Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqh1 Structured version   Visualization version   GIF version

Theorem qqh1 33948
Description: The image of 1 by the ℚHom homomorphism is the ring unity. (Contributed by Thierry Arnoux, 22-Oct-2017.)
Hypotheses
Ref Expression
qqhval2.0 𝐵 = (Base‘𝑅)
qqhval2.1 / = (/r𝑅)
qqhval2.2 𝐿 = (ℤRHom‘𝑅)
Assertion
Ref Expression
qqh1 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘1) = (1r𝑅))

Proof of Theorem qqh1
StepHypRef Expression
1 zssq 12996 . . . 4 ℤ ⊆ ℚ
2 1z 12645 . . . 4 1 ∈ ℤ
31, 2sselii 3992 . . 3 1 ∈ ℚ
4 qqhval2.0 . . . 4 𝐵 = (Base‘𝑅)
5 qqhval2.1 . . . 4 / = (/r𝑅)
6 qqhval2.2 . . . 4 𝐿 = (ℤRHom‘𝑅)
74, 5, 6qqhvval 33946 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 1 ∈ ℚ) → ((ℚHom‘𝑅)‘1) = ((𝐿‘(numer‘1)) / (𝐿‘(denom‘1))))
83, 7mpan2 691 . 2 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘1) = ((𝐿‘(numer‘1)) / (𝐿‘(denom‘1))))
9 gcd1 16562 . . . . . . . . . 10 (1 ∈ ℤ → (1 gcd 1) = 1)
102, 9ax-mp 5 . . . . . . . . 9 (1 gcd 1) = 1
11 1div1e1 11956 . . . . . . . . . 10 (1 / 1) = 1
1211eqcomi 2744 . . . . . . . . 9 1 = (1 / 1)
1310, 12pm3.2i 470 . . . . . . . 8 ((1 gcd 1) = 1 ∧ 1 = (1 / 1))
14 1nn 12275 . . . . . . . . 9 1 ∈ ℕ
15 qnumdenbi 16778 . . . . . . . . 9 ((1 ∈ ℚ ∧ 1 ∈ ℤ ∧ 1 ∈ ℕ) → (((1 gcd 1) = 1 ∧ 1 = (1 / 1)) ↔ ((numer‘1) = 1 ∧ (denom‘1) = 1)))
163, 2, 14, 15mp3an 1460 . . . . . . . 8 (((1 gcd 1) = 1 ∧ 1 = (1 / 1)) ↔ ((numer‘1) = 1 ∧ (denom‘1) = 1))
1713, 16mpbi 230 . . . . . . 7 ((numer‘1) = 1 ∧ (denom‘1) = 1)
1817simpli 483 . . . . . 6 (numer‘1) = 1
1918fveq2i 6910 . . . . 5 (𝐿‘(numer‘1)) = (𝐿‘1)
2017simpri 485 . . . . . 6 (denom‘1) = 1
2120fveq2i 6910 . . . . 5 (𝐿‘(denom‘1)) = (𝐿‘1)
2219, 21oveq12i 7443 . . . 4 ((𝐿‘(numer‘1)) / (𝐿‘(denom‘1))) = ((𝐿‘1) / (𝐿‘1))
23 drngring 20753 . . . . . 6 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
24 eqid 2735 . . . . . . . 8 (1r𝑅) = (1r𝑅)
256, 24zrh1 21541 . . . . . . 7 (𝑅 ∈ Ring → (𝐿‘1) = (1r𝑅))
2625, 25oveq12d 7449 . . . . . 6 (𝑅 ∈ Ring → ((𝐿‘1) / (𝐿‘1)) = ((1r𝑅) / (1r𝑅)))
2723, 26syl 17 . . . . 5 (𝑅 ∈ DivRing → ((𝐿‘1) / (𝐿‘1)) = ((1r𝑅) / (1r𝑅)))
284, 24ringidcl 20280 . . . . . 6 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
294, 5, 24dvr1 20424 . . . . . 6 ((𝑅 ∈ Ring ∧ (1r𝑅) ∈ 𝐵) → ((1r𝑅) / (1r𝑅)) = (1r𝑅))
3023, 28, 29syl2anc2 585 . . . . 5 (𝑅 ∈ DivRing → ((1r𝑅) / (1r𝑅)) = (1r𝑅))
3127, 30eqtrd 2775 . . . 4 (𝑅 ∈ DivRing → ((𝐿‘1) / (𝐿‘1)) = (1r𝑅))
3222, 31eqtrid 2787 . . 3 (𝑅 ∈ DivRing → ((𝐿‘(numer‘1)) / (𝐿‘(denom‘1))) = (1r𝑅))
3332adantr 480 . 2 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((𝐿‘(numer‘1)) / (𝐿‘(denom‘1))) = (1r𝑅))
348, 33eqtrd 2775 1 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘1) = (1r𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431  0cc0 11153  1c1 11154   / cdiv 11918  cn 12264  cz 12611  cq 12988   gcd cgcd 16528  numercnumer 16767  denomcdenom 16768  Basecbs 17245  1rcur 20199  Ringcrg 20251  /rcdvr 20417  DivRingcdr 20746  ℤRHomczrh 21528  chrcchr 21530  ℚHomcqqh 33933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-fz 13545  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-dvds 16288  df-gcd 16529  df-numer 16769  df-denom 16770  df-gz 16964  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-ghm 19244  df-od 19561  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-rhm 20489  df-subrng 20563  df-subrg 20587  df-drng 20748  df-cnfld 21383  df-zring 21476  df-zrh 21532  df-chr 21534  df-qqh 33934
This theorem is referenced by:  qqhrhm  33952
  Copyright terms: Public domain W3C validator