| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > qqh1 | Structured version Visualization version GIF version | ||
| Description: The image of 1 by the ℚHom homomorphism is the ring unity. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
| Ref | Expression |
|---|---|
| qqhval2.0 | ⊢ 𝐵 = (Base‘𝑅) |
| qqhval2.1 | ⊢ / = (/r‘𝑅) |
| qqhval2.2 | ⊢ 𝐿 = (ℤRHom‘𝑅) |
| Ref | Expression |
|---|---|
| qqh1 | ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘1) = (1r‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zssq 12857 | . . . 4 ⊢ ℤ ⊆ ℚ | |
| 2 | 1z 12505 | . . . 4 ⊢ 1 ∈ ℤ | |
| 3 | 1, 2 | sselii 3932 | . . 3 ⊢ 1 ∈ ℚ |
| 4 | qqhval2.0 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 5 | qqhval2.1 | . . . 4 ⊢ / = (/r‘𝑅) | |
| 6 | qqhval2.2 | . . . 4 ⊢ 𝐿 = (ℤRHom‘𝑅) | |
| 7 | 4, 5, 6 | qqhvval 33956 | . . 3 ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 1 ∈ ℚ) → ((ℚHom‘𝑅)‘1) = ((𝐿‘(numer‘1)) / (𝐿‘(denom‘1)))) |
| 8 | 3, 7 | mpan2 691 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘1) = ((𝐿‘(numer‘1)) / (𝐿‘(denom‘1)))) |
| 9 | gcd1 16439 | . . . . . . . . . 10 ⊢ (1 ∈ ℤ → (1 gcd 1) = 1) | |
| 10 | 2, 9 | ax-mp 5 | . . . . . . . . 9 ⊢ (1 gcd 1) = 1 |
| 11 | 1div1e1 11815 | . . . . . . . . . 10 ⊢ (1 / 1) = 1 | |
| 12 | 11 | eqcomi 2738 | . . . . . . . . 9 ⊢ 1 = (1 / 1) |
| 13 | 10, 12 | pm3.2i 470 | . . . . . . . 8 ⊢ ((1 gcd 1) = 1 ∧ 1 = (1 / 1)) |
| 14 | 1nn 12139 | . . . . . . . . 9 ⊢ 1 ∈ ℕ | |
| 15 | qnumdenbi 16655 | . . . . . . . . 9 ⊢ ((1 ∈ ℚ ∧ 1 ∈ ℤ ∧ 1 ∈ ℕ) → (((1 gcd 1) = 1 ∧ 1 = (1 / 1)) ↔ ((numer‘1) = 1 ∧ (denom‘1) = 1))) | |
| 16 | 3, 2, 14, 15 | mp3an 1463 | . . . . . . . 8 ⊢ (((1 gcd 1) = 1 ∧ 1 = (1 / 1)) ↔ ((numer‘1) = 1 ∧ (denom‘1) = 1)) |
| 17 | 13, 16 | mpbi 230 | . . . . . . 7 ⊢ ((numer‘1) = 1 ∧ (denom‘1) = 1) |
| 18 | 17 | simpli 483 | . . . . . 6 ⊢ (numer‘1) = 1 |
| 19 | 18 | fveq2i 6825 | . . . . 5 ⊢ (𝐿‘(numer‘1)) = (𝐿‘1) |
| 20 | 17 | simpri 485 | . . . . . 6 ⊢ (denom‘1) = 1 |
| 21 | 20 | fveq2i 6825 | . . . . 5 ⊢ (𝐿‘(denom‘1)) = (𝐿‘1) |
| 22 | 19, 21 | oveq12i 7361 | . . . 4 ⊢ ((𝐿‘(numer‘1)) / (𝐿‘(denom‘1))) = ((𝐿‘1) / (𝐿‘1)) |
| 23 | drngring 20621 | . . . . . 6 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
| 24 | eqid 2729 | . . . . . . . 8 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 25 | 6, 24 | zrh1 21419 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (𝐿‘1) = (1r‘𝑅)) |
| 26 | 25, 25 | oveq12d 7367 | . . . . . 6 ⊢ (𝑅 ∈ Ring → ((𝐿‘1) / (𝐿‘1)) = ((1r‘𝑅) / (1r‘𝑅))) |
| 27 | 23, 26 | syl 17 | . . . . 5 ⊢ (𝑅 ∈ DivRing → ((𝐿‘1) / (𝐿‘1)) = ((1r‘𝑅) / (1r‘𝑅))) |
| 28 | 4, 24 | ringidcl 20150 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝐵) |
| 29 | 4, 5, 24 | dvr1 20292 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (1r‘𝑅) ∈ 𝐵) → ((1r‘𝑅) / (1r‘𝑅)) = (1r‘𝑅)) |
| 30 | 23, 28, 29 | syl2anc2 585 | . . . . 5 ⊢ (𝑅 ∈ DivRing → ((1r‘𝑅) / (1r‘𝑅)) = (1r‘𝑅)) |
| 31 | 27, 30 | eqtrd 2764 | . . . 4 ⊢ (𝑅 ∈ DivRing → ((𝐿‘1) / (𝐿‘1)) = (1r‘𝑅)) |
| 32 | 22, 31 | eqtrid 2776 | . . 3 ⊢ (𝑅 ∈ DivRing → ((𝐿‘(numer‘1)) / (𝐿‘(denom‘1))) = (1r‘𝑅)) |
| 33 | 32 | adantr 480 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((𝐿‘(numer‘1)) / (𝐿‘(denom‘1))) = (1r‘𝑅)) |
| 34 | 8, 33 | eqtrd 2764 | 1 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘1) = (1r‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6482 (class class class)co 7349 0cc0 11009 1c1 11010 / cdiv 11777 ℕcn 12128 ℤcz 12471 ℚcq 12849 gcd cgcd 16405 numercnumer 16644 denomcdenom 16645 Basecbs 17120 1rcur 20066 Ringcrg 20118 /rcdvr 20285 DivRingcdr 20614 ℤRHomczrh 21406 chrcchr 21408 ℚHomcqqh 33943 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 ax-mulf 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-tpos 8159 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-rp 12894 df-fz 13411 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-gcd 16406 df-numer 16646 df-denom 16647 df-gz 16842 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-0g 17345 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-mhm 18657 df-grp 18815 df-minusg 18816 df-sbg 18817 df-mulg 18947 df-subg 19002 df-ghm 19092 df-od 19407 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-cring 20121 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-dvr 20286 df-rhm 20357 df-subrng 20431 df-subrg 20455 df-drng 20616 df-cnfld 21262 df-zring 21354 df-zrh 21410 df-chr 21412 df-qqh 33944 |
| This theorem is referenced by: qqhrhm 33962 |
| Copyright terms: Public domain | W3C validator |