![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > deg1lt | Structured version Visualization version GIF version |
Description: If the degree of a univariate polynomial is less than some index, then that coefficient must be zero. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
Ref | Expression |
---|---|
deg1leb.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
deg1leb.p | ⊢ 𝑃 = (Poly1‘𝑅) |
deg1leb.b | ⊢ 𝐵 = (Base‘𝑃) |
deg1leb.y | ⊢ 0 = (0g‘𝑅) |
deg1leb.a | ⊢ 𝐴 = (coe1‘𝐹) |
Ref | Expression |
---|---|
deg1lt | ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℕ0 ∧ (𝐷‘𝐹) < 𝐺) → (𝐴‘𝐺) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1138 | . 2 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℕ0 ∧ (𝐷‘𝐹) < 𝐺) → (𝐷‘𝐹) < 𝐺) | |
2 | breq2 5152 | . . . 4 ⊢ (𝑥 = 𝐺 → ((𝐷‘𝐹) < 𝑥 ↔ (𝐷‘𝐹) < 𝐺)) | |
3 | fveqeq2 6900 | . . . 4 ⊢ (𝑥 = 𝐺 → ((𝐴‘𝑥) = 0 ↔ (𝐴‘𝐺) = 0 )) | |
4 | 2, 3 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐺 → (((𝐷‘𝐹) < 𝑥 → (𝐴‘𝑥) = 0 ) ↔ ((𝐷‘𝐹) < 𝐺 → (𝐴‘𝐺) = 0 ))) |
5 | deg1leb.d | . . . . . . 7 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
6 | deg1leb.p | . . . . . . 7 ⊢ 𝑃 = (Poly1‘𝑅) | |
7 | deg1leb.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑃) | |
8 | 5, 6, 7 | deg1xrcl 25824 | . . . . . 6 ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) ∈ ℝ*) |
9 | 8 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℕ0 ∧ (𝐷‘𝐹) < 𝐺) → (𝐷‘𝐹) ∈ ℝ*) |
10 | 9 | xrleidd 13135 | . . . 4 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℕ0 ∧ (𝐷‘𝐹) < 𝐺) → (𝐷‘𝐹) ≤ (𝐷‘𝐹)) |
11 | simp1 1136 | . . . . 5 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℕ0 ∧ (𝐷‘𝐹) < 𝐺) → 𝐹 ∈ 𝐵) | |
12 | deg1leb.y | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
13 | deg1leb.a | . . . . . 6 ⊢ 𝐴 = (coe1‘𝐹) | |
14 | 5, 6, 7, 12, 13 | deg1leb 25837 | . . . . 5 ⊢ ((𝐹 ∈ 𝐵 ∧ (𝐷‘𝐹) ∈ ℝ*) → ((𝐷‘𝐹) ≤ (𝐷‘𝐹) ↔ ∀𝑥 ∈ ℕ0 ((𝐷‘𝐹) < 𝑥 → (𝐴‘𝑥) = 0 ))) |
15 | 11, 8, 14 | syl2anc2 585 | . . . 4 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℕ0 ∧ (𝐷‘𝐹) < 𝐺) → ((𝐷‘𝐹) ≤ (𝐷‘𝐹) ↔ ∀𝑥 ∈ ℕ0 ((𝐷‘𝐹) < 𝑥 → (𝐴‘𝑥) = 0 ))) |
16 | 10, 15 | mpbid 231 | . . 3 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℕ0 ∧ (𝐷‘𝐹) < 𝐺) → ∀𝑥 ∈ ℕ0 ((𝐷‘𝐹) < 𝑥 → (𝐴‘𝑥) = 0 )) |
17 | simp2 1137 | . . 3 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℕ0 ∧ (𝐷‘𝐹) < 𝐺) → 𝐺 ∈ ℕ0) | |
18 | 4, 16, 17 | rspcdva 3613 | . 2 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℕ0 ∧ (𝐷‘𝐹) < 𝐺) → ((𝐷‘𝐹) < 𝐺 → (𝐴‘𝐺) = 0 )) |
19 | 1, 18 | mpd 15 | 1 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℕ0 ∧ (𝐷‘𝐹) < 𝐺) → (𝐴‘𝐺) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∀wral 3061 class class class wbr 5148 ‘cfv 6543 ℝ*cxr 11251 < clt 11252 ≤ cle 11253 ℕ0cn0 12476 Basecbs 17148 0gc0g 17389 Poly1cpl1 21920 coe1cco1 21921 deg1 cdg1 25793 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 ax-addf 11191 ax-mulf 11192 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-of 7672 df-om 7858 df-1st 7977 df-2nd 7978 df-supp 8149 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-sup 9439 df-oi 9507 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-fz 13489 df-fzo 13632 df-seq 13971 df-hash 14295 df-struct 17084 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-mulr 17215 df-starv 17216 df-sca 17217 df-vsca 17218 df-tset 17220 df-ple 17221 df-ds 17223 df-unif 17224 df-0g 17391 df-gsum 17392 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-submnd 18706 df-grp 18858 df-minusg 18859 df-mulg 18987 df-cntz 19222 df-cmn 19691 df-abl 19692 df-mgp 20029 df-ur 20076 df-ring 20129 df-cring 20130 df-cnfld 21145 df-psr 21681 df-mpl 21683 df-opsr 21685 df-psr1 21923 df-ply1 21925 df-coe1 21926 df-mdeg 25794 df-deg1 25795 |
This theorem is referenced by: deg1ge 25840 coe1mul3 25841 deg1add 25845 ply1degltdimlem 32983 |
Copyright terms: Public domain | W3C validator |