| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > qqh1 | Structured version Visualization version GIF version | ||
| Description: The image of 1 by the ℚHom homomorphism is the ring unity. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
| Ref | Expression |
|---|---|
| qqhval2.0 | ⊢ 𝐵 = (Base‘𝑅) |
| qqhval2.1 | ⊢ / = (/r‘𝑅) |
| qqhval2.2 | ⊢ 𝐿 = (ℤRHom‘𝑅) |
| Ref | Expression |
|---|---|
| qqh1 | ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘1) = (1r‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zssq 12891 | . . . 4 ⊢ ℤ ⊆ ℚ | |
| 2 | 1z 12539 | . . . 4 ⊢ 1 ∈ ℤ | |
| 3 | 1, 2 | sselii 3940 | . . 3 ⊢ 1 ∈ ℚ |
| 4 | qqhval2.0 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 5 | qqhval2.1 | . . . 4 ⊢ / = (/r‘𝑅) | |
| 6 | qqhval2.2 | . . . 4 ⊢ 𝐿 = (ℤRHom‘𝑅) | |
| 7 | 4, 5, 6 | qqhvval 33966 | . . 3 ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 1 ∈ ℚ) → ((ℚHom‘𝑅)‘1) = ((𝐿‘(numer‘1)) / (𝐿‘(denom‘1)))) |
| 8 | 3, 7 | mpan2 691 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘1) = ((𝐿‘(numer‘1)) / (𝐿‘(denom‘1)))) |
| 9 | gcd1 16474 | . . . . . . . . . 10 ⊢ (1 ∈ ℤ → (1 gcd 1) = 1) | |
| 10 | 2, 9 | ax-mp 5 | . . . . . . . . 9 ⊢ (1 gcd 1) = 1 |
| 11 | 1div1e1 11849 | . . . . . . . . . 10 ⊢ (1 / 1) = 1 | |
| 12 | 11 | eqcomi 2738 | . . . . . . . . 9 ⊢ 1 = (1 / 1) |
| 13 | 10, 12 | pm3.2i 470 | . . . . . . . 8 ⊢ ((1 gcd 1) = 1 ∧ 1 = (1 / 1)) |
| 14 | 1nn 12173 | . . . . . . . . 9 ⊢ 1 ∈ ℕ | |
| 15 | qnumdenbi 16690 | . . . . . . . . 9 ⊢ ((1 ∈ ℚ ∧ 1 ∈ ℤ ∧ 1 ∈ ℕ) → (((1 gcd 1) = 1 ∧ 1 = (1 / 1)) ↔ ((numer‘1) = 1 ∧ (denom‘1) = 1))) | |
| 16 | 3, 2, 14, 15 | mp3an 1463 | . . . . . . . 8 ⊢ (((1 gcd 1) = 1 ∧ 1 = (1 / 1)) ↔ ((numer‘1) = 1 ∧ (denom‘1) = 1)) |
| 17 | 13, 16 | mpbi 230 | . . . . . . 7 ⊢ ((numer‘1) = 1 ∧ (denom‘1) = 1) |
| 18 | 17 | simpli 483 | . . . . . 6 ⊢ (numer‘1) = 1 |
| 19 | 18 | fveq2i 6843 | . . . . 5 ⊢ (𝐿‘(numer‘1)) = (𝐿‘1) |
| 20 | 17 | simpri 485 | . . . . . 6 ⊢ (denom‘1) = 1 |
| 21 | 20 | fveq2i 6843 | . . . . 5 ⊢ (𝐿‘(denom‘1)) = (𝐿‘1) |
| 22 | 19, 21 | oveq12i 7381 | . . . 4 ⊢ ((𝐿‘(numer‘1)) / (𝐿‘(denom‘1))) = ((𝐿‘1) / (𝐿‘1)) |
| 23 | drngring 20656 | . . . . . 6 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
| 24 | eqid 2729 | . . . . . . . 8 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 25 | 6, 24 | zrh1 21454 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (𝐿‘1) = (1r‘𝑅)) |
| 26 | 25, 25 | oveq12d 7387 | . . . . . 6 ⊢ (𝑅 ∈ Ring → ((𝐿‘1) / (𝐿‘1)) = ((1r‘𝑅) / (1r‘𝑅))) |
| 27 | 23, 26 | syl 17 | . . . . 5 ⊢ (𝑅 ∈ DivRing → ((𝐿‘1) / (𝐿‘1)) = ((1r‘𝑅) / (1r‘𝑅))) |
| 28 | 4, 24 | ringidcl 20185 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝐵) |
| 29 | 4, 5, 24 | dvr1 20327 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (1r‘𝑅) ∈ 𝐵) → ((1r‘𝑅) / (1r‘𝑅)) = (1r‘𝑅)) |
| 30 | 23, 28, 29 | syl2anc2 585 | . . . . 5 ⊢ (𝑅 ∈ DivRing → ((1r‘𝑅) / (1r‘𝑅)) = (1r‘𝑅)) |
| 31 | 27, 30 | eqtrd 2764 | . . . 4 ⊢ (𝑅 ∈ DivRing → ((𝐿‘1) / (𝐿‘1)) = (1r‘𝑅)) |
| 32 | 22, 31 | eqtrid 2776 | . . 3 ⊢ (𝑅 ∈ DivRing → ((𝐿‘(numer‘1)) / (𝐿‘(denom‘1))) = (1r‘𝑅)) |
| 33 | 32 | adantr 480 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((𝐿‘(numer‘1)) / (𝐿‘(denom‘1))) = (1r‘𝑅)) |
| 34 | 8, 33 | eqtrd 2764 | 1 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘1) = (1r‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 (class class class)co 7369 0cc0 11044 1c1 11045 / cdiv 11811 ℕcn 12162 ℤcz 12505 ℚcq 12883 gcd cgcd 16440 numercnumer 16679 denomcdenom 16680 Basecbs 17155 1rcur 20101 Ringcrg 20153 /rcdvr 20320 DivRingcdr 20649 ℤRHomczrh 21441 chrcchr 21443 ℚHomcqqh 33953 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 ax-mulf 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-q 12884 df-rp 12928 df-fz 13445 df-fl 13730 df-mod 13808 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-dvds 16199 df-gcd 16441 df-numer 16681 df-denom 16682 df-gz 16877 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-0g 17380 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-mhm 18692 df-grp 18850 df-minusg 18851 df-sbg 18852 df-mulg 18982 df-subg 19037 df-ghm 19127 df-od 19442 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-cring 20156 df-oppr 20257 df-dvdsr 20277 df-unit 20278 df-invr 20308 df-dvr 20321 df-rhm 20392 df-subrng 20466 df-subrg 20490 df-drng 20651 df-cnfld 21297 df-zring 21389 df-zrh 21445 df-chr 21447 df-qqh 33954 |
| This theorem is referenced by: qqhrhm 33972 |
| Copyright terms: Public domain | W3C validator |