Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqh1 Structured version   Visualization version   GIF version

Theorem qqh1 33931
Description: The image of 1 by the ℚHom homomorphism is the ring unity. (Contributed by Thierry Arnoux, 22-Oct-2017.)
Hypotheses
Ref Expression
qqhval2.0 𝐵 = (Base‘𝑅)
qqhval2.1 / = (/r𝑅)
qqhval2.2 𝐿 = (ℤRHom‘𝑅)
Assertion
Ref Expression
qqh1 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘1) = (1r𝑅))

Proof of Theorem qqh1
StepHypRef Expression
1 zssq 13021 . . . 4 ℤ ⊆ ℚ
2 1z 12673 . . . 4 1 ∈ ℤ
31, 2sselii 4005 . . 3 1 ∈ ℚ
4 qqhval2.0 . . . 4 𝐵 = (Base‘𝑅)
5 qqhval2.1 . . . 4 / = (/r𝑅)
6 qqhval2.2 . . . 4 𝐿 = (ℤRHom‘𝑅)
74, 5, 6qqhvval 33929 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 1 ∈ ℚ) → ((ℚHom‘𝑅)‘1) = ((𝐿‘(numer‘1)) / (𝐿‘(denom‘1))))
83, 7mpan2 690 . 2 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘1) = ((𝐿‘(numer‘1)) / (𝐿‘(denom‘1))))
9 gcd1 16574 . . . . . . . . . 10 (1 ∈ ℤ → (1 gcd 1) = 1)
102, 9ax-mp 5 . . . . . . . . 9 (1 gcd 1) = 1
11 1div1e1 11985 . . . . . . . . . 10 (1 / 1) = 1
1211eqcomi 2749 . . . . . . . . 9 1 = (1 / 1)
1310, 12pm3.2i 470 . . . . . . . 8 ((1 gcd 1) = 1 ∧ 1 = (1 / 1))
14 1nn 12304 . . . . . . . . 9 1 ∈ ℕ
15 qnumdenbi 16791 . . . . . . . . 9 ((1 ∈ ℚ ∧ 1 ∈ ℤ ∧ 1 ∈ ℕ) → (((1 gcd 1) = 1 ∧ 1 = (1 / 1)) ↔ ((numer‘1) = 1 ∧ (denom‘1) = 1)))
163, 2, 14, 15mp3an 1461 . . . . . . . 8 (((1 gcd 1) = 1 ∧ 1 = (1 / 1)) ↔ ((numer‘1) = 1 ∧ (denom‘1) = 1))
1713, 16mpbi 230 . . . . . . 7 ((numer‘1) = 1 ∧ (denom‘1) = 1)
1817simpli 483 . . . . . 6 (numer‘1) = 1
1918fveq2i 6923 . . . . 5 (𝐿‘(numer‘1)) = (𝐿‘1)
2017simpri 485 . . . . . 6 (denom‘1) = 1
2120fveq2i 6923 . . . . 5 (𝐿‘(denom‘1)) = (𝐿‘1)
2219, 21oveq12i 7460 . . . 4 ((𝐿‘(numer‘1)) / (𝐿‘(denom‘1))) = ((𝐿‘1) / (𝐿‘1))
23 drngring 20758 . . . . . 6 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
24 eqid 2740 . . . . . . . 8 (1r𝑅) = (1r𝑅)
256, 24zrh1 21546 . . . . . . 7 (𝑅 ∈ Ring → (𝐿‘1) = (1r𝑅))
2625, 25oveq12d 7466 . . . . . 6 (𝑅 ∈ Ring → ((𝐿‘1) / (𝐿‘1)) = ((1r𝑅) / (1r𝑅)))
2723, 26syl 17 . . . . 5 (𝑅 ∈ DivRing → ((𝐿‘1) / (𝐿‘1)) = ((1r𝑅) / (1r𝑅)))
284, 24ringidcl 20289 . . . . . 6 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
294, 5, 24dvr1 20433 . . . . . 6 ((𝑅 ∈ Ring ∧ (1r𝑅) ∈ 𝐵) → ((1r𝑅) / (1r𝑅)) = (1r𝑅))
3023, 28, 29syl2anc2 584 . . . . 5 (𝑅 ∈ DivRing → ((1r𝑅) / (1r𝑅)) = (1r𝑅))
3127, 30eqtrd 2780 . . . 4 (𝑅 ∈ DivRing → ((𝐿‘1) / (𝐿‘1)) = (1r𝑅))
3222, 31eqtrid 2792 . . 3 (𝑅 ∈ DivRing → ((𝐿‘(numer‘1)) / (𝐿‘(denom‘1))) = (1r𝑅))
3332adantr 480 . 2 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((𝐿‘(numer‘1)) / (𝐿‘(denom‘1))) = (1r𝑅))
348, 33eqtrd 2780 1 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘1) = (1r𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185   / cdiv 11947  cn 12293  cz 12639  cq 13013   gcd cgcd 16540  numercnumer 16780  denomcdenom 16781  Basecbs 17258  1rcur 20208  Ringcrg 20260  /rcdvr 20426  DivRingcdr 20751  ℤRHomczrh 21533  chrcchr 21535  ℚHomcqqh 33918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-fz 13568  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-gcd 16541  df-numer 16782  df-denom 16783  df-gz 16977  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-od 19570  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-rhm 20498  df-subrng 20572  df-subrg 20597  df-drng 20753  df-cnfld 21388  df-zring 21481  df-zrh 21537  df-chr 21539  df-qqh 33919
This theorem is referenced by:  qqhrhm  33935
  Copyright terms: Public domain W3C validator