Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > qqh1 | Structured version Visualization version GIF version |
Description: The image of 1 by the ℚHom homomorphism is the ring's unit. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
Ref | Expression |
---|---|
qqhval2.0 | ⊢ 𝐵 = (Base‘𝑅) |
qqhval2.1 | ⊢ / = (/r‘𝑅) |
qqhval2.2 | ⊢ 𝐿 = (ℤRHom‘𝑅) |
Ref | Expression |
---|---|
qqh1 | ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘1) = (1r‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zssq 12695 | . . . 4 ⊢ ℤ ⊆ ℚ | |
2 | 1z 12350 | . . . 4 ⊢ 1 ∈ ℤ | |
3 | 1, 2 | sselii 3923 | . . 3 ⊢ 1 ∈ ℚ |
4 | qqhval2.0 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
5 | qqhval2.1 | . . . 4 ⊢ / = (/r‘𝑅) | |
6 | qqhval2.2 | . . . 4 ⊢ 𝐿 = (ℤRHom‘𝑅) | |
7 | 4, 5, 6 | qqhvval 31929 | . . 3 ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 1 ∈ ℚ) → ((ℚHom‘𝑅)‘1) = ((𝐿‘(numer‘1)) / (𝐿‘(denom‘1)))) |
8 | 3, 7 | mpan2 688 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘1) = ((𝐿‘(numer‘1)) / (𝐿‘(denom‘1)))) |
9 | gcd1 16233 | . . . . . . . . . 10 ⊢ (1 ∈ ℤ → (1 gcd 1) = 1) | |
10 | 2, 9 | ax-mp 5 | . . . . . . . . 9 ⊢ (1 gcd 1) = 1 |
11 | 1div1e1 11665 | . . . . . . . . . 10 ⊢ (1 / 1) = 1 | |
12 | 11 | eqcomi 2749 | . . . . . . . . 9 ⊢ 1 = (1 / 1) |
13 | 10, 12 | pm3.2i 471 | . . . . . . . 8 ⊢ ((1 gcd 1) = 1 ∧ 1 = (1 / 1)) |
14 | 1nn 11984 | . . . . . . . . 9 ⊢ 1 ∈ ℕ | |
15 | qnumdenbi 16446 | . . . . . . . . 9 ⊢ ((1 ∈ ℚ ∧ 1 ∈ ℤ ∧ 1 ∈ ℕ) → (((1 gcd 1) = 1 ∧ 1 = (1 / 1)) ↔ ((numer‘1) = 1 ∧ (denom‘1) = 1))) | |
16 | 3, 2, 14, 15 | mp3an 1460 | . . . . . . . 8 ⊢ (((1 gcd 1) = 1 ∧ 1 = (1 / 1)) ↔ ((numer‘1) = 1 ∧ (denom‘1) = 1)) |
17 | 13, 16 | mpbi 229 | . . . . . . 7 ⊢ ((numer‘1) = 1 ∧ (denom‘1) = 1) |
18 | 17 | simpli 484 | . . . . . 6 ⊢ (numer‘1) = 1 |
19 | 18 | fveq2i 6774 | . . . . 5 ⊢ (𝐿‘(numer‘1)) = (𝐿‘1) |
20 | 17 | simpri 486 | . . . . . 6 ⊢ (denom‘1) = 1 |
21 | 20 | fveq2i 6774 | . . . . 5 ⊢ (𝐿‘(denom‘1)) = (𝐿‘1) |
22 | 19, 21 | oveq12i 7283 | . . . 4 ⊢ ((𝐿‘(numer‘1)) / (𝐿‘(denom‘1))) = ((𝐿‘1) / (𝐿‘1)) |
23 | drngring 19996 | . . . . . 6 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
24 | eqid 2740 | . . . . . . . 8 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
25 | 6, 24 | zrh1 20712 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (𝐿‘1) = (1r‘𝑅)) |
26 | 25, 25 | oveq12d 7289 | . . . . . 6 ⊢ (𝑅 ∈ Ring → ((𝐿‘1) / (𝐿‘1)) = ((1r‘𝑅) / (1r‘𝑅))) |
27 | 23, 26 | syl 17 | . . . . 5 ⊢ (𝑅 ∈ DivRing → ((𝐿‘1) / (𝐿‘1)) = ((1r‘𝑅) / (1r‘𝑅))) |
28 | 4, 24 | ringidcl 19805 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝐵) |
29 | 4, 5, 24 | dvr1 19929 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (1r‘𝑅) ∈ 𝐵) → ((1r‘𝑅) / (1r‘𝑅)) = (1r‘𝑅)) |
30 | 23, 28, 29 | syl2anc2 585 | . . . . 5 ⊢ (𝑅 ∈ DivRing → ((1r‘𝑅) / (1r‘𝑅)) = (1r‘𝑅)) |
31 | 27, 30 | eqtrd 2780 | . . . 4 ⊢ (𝑅 ∈ DivRing → ((𝐿‘1) / (𝐿‘1)) = (1r‘𝑅)) |
32 | 22, 31 | eqtrid 2792 | . . 3 ⊢ (𝑅 ∈ DivRing → ((𝐿‘(numer‘1)) / (𝐿‘(denom‘1))) = (1r‘𝑅)) |
33 | 32 | adantr 481 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((𝐿‘(numer‘1)) / (𝐿‘(denom‘1))) = (1r‘𝑅)) |
34 | 8, 33 | eqtrd 2780 | 1 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘1) = (1r‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ‘cfv 6432 (class class class)co 7271 0cc0 10872 1c1 10873 / cdiv 11632 ℕcn 11973 ℤcz 12319 ℚcq 12687 gcd cgcd 16199 numercnumer 16435 denomcdenom 16436 Basecbs 16910 1rcur 19735 Ringcrg 19781 /rcdvr 19922 DivRingcdr 19989 ℤRHomczrh 20699 chrcchr 20701 ℚHomcqqh 31918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 ax-pre-sup 10950 ax-addf 10951 ax-mulf 10952 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-tpos 8033 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-er 8481 df-map 8600 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-sup 9179 df-inf 9180 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12437 df-uz 12582 df-q 12688 df-rp 12730 df-fz 13239 df-fl 13510 df-mod 13588 df-seq 13720 df-exp 13781 df-cj 14808 df-re 14809 df-im 14810 df-sqrt 14944 df-abs 14945 df-dvds 15962 df-gcd 16200 df-numer 16437 df-denom 16438 df-gz 16629 df-struct 16846 df-sets 16863 df-slot 16881 df-ndx 16893 df-base 16911 df-ress 16940 df-plusg 16973 df-mulr 16974 df-starv 16975 df-tset 16979 df-ple 16980 df-ds 16982 df-unif 16983 df-0g 17150 df-mgm 18324 df-sgrp 18373 df-mnd 18384 df-mhm 18428 df-grp 18578 df-minusg 18579 df-sbg 18580 df-mulg 18699 df-subg 18750 df-ghm 18830 df-od 19134 df-cmn 19386 df-mgp 19719 df-ur 19736 df-ring 19783 df-cring 19784 df-oppr 19860 df-dvdsr 19881 df-unit 19882 df-invr 19912 df-dvr 19923 df-rnghom 19957 df-drng 19991 df-subrg 20020 df-cnfld 20596 df-zring 20669 df-zrh 20703 df-chr 20705 df-qqh 31919 |
This theorem is referenced by: qqhrhm 31935 |
Copyright terms: Public domain | W3C validator |