| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0cni | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer is a complex number. (Contributed by NM, 14-May-2003.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 8-Oct-2022.) |
| Ref | Expression |
|---|---|
| nn0rei.1 | ⊢ 𝐴 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| nn0cni | ⊢ 𝐴 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0sscn 12423 | . 2 ⊢ ℕ0 ⊆ ℂ | |
| 2 | nn0rei.1 | . 2 ⊢ 𝐴 ∈ ℕ0 | |
| 3 | 1, 2 | sselii 3940 | 1 ⊢ 𝐴 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ℂcc 11042 ℕ0cn0 12418 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-mulcl 11106 ax-i2m1 11112 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-nn 12163 df-n0 12419 |
| This theorem is referenced by: num0u 12636 num0h 12637 numsuc 12639 numsucc 12665 numma 12669 nummac 12670 numma2c 12671 numadd 12672 numaddc 12673 nummul1c 12674 nummul2c 12675 decrmanc 12682 decrmac 12683 decaddi 12685 decaddci 12686 decsubi 12688 decmul1 12689 decmulnc 12692 11multnc 12693 decmul10add 12694 6p5lem 12695 4t3lem 12722 7t3e21 12735 7t6e42 12738 8t3e24 12741 8t4e32 12742 8t8e64 12746 9t3e27 12748 9t4e36 12749 9t5e45 12750 9t6e54 12751 9t7e63 12752 9t11e99 12755 decbin0 12765 decbin2 12766 sq10 14205 3dec 14207 nn0le2msqi 14208 nn0opthlem1 14209 nn0opthi 14211 nn0opth2i 14212 faclbnd4lem1 14234 cats1fvn 14800 bpoly4 16001 fsumcube 16002 3dvdsdec 16278 3dvds2dec 16279 divalglem2 16341 3lcm2e6 16678 phiprmpw 16722 dec5dvds 17011 dec5dvds2 17012 dec2nprm 17014 modxai 17015 mod2xi 17016 mod2xnegi 17018 modsubi 17019 gcdi 17020 numexp0 17022 numexp1 17023 numexpp1 17024 numexp2x 17025 decsplit0b 17026 decsplit0 17027 decsplit1 17028 decsplit 17029 karatsuba 17030 2exp8 17035 prmlem2 17066 83prm 17069 139prm 17070 163prm 17071 631prm 17073 1259lem1 17077 1259lem2 17078 1259lem3 17079 1259lem4 17080 1259lem5 17081 1259prm 17082 2503lem1 17083 2503lem2 17084 2503lem3 17085 2503prm 17086 4001lem1 17087 4001lem2 17088 4001lem3 17089 4001lem4 17090 4001prm 17091 psdmul 22029 log2ublem1 26832 log2ublem2 26833 log2ublem3 26834 log2ub 26835 birthday 26840 ppidif 27049 bpos1lem 27169 9p10ne21 30372 dfdec100 32728 dp20u 32771 dp20h 32772 dpmul10 32788 dpmul100 32790 dp3mul10 32791 dpmul1000 32792 dpexpp1 32801 0dp2dp 32802 dpadd2 32803 dpadd 32804 dpmul 32806 dpmul4 32807 lmatfvlem 33778 ballotlemfp1 34456 ballotth 34502 reprlt 34583 hgt750lemd 34612 hgt750lem2 34616 subfacp1lem1 35139 poimirlem26 37613 poimirlem28 37615 420gcd8e4 41967 lcmeprodgcdi 41968 12lcm5e60 41969 60lcm7e420 41971 3exp7 42014 3lexlogpow5ineq1 42015 3lexlogpow5ineq5 42021 aks4d1p1p7 42035 aks4d1p1 42037 decaddcom 42245 sqn5i 42246 decpmulnc 42248 decpmul 42249 sqdeccom12 42250 sq3deccom12 42251 235t711 42266 ex-decpmul 42267 sq45 42632 sum9cubes 42633 resqrtvalex 43607 imsqrtvalex 43608 inductionexd 44117 unitadd 44157 fmtno5lem4 47530 257prm 47535 fmtno4prmfac 47546 fmtno5fac 47556 139prmALT 47570 127prm 47573 m11nprm 47575 11t31e341 47706 2exp340mod341 47707 ackval3012 48654 |
| Copyright terms: Public domain | W3C validator |