.v . . . . . 6 𝑉 = (Base‘𝑊)
2 lkrsc.f . . . . . 6 𝐹 = (LFnl‘𝑊)
3 lkrsc.l . . . . . 6 𝐿 = (LKer‘𝑊)
4 lkrsc.w . . . . . . 7 (𝜑𝑊 ∈ LVec)
5 lveclmod 21123 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
64, 5syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
7 lkrsc.g . . . . . 6 (𝜑𝐺𝐹)
81, 2, 3, 6, 7lkrssv 39078 . . . . 5 (𝜑 → (𝐿𝐺) ⊆ 𝑉)
9 lkrsc.d . . . . . . . 8 𝐷 = (Scalar‘𝑊)
10 lkrsc.k . . . . . . . 8 𝐾 = (Base‘𝐷)
11 lkrsc.t . . . . . . . 8 · = (.r𝐷)
12 eqid 2735 . . . . . . . 8 (0g𝐷) = (0g𝐷)
131, 9, 2, 10, 11, 12, 6, 7lfl0sc 39064 . . . . . . 7 (𝜑 → (𝐺f · (𝑉 × {(0g𝐷)})) = (𝑉 × {(0g𝐷)}))
1413fveq2d 6911 . . . . . 6 (𝜑 → (𝐿‘(𝐺f · (𝑉 × {(0g𝐷)}))) = (𝐿‘(𝑉 × {(0g𝐷)})))
15 eqid 2735 . . . . . . 7 (𝑉 × {(0g𝐷)}) = (𝑉 × {(0g𝐷)})
169, 12, 1, 2lfl0f 39051 . . . . . . . 8 (𝑊 ∈ LMod → (𝑉 × {(0g𝐷)}) ∈ 𝐹)
179, 12, 1, 2, 3lkr0f 39076 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑉 × {(0g𝐷)}) ∈ 𝐹) → ((𝐿‘(𝑉 × {(0g𝐷)})) = 𝑉 ↔ (𝑉 × {(0g𝐷)}) = (𝑉 × {(0g𝐷)})))
186, 16, 17syl2anc2 585 . . . . . . 7 (𝜑 → ((𝐿‘(𝑉 × {(0g𝐷)})) = 𝑉 ↔ (𝑉 × {(0g𝐷)}) = (𝑉 × {(0g𝐷)})))
1915, 18mpbiri 258 . . . . . 6 (𝜑 → (𝐿‘(𝑉 × {(0g𝐷)})) = 𝑉)
2014, 19eqtr2d 2776 . . . . 5 (𝜑𝑉 = (𝐿‘(𝐺f · (𝑉 × {(0g𝐷)}))))
218, 20sseqtrd 4036 . . . 4 (𝜑 → (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {(0g𝐷)}))))
2221adantr 480 . . 3 ((𝜑𝑅 = (0g𝐷)) → (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {(0g𝐷)}))))
23 sneq 4641 . . . . . . 7 (𝑅 = (0g𝐷) → {𝑅} = {(0g𝐷)})
2423xpeq2d 5719 . . . . . 6 (𝑅 = (0g𝐷) → (𝑉 × {𝑅}) = (𝑉 × {(0g𝐷)}))
2524oveq2d 7447 . . . . 5 (𝑅 = (0g𝐷) → (𝐺f · (𝑉 × {𝑅})) = (𝐺f · (𝑉 × {(0g𝐷)})))
2625fveq2d 6911 . . . 4 (𝑅 = (0g𝐷) → (𝐿‘(𝐺f · (𝑉 × {𝑅}))) = (𝐿‘(𝐺f · (𝑉 × {(0g𝐷)}))))
2726adantl 481 . . 3 ((𝜑𝑅 = (0g𝐷)) → (𝐿‘(𝐺f · (𝑉 × {𝑅}))) = (𝐿‘(𝐺f · (𝑉 × {(0g𝐷)}))))
2822, 27sseqtrrd 4037 . 2 ((𝜑𝑅 = (0g𝐷)) → (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {𝑅}))))
294adantr 480 . . . 4 ((𝜑𝑅 ≠ (0g𝐷)) → 𝑊 ∈ LVec)
307adantr 480 . . . 4 ((𝜑𝑅 ≠ (0g𝐷)) → 𝐺𝐹)
31 lkrsc.r . . . . 5 (𝜑𝑅𝐾)
3231adantr 480 . . . 4 ((𝜑𝑅 ≠ (0g𝐷)) → 𝑅𝐾)
33 simpr 484 . . . 4 ((𝜑𝑅 ≠ (0g𝐷)) → 𝑅 ≠ (0g𝐷))
341, 9, 10, 11, 2, 3, 29, 30, 32, 12, 33lkrsc 39079 . . 3 ((𝜑𝑅 ≠ (0g𝐷)) → (𝐿‘(𝐺f · (𝑉 × {𝑅}))) = (𝐿𝐺))
35 eqimss2 4055 . . 3 ((𝐿‘(𝐺f · (𝑉 × {𝑅}))) = (𝐿𝐺) → (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {𝑅}))))
3634, 35syl 17 . 2 ((𝜑𝑅 ≠ (0g𝐷)) → (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {𝑅}))))
3728, 36pm2.61dane 3027 1 (𝜑 → (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {𝑅}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938  wss 3963  {csn 4631   × cxp 5687  cfv 6563  (class class class)co 7431  f cof 7695  Basecbs 17245  .rcmulr 17299  Scalarcsca 17301  0gc0g 17486  LModclmod 20875  LVecclvec 21119  LFnlclfn 39039  LKerclk 39067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-sbg 18969  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-nzr 20530  df-rlreg 20711  df-domn 20712  df-drng 20748  df-lmod 20877  df-lss 20948  df-lvec 21120  df-lfl 39040  df-lkr 39068
This theorem is referenced by:  lfl1dim  39103  lfl1dim2N  39104  lkrss  39150
  Copyright terms: Public domain W3C validator