| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0cni | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer is a complex number. (Contributed by NM, 14-May-2003.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 8-Oct-2022.) |
| Ref | Expression |
|---|---|
| nn0rei.1 | ⊢ 𝐴 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| nn0cni | ⊢ 𝐴 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0sscn 12381 | . 2 ⊢ ℕ0 ⊆ ℂ | |
| 2 | nn0rei.1 | . 2 ⊢ 𝐴 ∈ ℕ0 | |
| 3 | 1, 2 | sselii 3926 | 1 ⊢ 𝐴 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 ℂcc 10999 ℕ0cn0 12376 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-mulcl 11063 ax-i2m1 11069 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-nn 12121 df-n0 12377 |
| This theorem is referenced by: num0u 12594 num0h 12595 numsuc 12597 numsucc 12623 numma 12627 nummac 12628 numma2c 12629 numadd 12630 numaddc 12631 nummul1c 12632 nummul2c 12633 decrmanc 12640 decrmac 12641 decaddi 12643 decaddci 12644 decsubi 12646 decmul1 12647 decmulnc 12650 11multnc 12651 decmul10add 12652 6p5lem 12653 4t3lem 12680 7t3e21 12693 7t6e42 12696 8t3e24 12699 8t4e32 12700 8t8e64 12704 9t3e27 12706 9t4e36 12707 9t5e45 12708 9t6e54 12709 9t7e63 12710 9t11e99 12713 decbin0 12723 decbin2 12724 sq10 14166 3dec 14168 nn0le2msqi 14169 nn0opthlem1 14170 nn0opthi 14172 nn0opth2i 14173 faclbnd4lem1 14195 cats1fvn 14760 bpoly4 15961 fsumcube 15962 3dvdsdec 16238 3dvds2dec 16239 divalglem2 16301 3lcm2e6 16638 phiprmpw 16682 dec5dvds 16971 dec5dvds2 16972 dec2nprm 16974 modxai 16975 mod2xi 16976 mod2xnegi 16978 modsubi 16979 gcdi 16980 numexp0 16982 numexp1 16983 numexpp1 16984 numexp2x 16985 decsplit0b 16986 decsplit0 16987 decsplit1 16988 decsplit 16989 karatsuba 16990 2exp8 16995 prmlem2 17026 83prm 17029 139prm 17030 163prm 17031 631prm 17033 1259lem1 17037 1259lem2 17038 1259lem3 17039 1259lem4 17040 1259lem5 17041 1259prm 17042 2503lem1 17043 2503lem2 17044 2503lem3 17045 2503prm 17046 4001lem1 17047 4001lem2 17048 4001lem3 17049 4001lem4 17050 4001prm 17051 psdmul 22076 log2ublem1 26878 log2ublem2 26879 log2ublem3 26880 log2ub 26881 birthday 26886 ppidif 27095 bpos1lem 27215 9p10ne21 30442 dfdec100 32805 dp20u 32850 dp20h 32851 dpmul10 32867 dpmul100 32869 dp3mul10 32870 dpmul1000 32871 dpexpp1 32880 0dp2dp 32881 dpadd2 32882 dpadd 32883 dpmul 32885 dpmul4 32886 lmatfvlem 33820 ballotlemfp1 34497 ballotth 34543 reprlt 34624 hgt750lemd 34653 hgt750lem2 34657 subfacp1lem1 35215 poimirlem26 37686 poimirlem28 37688 420gcd8e4 42039 lcmeprodgcdi 42040 12lcm5e60 42041 60lcm7e420 42043 3exp7 42086 3lexlogpow5ineq1 42087 3lexlogpow5ineq5 42093 aks4d1p1p7 42107 aks4d1p1 42109 decaddcom 42317 sqn5i 42318 decpmulnc 42320 decpmul 42321 sqdeccom12 42322 sq3deccom12 42323 235t711 42338 ex-decpmul 42339 sq45 42704 sum9cubes 42705 resqrtvalex 43678 imsqrtvalex 43679 inductionexd 44188 unitadd 44228 fmtno5lem4 47587 257prm 47592 fmtno4prmfac 47603 fmtno5fac 47613 139prmALT 47627 127prm 47630 m11nprm 47632 11t31e341 47763 2exp340mod341 47764 ackval3012 48724 |
| Copyright terms: Public domain | W3C validator |