![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > qqh1 | Structured version Visualization version GIF version |
Description: The image of 1 by the βHom homomorphism is the ring unity. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
Ref | Expression |
---|---|
qqhval2.0 | β’ π΅ = (Baseβπ ) |
qqhval2.1 | β’ / = (/rβπ ) |
qqhval2.2 | β’ πΏ = (β€RHomβπ ) |
Ref | Expression |
---|---|
qqh1 | β’ ((π β DivRing β§ (chrβπ ) = 0) β ((βHomβπ )β1) = (1rβπ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zssq 12939 | . . . 4 β’ β€ β β | |
2 | 1z 12591 | . . . 4 β’ 1 β β€ | |
3 | 1, 2 | sselii 3979 | . . 3 β’ 1 β β |
4 | qqhval2.0 | . . . 4 β’ π΅ = (Baseβπ ) | |
5 | qqhval2.1 | . . . 4 β’ / = (/rβπ ) | |
6 | qqhval2.2 | . . . 4 β’ πΏ = (β€RHomβπ ) | |
7 | 4, 5, 6 | qqhvval 32958 | . . 3 β’ (((π β DivRing β§ (chrβπ ) = 0) β§ 1 β β) β ((βHomβπ )β1) = ((πΏβ(numerβ1)) / (πΏβ(denomβ1)))) |
8 | 3, 7 | mpan2 689 | . 2 β’ ((π β DivRing β§ (chrβπ ) = 0) β ((βHomβπ )β1) = ((πΏβ(numerβ1)) / (πΏβ(denomβ1)))) |
9 | gcd1 16468 | . . . . . . . . . 10 β’ (1 β β€ β (1 gcd 1) = 1) | |
10 | 2, 9 | ax-mp 5 | . . . . . . . . 9 β’ (1 gcd 1) = 1 |
11 | 1div1e1 11903 | . . . . . . . . . 10 β’ (1 / 1) = 1 | |
12 | 11 | eqcomi 2741 | . . . . . . . . 9 β’ 1 = (1 / 1) |
13 | 10, 12 | pm3.2i 471 | . . . . . . . 8 β’ ((1 gcd 1) = 1 β§ 1 = (1 / 1)) |
14 | 1nn 12222 | . . . . . . . . 9 β’ 1 β β | |
15 | qnumdenbi 16679 | . . . . . . . . 9 β’ ((1 β β β§ 1 β β€ β§ 1 β β) β (((1 gcd 1) = 1 β§ 1 = (1 / 1)) β ((numerβ1) = 1 β§ (denomβ1) = 1))) | |
16 | 3, 2, 14, 15 | mp3an 1461 | . . . . . . . 8 β’ (((1 gcd 1) = 1 β§ 1 = (1 / 1)) β ((numerβ1) = 1 β§ (denomβ1) = 1)) |
17 | 13, 16 | mpbi 229 | . . . . . . 7 β’ ((numerβ1) = 1 β§ (denomβ1) = 1) |
18 | 17 | simpli 484 | . . . . . 6 β’ (numerβ1) = 1 |
19 | 18 | fveq2i 6894 | . . . . 5 β’ (πΏβ(numerβ1)) = (πΏβ1) |
20 | 17 | simpri 486 | . . . . . 6 β’ (denomβ1) = 1 |
21 | 20 | fveq2i 6894 | . . . . 5 β’ (πΏβ(denomβ1)) = (πΏβ1) |
22 | 19, 21 | oveq12i 7420 | . . . 4 β’ ((πΏβ(numerβ1)) / (πΏβ(denomβ1))) = ((πΏβ1) / (πΏβ1)) |
23 | drngring 20363 | . . . . . 6 β’ (π β DivRing β π β Ring) | |
24 | eqid 2732 | . . . . . . . 8 β’ (1rβπ ) = (1rβπ ) | |
25 | 6, 24 | zrh1 21061 | . . . . . . 7 β’ (π β Ring β (πΏβ1) = (1rβπ )) |
26 | 25, 25 | oveq12d 7426 | . . . . . 6 β’ (π β Ring β ((πΏβ1) / (πΏβ1)) = ((1rβπ ) / (1rβπ ))) |
27 | 23, 26 | syl 17 | . . . . 5 β’ (π β DivRing β ((πΏβ1) / (πΏβ1)) = ((1rβπ ) / (1rβπ ))) |
28 | 4, 24 | ringidcl 20082 | . . . . . 6 β’ (π β Ring β (1rβπ ) β π΅) |
29 | 4, 5, 24 | dvr1 20220 | . . . . . 6 β’ ((π β Ring β§ (1rβπ ) β π΅) β ((1rβπ ) / (1rβπ )) = (1rβπ )) |
30 | 23, 28, 29 | syl2anc2 585 | . . . . 5 β’ (π β DivRing β ((1rβπ ) / (1rβπ )) = (1rβπ )) |
31 | 27, 30 | eqtrd 2772 | . . . 4 β’ (π β DivRing β ((πΏβ1) / (πΏβ1)) = (1rβπ )) |
32 | 22, 31 | eqtrid 2784 | . . 3 β’ (π β DivRing β ((πΏβ(numerβ1)) / (πΏβ(denomβ1))) = (1rβπ )) |
33 | 32 | adantr 481 | . 2 β’ ((π β DivRing β§ (chrβπ ) = 0) β ((πΏβ(numerβ1)) / (πΏβ(denomβ1))) = (1rβπ )) |
34 | 8, 33 | eqtrd 2772 | 1 β’ ((π β DivRing β§ (chrβπ ) = 0) β ((βHomβπ )β1) = (1rβπ )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 βcfv 6543 (class class class)co 7408 0cc0 11109 1c1 11110 / cdiv 11870 βcn 12211 β€cz 12557 βcq 12931 gcd cgcd 16434 numercnumer 16668 denomcdenom 16669 Basecbs 17143 1rcur 20003 Ringcrg 20055 /rcdvr 20213 DivRingcdr 20356 β€RHomczrh 21048 chrcchr 21050 βHomcqqh 32947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 ax-addf 11188 ax-mulf 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-tpos 8210 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-inf 9437 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-q 12932 df-rp 12974 df-fz 13484 df-fl 13756 df-mod 13834 df-seq 13966 df-exp 14027 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-dvds 16197 df-gcd 16435 df-numer 16670 df-denom 16671 df-gz 16862 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-starv 17211 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-0g 17386 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-mhm 18670 df-grp 18821 df-minusg 18822 df-sbg 18823 df-mulg 18950 df-subg 19002 df-ghm 19089 df-od 19395 df-cmn 19649 df-mgp 19987 df-ur 20004 df-ring 20057 df-cring 20058 df-oppr 20149 df-dvdsr 20170 df-unit 20171 df-invr 20201 df-dvr 20214 df-rnghom 20250 df-subrg 20316 df-drng 20358 df-cnfld 20944 df-zring 21017 df-zrh 21052 df-chr 21054 df-qqh 32948 |
This theorem is referenced by: qqhrhm 32964 |
Copyright terms: Public domain | W3C validator |