Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nn0cni | Structured version Visualization version GIF version |
Description: A nonnegative integer is a complex number. (Contributed by NM, 14-May-2003.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 8-Oct-2022.) |
Ref | Expression |
---|---|
nn0rei.1 | ⊢ 𝐴 ∈ ℕ0 |
Ref | Expression |
---|---|
nn0cni | ⊢ 𝐴 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0sscn 12168 | . 2 ⊢ ℕ0 ⊆ ℂ | |
2 | nn0rei.1 | . 2 ⊢ 𝐴 ∈ ℕ0 | |
3 | 1, 2 | sselii 3914 | 1 ⊢ 𝐴 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ℂcc 10800 ℕ0cn0 12163 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-mulcl 10864 ax-i2m1 10870 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-nn 11904 df-n0 12164 |
This theorem is referenced by: nn0le2xi 12217 num0u 12377 num0h 12378 numsuc 12380 numsucc 12406 numma 12410 nummac 12411 numma2c 12412 numadd 12413 numaddc 12414 nummul1c 12415 nummul2c 12416 decrmanc 12423 decrmac 12424 decaddi 12426 decaddci 12427 decsubi 12429 decmul1 12430 decmulnc 12433 11multnc 12434 decmul10add 12435 6p5lem 12436 4t3lem 12463 7t3e21 12476 7t6e42 12479 8t3e24 12482 8t4e32 12483 8t8e64 12487 9t3e27 12489 9t4e36 12490 9t5e45 12491 9t6e54 12492 9t7e63 12493 9t11e99 12496 decbin0 12506 decbin2 12507 sq10 13906 3dec 13908 nn0le2msqi 13909 nn0opthlem1 13910 nn0opthi 13912 nn0opth2i 13913 faclbnd4lem1 13935 cats1fvn 14499 bpoly4 15697 fsumcube 15698 3dvdsdec 15969 3dvds2dec 15970 divalglem2 16032 3lcm2e6 16364 phiprmpw 16405 dec5dvds 16693 dec5dvds2 16694 dec2nprm 16696 modxai 16697 mod2xi 16698 mod2xnegi 16700 modsubi 16701 gcdi 16702 decexp2 16704 numexp0 16705 numexp1 16706 numexpp1 16707 numexp2x 16708 decsplit0b 16709 decsplit0 16710 decsplit1 16711 decsplit 16712 karatsuba 16713 2exp8 16718 prmlem2 16749 83prm 16752 139prm 16753 163prm 16754 631prm 16756 1259lem1 16760 1259lem2 16761 1259lem3 16762 1259lem4 16763 1259lem5 16764 1259prm 16765 2503lem1 16766 2503lem2 16767 2503lem3 16768 2503prm 16769 4001lem1 16770 4001lem2 16771 4001lem3 16772 4001lem4 16773 4001prm 16774 log2ublem1 26001 log2ublem2 26002 log2ublem3 26003 log2ub 26004 birthday 26009 ppidif 26217 bpos1lem 26335 9p10ne21 28735 dfdec100 31046 dp20u 31054 dp20h 31055 dpmul10 31071 dpmul100 31073 dp3mul10 31074 dpmul1000 31075 dpexpp1 31084 0dp2dp 31085 dpadd2 31086 dpadd 31087 dpmul 31089 dpmul4 31090 lmatfvlem 31667 ballotlemfp1 32358 ballotth 32404 reprlt 32499 hgt750lemd 32528 hgt750lem2 32532 subfacp1lem1 33041 poimirlem26 35730 poimirlem28 35732 420gcd8e4 39942 lcmeprodgcdi 39943 12lcm5e60 39944 60lcm7e420 39946 3exp7 39989 3lexlogpow5ineq1 39990 3lexlogpow5ineq5 39996 aks4d1p1p7 40010 aks4d1p1 40012 decaddcom 40233 sqn5i 40234 decpmulnc 40236 decpmul 40237 sqdeccom12 40238 sq3deccom12 40239 235t711 40240 ex-decpmul 40241 resqrtvalex 41142 imsqrtvalex 41143 inductionexd 41654 unitadd 41695 fmtno5lem4 44896 257prm 44901 fmtno4prmfac 44912 fmtno5fac 44922 139prmALT 44936 127prm 44939 m11nprm 44941 11t31e341 45072 2exp340mod341 45073 ackval3012 45926 |
Copyright terms: Public domain | W3C validator |