| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0cni | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer is a complex number. (Contributed by NM, 14-May-2003.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 8-Oct-2022.) |
| Ref | Expression |
|---|---|
| nn0rei.1 | ⊢ 𝐴 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| nn0cni | ⊢ 𝐴 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0sscn 12397 | . 2 ⊢ ℕ0 ⊆ ℂ | |
| 2 | nn0rei.1 | . 2 ⊢ 𝐴 ∈ ℕ0 | |
| 3 | 1, 2 | sselii 3927 | 1 ⊢ 𝐴 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 ℂcc 11015 ℕ0cn0 12392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-mulcl 11079 ax-i2m1 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-nn 12137 df-n0 12393 |
| This theorem is referenced by: num0u 12609 num0h 12610 numsuc 12612 numsucc 12638 numma 12642 nummac 12643 numma2c 12644 numadd 12645 numaddc 12646 nummul1c 12647 nummul2c 12648 decrmanc 12655 decrmac 12656 decaddi 12658 decaddci 12659 decsubi 12661 decmul1 12662 decmulnc 12665 11multnc 12666 decmul10add 12667 6p5lem 12668 4t3lem 12695 7t3e21 12708 7t6e42 12711 8t3e24 12714 8t4e32 12715 8t8e64 12719 9t3e27 12721 9t4e36 12722 9t5e45 12723 9t6e54 12724 9t7e63 12725 9t11e99 12728 decbin0 12738 decbin2 12739 sq10 14178 3dec 14180 nn0le2msqi 14181 nn0opthlem1 14182 nn0opthi 14184 nn0opth2i 14185 faclbnd4lem1 14207 cats1fvn 14772 bpoly4 15973 fsumcube 15974 3dvdsdec 16250 3dvds2dec 16251 divalglem2 16313 3lcm2e6 16650 phiprmpw 16694 dec5dvds 16983 dec5dvds2 16984 dec2nprm 16986 modxai 16987 mod2xi 16988 mod2xnegi 16990 modsubi 16991 gcdi 16992 numexp0 16994 numexp1 16995 numexpp1 16996 numexp2x 16997 decsplit0b 16998 decsplit0 16999 decsplit1 17000 decsplit 17001 karatsuba 17002 2exp8 17007 prmlem2 17038 83prm 17041 139prm 17042 163prm 17043 631prm 17045 1259lem1 17049 1259lem2 17050 1259lem3 17051 1259lem4 17052 1259lem5 17053 1259prm 17054 2503lem1 17055 2503lem2 17056 2503lem3 17057 2503prm 17058 4001lem1 17059 4001lem2 17060 4001lem3 17061 4001lem4 17062 4001prm 17063 psdmul 22100 log2ublem1 26903 log2ublem2 26904 log2ublem3 26905 log2ub 26906 birthday 26911 ppidif 27120 bpos1lem 27240 9p10ne21 30471 dfdec100 32839 dp20u 32887 dp20h 32888 dpmul10 32904 dpmul100 32906 dp3mul10 32907 dpmul1000 32908 dpexpp1 32917 0dp2dp 32918 dpadd2 32919 dpadd 32920 dpmul 32922 dpmul4 32923 lmatfvlem 33900 ballotlemfp1 34577 ballotth 34623 reprlt 34704 hgt750lemd 34733 hgt750lem2 34737 subfacp1lem1 35295 poimirlem26 37759 poimirlem28 37761 420gcd8e4 42172 lcmeprodgcdi 42173 12lcm5e60 42174 60lcm7e420 42176 3exp7 42219 3lexlogpow5ineq1 42220 3lexlogpow5ineq5 42226 aks4d1p1p7 42240 aks4d1p1 42242 decaddcom 42454 sqn5i 42455 decpmulnc 42457 decpmul 42458 sqdeccom12 42459 sq3deccom12 42460 235t711 42475 ex-decpmul 42476 sq45 42829 sum9cubes 42830 resqrtvalex 43802 imsqrtvalex 43803 inductionexd 44312 unitadd 44352 fmtno5lem4 47718 257prm 47723 fmtno4prmfac 47734 fmtno5fac 47744 139prmALT 47758 127prm 47761 m11nprm 47763 11t31e341 47894 2exp340mod341 47895 ackval3012 48854 |
| Copyright terms: Public domain | W3C validator |