![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > qqh1 | Structured version Visualization version GIF version |
Description: The image of 1 by the ℚHom homomorphism is the ring's unit. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
Ref | Expression |
---|---|
qqhval2.0 | ⊢ 𝐵 = (Base‘𝑅) |
qqhval2.1 | ⊢ / = (/r‘𝑅) |
qqhval2.2 | ⊢ 𝐿 = (ℤRHom‘𝑅) |
Ref | Expression |
---|---|
qqh1 | ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘1) = (1r‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zssq 12107 | . . . 4 ⊢ ℤ ⊆ ℚ | |
2 | 1z 11763 | . . . 4 ⊢ 1 ∈ ℤ | |
3 | 1, 2 | sselii 3818 | . . 3 ⊢ 1 ∈ ℚ |
4 | qqhval2.0 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
5 | qqhval2.1 | . . . 4 ⊢ / = (/r‘𝑅) | |
6 | qqhval2.2 | . . . 4 ⊢ 𝐿 = (ℤRHom‘𝑅) | |
7 | 4, 5, 6 | qqhvval 30629 | . . 3 ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 1 ∈ ℚ) → ((ℚHom‘𝑅)‘1) = ((𝐿‘(numer‘1)) / (𝐿‘(denom‘1)))) |
8 | 3, 7 | mpan2 681 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘1) = ((𝐿‘(numer‘1)) / (𝐿‘(denom‘1)))) |
9 | gcd1 15659 | . . . . . . . . . 10 ⊢ (1 ∈ ℤ → (1 gcd 1) = 1) | |
10 | 2, 9 | ax-mp 5 | . . . . . . . . 9 ⊢ (1 gcd 1) = 1 |
11 | 1div1e1 11067 | . . . . . . . . . 10 ⊢ (1 / 1) = 1 | |
12 | 11 | eqcomi 2787 | . . . . . . . . 9 ⊢ 1 = (1 / 1) |
13 | 10, 12 | pm3.2i 464 | . . . . . . . 8 ⊢ ((1 gcd 1) = 1 ∧ 1 = (1 / 1)) |
14 | 1nn 11391 | . . . . . . . . 9 ⊢ 1 ∈ ℕ | |
15 | qnumdenbi 15860 | . . . . . . . . 9 ⊢ ((1 ∈ ℚ ∧ 1 ∈ ℤ ∧ 1 ∈ ℕ) → (((1 gcd 1) = 1 ∧ 1 = (1 / 1)) ↔ ((numer‘1) = 1 ∧ (denom‘1) = 1))) | |
16 | 3, 2, 14, 15 | mp3an 1534 | . . . . . . . 8 ⊢ (((1 gcd 1) = 1 ∧ 1 = (1 / 1)) ↔ ((numer‘1) = 1 ∧ (denom‘1) = 1)) |
17 | 13, 16 | mpbi 222 | . . . . . . 7 ⊢ ((numer‘1) = 1 ∧ (denom‘1) = 1) |
18 | 17 | simpli 478 | . . . . . 6 ⊢ (numer‘1) = 1 |
19 | 18 | fveq2i 6451 | . . . . 5 ⊢ (𝐿‘(numer‘1)) = (𝐿‘1) |
20 | 17 | simpri 481 | . . . . . 6 ⊢ (denom‘1) = 1 |
21 | 20 | fveq2i 6451 | . . . . 5 ⊢ (𝐿‘(denom‘1)) = (𝐿‘1) |
22 | 19, 21 | oveq12i 6936 | . . . 4 ⊢ ((𝐿‘(numer‘1)) / (𝐿‘(denom‘1))) = ((𝐿‘1) / (𝐿‘1)) |
23 | drngring 19150 | . . . . . 6 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
24 | eqid 2778 | . . . . . . . 8 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
25 | 6, 24 | zrh1 20261 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (𝐿‘1) = (1r‘𝑅)) |
26 | 25, 25 | oveq12d 6942 | . . . . . 6 ⊢ (𝑅 ∈ Ring → ((𝐿‘1) / (𝐿‘1)) = ((1r‘𝑅) / (1r‘𝑅))) |
27 | 23, 26 | syl 17 | . . . . 5 ⊢ (𝑅 ∈ DivRing → ((𝐿‘1) / (𝐿‘1)) = ((1r‘𝑅) / (1r‘𝑅))) |
28 | 4, 24 | ringidcl 18959 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝐵) |
29 | 23, 28 | syl 17 | . . . . . 6 ⊢ (𝑅 ∈ DivRing → (1r‘𝑅) ∈ 𝐵) |
30 | 4, 5, 24 | dvr1 19080 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (1r‘𝑅) ∈ 𝐵) → ((1r‘𝑅) / (1r‘𝑅)) = (1r‘𝑅)) |
31 | 23, 29, 30 | syl2anc 579 | . . . . 5 ⊢ (𝑅 ∈ DivRing → ((1r‘𝑅) / (1r‘𝑅)) = (1r‘𝑅)) |
32 | 27, 31 | eqtrd 2814 | . . . 4 ⊢ (𝑅 ∈ DivRing → ((𝐿‘1) / (𝐿‘1)) = (1r‘𝑅)) |
33 | 22, 32 | syl5eq 2826 | . . 3 ⊢ (𝑅 ∈ DivRing → ((𝐿‘(numer‘1)) / (𝐿‘(denom‘1))) = (1r‘𝑅)) |
34 | 33 | adantr 474 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((𝐿‘(numer‘1)) / (𝐿‘(denom‘1))) = (1r‘𝑅)) |
35 | 8, 34 | eqtrd 2814 | 1 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘1) = (1r‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ‘cfv 6137 (class class class)co 6924 0cc0 10274 1c1 10275 / cdiv 11034 ℕcn 11378 ℤcz 11732 ℚcq 12099 gcd cgcd 15626 numercnumer 15849 denomcdenom 15850 Basecbs 16259 1rcur 18892 Ringcrg 18938 /rcdvr 19073 DivRingcdr 19143 ℤRHomczrh 20248 chrcchr 20250 ℚHomcqqh 30618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-inf2 8837 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 ax-pre-sup 10352 ax-addf 10353 ax-mulf 10354 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-tpos 7636 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-oadd 7849 df-er 8028 df-map 8144 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-sup 8638 df-inf 8639 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-div 11035 df-nn 11379 df-2 11442 df-3 11443 df-4 11444 df-5 11445 df-6 11446 df-7 11447 df-8 11448 df-9 11449 df-n0 11647 df-z 11733 df-dec 11850 df-uz 11997 df-q 12100 df-rp 12142 df-fz 12648 df-fl 12916 df-mod 12992 df-seq 13124 df-exp 13183 df-cj 14250 df-re 14251 df-im 14252 df-sqrt 14386 df-abs 14387 df-dvds 15392 df-gcd 15627 df-numer 15851 df-denom 15852 df-gz 16042 df-struct 16261 df-ndx 16262 df-slot 16263 df-base 16265 df-sets 16266 df-ress 16267 df-plusg 16355 df-mulr 16356 df-starv 16357 df-tset 16361 df-ple 16362 df-ds 16364 df-unif 16365 df-0g 16492 df-mgm 17632 df-sgrp 17674 df-mnd 17685 df-mhm 17725 df-grp 17816 df-minusg 17817 df-sbg 17818 df-mulg 17932 df-subg 17979 df-ghm 18046 df-od 18336 df-cmn 18585 df-mgp 18881 df-ur 18893 df-ring 18940 df-cring 18941 df-oppr 19014 df-dvdsr 19032 df-unit 19033 df-invr 19063 df-dvr 19074 df-rnghom 19108 df-drng 19145 df-subrg 19174 df-cnfld 20147 df-zring 20219 df-zrh 20252 df-chr 20254 df-qqh 30619 |
This theorem is referenced by: qqhrhm 30635 |
Copyright terms: Public domain | W3C validator |