![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn0cni | Structured version Visualization version GIF version |
Description: A nonnegative integer is a complex number. (Contributed by NM, 14-May-2003.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 8-Oct-2022.) |
Ref | Expression |
---|---|
nn0rei.1 | ⊢ 𝐴 ∈ ℕ0 |
Ref | Expression |
---|---|
nn0cni | ⊢ 𝐴 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0sscn 12558 | . 2 ⊢ ℕ0 ⊆ ℂ | |
2 | nn0rei.1 | . 2 ⊢ 𝐴 ∈ ℕ0 | |
3 | 1, 2 | sselii 4005 | 1 ⊢ 𝐴 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ℂcc 11182 ℕ0cn0 12553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-mulcl 11246 ax-i2m1 11252 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-nn 12294 df-n0 12554 |
This theorem is referenced by: nn0le2xi 12607 num0u 12769 num0h 12770 numsuc 12772 numsucc 12798 numma 12802 nummac 12803 numma2c 12804 numadd 12805 numaddc 12806 nummul1c 12807 nummul2c 12808 decrmanc 12815 decrmac 12816 decaddi 12818 decaddci 12819 decsubi 12821 decmul1 12822 decmulnc 12825 11multnc 12826 decmul10add 12827 6p5lem 12828 4t3lem 12855 7t3e21 12868 7t6e42 12871 8t3e24 12874 8t4e32 12875 8t8e64 12879 9t3e27 12881 9t4e36 12882 9t5e45 12883 9t6e54 12884 9t7e63 12885 9t11e99 12888 decbin0 12898 decbin2 12899 sq10 14313 3dec 14315 nn0le2msqi 14316 nn0opthlem1 14317 nn0opthi 14319 nn0opth2i 14320 faclbnd4lem1 14342 cats1fvn 14907 bpoly4 16107 fsumcube 16108 3dvdsdec 16380 3dvds2dec 16381 divalglem2 16443 3lcm2e6 16779 phiprmpw 16823 dec5dvds 17111 dec5dvds2 17112 dec2nprm 17114 modxai 17115 mod2xi 17116 mod2xnegi 17118 modsubi 17119 gcdi 17120 decexp2 17122 numexp0 17123 numexp1 17124 numexpp1 17125 numexp2x 17126 decsplit0b 17127 decsplit0 17128 decsplit1 17129 decsplit 17130 karatsuba 17131 2exp8 17136 prmlem2 17167 83prm 17170 139prm 17171 163prm 17172 631prm 17174 1259lem1 17178 1259lem2 17179 1259lem3 17180 1259lem4 17181 1259lem5 17182 1259prm 17183 2503lem1 17184 2503lem2 17185 2503lem3 17186 2503prm 17187 4001lem1 17188 4001lem2 17189 4001lem3 17190 4001lem4 17191 4001prm 17192 psdmul 22193 log2ublem1 27007 log2ublem2 27008 log2ublem3 27009 log2ub 27010 birthday 27015 ppidif 27224 bpos1lem 27344 9p10ne21 30502 dfdec100 32834 dp20u 32842 dp20h 32843 dpmul10 32859 dpmul100 32861 dp3mul10 32862 dpmul1000 32863 dpexpp1 32872 0dp2dp 32873 dpadd2 32874 dpadd 32875 dpmul 32877 dpmul4 32878 lmatfvlem 33761 ballotlemfp1 34456 ballotth 34502 reprlt 34596 hgt750lemd 34625 hgt750lem2 34629 subfacp1lem1 35147 poimirlem26 37606 poimirlem28 37608 420gcd8e4 41963 lcmeprodgcdi 41964 12lcm5e60 41965 60lcm7e420 41967 3exp7 42010 3lexlogpow5ineq1 42011 3lexlogpow5ineq5 42017 aks4d1p1p7 42031 aks4d1p1 42033 decaddcom 42273 sqn5i 42274 decpmulnc 42276 decpmul 42277 sqdeccom12 42278 sq3deccom12 42279 235t711 42293 ex-decpmul 42294 sq45 42626 sum9cubes 42627 resqrtvalex 43607 imsqrtvalex 43608 inductionexd 44117 unitadd 44157 fmtno5lem4 47430 257prm 47435 fmtno4prmfac 47446 fmtno5fac 47456 139prmALT 47470 127prm 47473 m11nprm 47475 11t31e341 47606 2exp340mod341 47607 ackval3012 48426 |
Copyright terms: Public domain | W3C validator |