Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqh1 Structured version   Visualization version   GIF version

Theorem qqh1 31931
Description: The image of 1 by the ℚHom homomorphism is the ring's unit. (Contributed by Thierry Arnoux, 22-Oct-2017.)
Hypotheses
Ref Expression
qqhval2.0 𝐵 = (Base‘𝑅)
qqhval2.1 / = (/r𝑅)
qqhval2.2 𝐿 = (ℤRHom‘𝑅)
Assertion
Ref Expression
qqh1 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘1) = (1r𝑅))

Proof of Theorem qqh1
StepHypRef Expression
1 zssq 12695 . . . 4 ℤ ⊆ ℚ
2 1z 12350 . . . 4 1 ∈ ℤ
31, 2sselii 3923 . . 3 1 ∈ ℚ
4 qqhval2.0 . . . 4 𝐵 = (Base‘𝑅)
5 qqhval2.1 . . . 4 / = (/r𝑅)
6 qqhval2.2 . . . 4 𝐿 = (ℤRHom‘𝑅)
74, 5, 6qqhvval 31929 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 1 ∈ ℚ) → ((ℚHom‘𝑅)‘1) = ((𝐿‘(numer‘1)) / (𝐿‘(denom‘1))))
83, 7mpan2 688 . 2 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘1) = ((𝐿‘(numer‘1)) / (𝐿‘(denom‘1))))
9 gcd1 16233 . . . . . . . . . 10 (1 ∈ ℤ → (1 gcd 1) = 1)
102, 9ax-mp 5 . . . . . . . . 9 (1 gcd 1) = 1
11 1div1e1 11665 . . . . . . . . . 10 (1 / 1) = 1
1211eqcomi 2749 . . . . . . . . 9 1 = (1 / 1)
1310, 12pm3.2i 471 . . . . . . . 8 ((1 gcd 1) = 1 ∧ 1 = (1 / 1))
14 1nn 11984 . . . . . . . . 9 1 ∈ ℕ
15 qnumdenbi 16446 . . . . . . . . 9 ((1 ∈ ℚ ∧ 1 ∈ ℤ ∧ 1 ∈ ℕ) → (((1 gcd 1) = 1 ∧ 1 = (1 / 1)) ↔ ((numer‘1) = 1 ∧ (denom‘1) = 1)))
163, 2, 14, 15mp3an 1460 . . . . . . . 8 (((1 gcd 1) = 1 ∧ 1 = (1 / 1)) ↔ ((numer‘1) = 1 ∧ (denom‘1) = 1))
1713, 16mpbi 229 . . . . . . 7 ((numer‘1) = 1 ∧ (denom‘1) = 1)
1817simpli 484 . . . . . 6 (numer‘1) = 1
1918fveq2i 6774 . . . . 5 (𝐿‘(numer‘1)) = (𝐿‘1)
2017simpri 486 . . . . . 6 (denom‘1) = 1
2120fveq2i 6774 . . . . 5 (𝐿‘(denom‘1)) = (𝐿‘1)
2219, 21oveq12i 7283 . . . 4 ((𝐿‘(numer‘1)) / (𝐿‘(denom‘1))) = ((𝐿‘1) / (𝐿‘1))
23 drngring 19996 . . . . . 6 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
24 eqid 2740 . . . . . . . 8 (1r𝑅) = (1r𝑅)
256, 24zrh1 20712 . . . . . . 7 (𝑅 ∈ Ring → (𝐿‘1) = (1r𝑅))
2625, 25oveq12d 7289 . . . . . 6 (𝑅 ∈ Ring → ((𝐿‘1) / (𝐿‘1)) = ((1r𝑅) / (1r𝑅)))
2723, 26syl 17 . . . . 5 (𝑅 ∈ DivRing → ((𝐿‘1) / (𝐿‘1)) = ((1r𝑅) / (1r𝑅)))
284, 24ringidcl 19805 . . . . . 6 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
294, 5, 24dvr1 19929 . . . . . 6 ((𝑅 ∈ Ring ∧ (1r𝑅) ∈ 𝐵) → ((1r𝑅) / (1r𝑅)) = (1r𝑅))
3023, 28, 29syl2anc2 585 . . . . 5 (𝑅 ∈ DivRing → ((1r𝑅) / (1r𝑅)) = (1r𝑅))
3127, 30eqtrd 2780 . . . 4 (𝑅 ∈ DivRing → ((𝐿‘1) / (𝐿‘1)) = (1r𝑅))
3222, 31eqtrid 2792 . . 3 (𝑅 ∈ DivRing → ((𝐿‘(numer‘1)) / (𝐿‘(denom‘1))) = (1r𝑅))
3332adantr 481 . 2 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((𝐿‘(numer‘1)) / (𝐿‘(denom‘1))) = (1r𝑅))
348, 33eqtrd 2780 1 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘1) = (1r𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110  cfv 6432  (class class class)co 7271  0cc0 10872  1c1 10873   / cdiv 11632  cn 11973  cz 12319  cq 12687   gcd cgcd 16199  numercnumer 16435  denomcdenom 16436  Basecbs 16910  1rcur 19735  Ringcrg 19781  /rcdvr 19922  DivRingcdr 19989  ℤRHomczrh 20699  chrcchr 20701  ℚHomcqqh 31918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950  ax-addf 10951  ax-mulf 10952
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-tpos 8033  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-er 8481  df-map 8600  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-sup 9179  df-inf 9180  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12437  df-uz 12582  df-q 12688  df-rp 12730  df-fz 13239  df-fl 13510  df-mod 13588  df-seq 13720  df-exp 13781  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-dvds 15962  df-gcd 16200  df-numer 16437  df-denom 16438  df-gz 16629  df-struct 16846  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-plusg 16973  df-mulr 16974  df-starv 16975  df-tset 16979  df-ple 16980  df-ds 16982  df-unif 16983  df-0g 17150  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-mhm 18428  df-grp 18578  df-minusg 18579  df-sbg 18580  df-mulg 18699  df-subg 18750  df-ghm 18830  df-od 19134  df-cmn 19386  df-mgp 19719  df-ur 19736  df-ring 19783  df-cring 19784  df-oppr 19860  df-dvdsr 19881  df-unit 19882  df-invr 19912  df-dvr 19923  df-rnghom 19957  df-drng 19991  df-subrg 20020  df-cnfld 20596  df-zring 20669  df-zrh 20703  df-chr 20705  df-qqh 31919
This theorem is referenced by:  qqhrhm  31935
  Copyright terms: Public domain W3C validator