| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0cni | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer is a complex number. (Contributed by NM, 14-May-2003.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 8-Oct-2022.) |
| Ref | Expression |
|---|---|
| nn0rei.1 | ⊢ 𝐴 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| nn0cni | ⊢ 𝐴 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0sscn 12407 | . 2 ⊢ ℕ0 ⊆ ℂ | |
| 2 | nn0rei.1 | . 2 ⊢ 𝐴 ∈ ℕ0 | |
| 3 | 1, 2 | sselii 3934 | 1 ⊢ 𝐴 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ℂcc 11026 ℕ0cn0 12402 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-mulcl 11090 ax-i2m1 11096 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-nn 12147 df-n0 12403 |
| This theorem is referenced by: num0u 12620 num0h 12621 numsuc 12623 numsucc 12649 numma 12653 nummac 12654 numma2c 12655 numadd 12656 numaddc 12657 nummul1c 12658 nummul2c 12659 decrmanc 12666 decrmac 12667 decaddi 12669 decaddci 12670 decsubi 12672 decmul1 12673 decmulnc 12676 11multnc 12677 decmul10add 12678 6p5lem 12679 4t3lem 12706 7t3e21 12719 7t6e42 12722 8t3e24 12725 8t4e32 12726 8t8e64 12730 9t3e27 12732 9t4e36 12733 9t5e45 12734 9t6e54 12735 9t7e63 12736 9t11e99 12739 decbin0 12749 decbin2 12750 sq10 14189 3dec 14191 nn0le2msqi 14192 nn0opthlem1 14193 nn0opthi 14195 nn0opth2i 14196 faclbnd4lem1 14218 cats1fvn 14783 bpoly4 15984 fsumcube 15985 3dvdsdec 16261 3dvds2dec 16262 divalglem2 16324 3lcm2e6 16661 phiprmpw 16705 dec5dvds 16994 dec5dvds2 16995 dec2nprm 16997 modxai 16998 mod2xi 16999 mod2xnegi 17001 modsubi 17002 gcdi 17003 numexp0 17005 numexp1 17006 numexpp1 17007 numexp2x 17008 decsplit0b 17009 decsplit0 17010 decsplit1 17011 decsplit 17012 karatsuba 17013 2exp8 17018 prmlem2 17049 83prm 17052 139prm 17053 163prm 17054 631prm 17056 1259lem1 17060 1259lem2 17061 1259lem3 17062 1259lem4 17063 1259lem5 17064 1259prm 17065 2503lem1 17066 2503lem2 17067 2503lem3 17068 2503prm 17069 4001lem1 17070 4001lem2 17071 4001lem3 17072 4001lem4 17073 4001prm 17074 psdmul 22069 log2ublem1 26872 log2ublem2 26873 log2ublem3 26874 log2ub 26875 birthday 26880 ppidif 27089 bpos1lem 27209 9p10ne21 30432 dfdec100 32788 dp20u 32831 dp20h 32832 dpmul10 32848 dpmul100 32850 dp3mul10 32851 dpmul1000 32852 dpexpp1 32861 0dp2dp 32862 dpadd2 32863 dpadd 32864 dpmul 32866 dpmul4 32867 lmatfvlem 33784 ballotlemfp1 34462 ballotth 34508 reprlt 34589 hgt750lemd 34618 hgt750lem2 34622 subfacp1lem1 35154 poimirlem26 37628 poimirlem28 37630 420gcd8e4 41982 lcmeprodgcdi 41983 12lcm5e60 41984 60lcm7e420 41986 3exp7 42029 3lexlogpow5ineq1 42030 3lexlogpow5ineq5 42036 aks4d1p1p7 42050 aks4d1p1 42052 decaddcom 42260 sqn5i 42261 decpmulnc 42263 decpmul 42264 sqdeccom12 42265 sq3deccom12 42266 235t711 42281 ex-decpmul 42282 sq45 42647 sum9cubes 42648 resqrtvalex 43621 imsqrtvalex 43622 inductionexd 44131 unitadd 44171 fmtno5lem4 47544 257prm 47549 fmtno4prmfac 47560 fmtno5fac 47570 139prmALT 47584 127prm 47587 m11nprm 47589 11t31e341 47720 2exp340mod341 47721 ackval3012 48681 |
| Copyright terms: Public domain | W3C validator |