![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn0cni | Structured version Visualization version GIF version |
Description: A nonnegative integer is a complex number. (Contributed by NM, 14-May-2003.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 8-Oct-2022.) |
Ref | Expression |
---|---|
nn0rei.1 | ⊢ 𝐴 ∈ ℕ0 |
Ref | Expression |
---|---|
nn0cni | ⊢ 𝐴 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0sscn 12477 | . 2 ⊢ ℕ0 ⊆ ℂ | |
2 | nn0rei.1 | . 2 ⊢ 𝐴 ∈ ℕ0 | |
3 | 1, 2 | sselii 3980 | 1 ⊢ 𝐴 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 ℂcc 11108 ℕ0cn0 12472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-mulcl 11172 ax-i2m1 11178 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-nn 12213 df-n0 12473 |
This theorem is referenced by: nn0le2xi 12526 num0u 12688 num0h 12689 numsuc 12691 numsucc 12717 numma 12721 nummac 12722 numma2c 12723 numadd 12724 numaddc 12725 nummul1c 12726 nummul2c 12727 decrmanc 12734 decrmac 12735 decaddi 12737 decaddci 12738 decsubi 12740 decmul1 12741 decmulnc 12744 11multnc 12745 decmul10add 12746 6p5lem 12747 4t3lem 12774 7t3e21 12787 7t6e42 12790 8t3e24 12793 8t4e32 12794 8t8e64 12798 9t3e27 12800 9t4e36 12801 9t5e45 12802 9t6e54 12803 9t7e63 12804 9t11e99 12807 decbin0 12817 decbin2 12818 sq10 14224 3dec 14226 nn0le2msqi 14227 nn0opthlem1 14228 nn0opthi 14230 nn0opth2i 14231 faclbnd4lem1 14253 cats1fvn 14809 bpoly4 16003 fsumcube 16004 3dvdsdec 16275 3dvds2dec 16276 divalglem2 16338 3lcm2e6 16668 phiprmpw 16709 dec5dvds 16997 dec5dvds2 16998 dec2nprm 17000 modxai 17001 mod2xi 17002 mod2xnegi 17004 modsubi 17005 gcdi 17006 decexp2 17008 numexp0 17009 numexp1 17010 numexpp1 17011 numexp2x 17012 decsplit0b 17013 decsplit0 17014 decsplit1 17015 decsplit 17016 karatsuba 17017 2exp8 17022 prmlem2 17053 83prm 17056 139prm 17057 163prm 17058 631prm 17060 1259lem1 17064 1259lem2 17065 1259lem3 17066 1259lem4 17067 1259lem5 17068 1259prm 17069 2503lem1 17070 2503lem2 17071 2503lem3 17072 2503prm 17073 4001lem1 17074 4001lem2 17075 4001lem3 17076 4001lem4 17077 4001prm 17078 log2ublem1 26451 log2ublem2 26452 log2ublem3 26453 log2ub 26454 birthday 26459 ppidif 26667 bpos1lem 26785 9p10ne21 29754 dfdec100 32067 dp20u 32075 dp20h 32076 dpmul10 32092 dpmul100 32094 dp3mul10 32095 dpmul1000 32096 dpexpp1 32105 0dp2dp 32106 dpadd2 32107 dpadd 32108 dpmul 32110 dpmul4 32111 lmatfvlem 32826 ballotlemfp1 33521 ballotth 33567 reprlt 33662 hgt750lemd 33691 hgt750lem2 33695 subfacp1lem1 34201 poimirlem26 36562 poimirlem28 36564 420gcd8e4 40919 lcmeprodgcdi 40920 12lcm5e60 40921 60lcm7e420 40923 3exp7 40966 3lexlogpow5ineq1 40967 3lexlogpow5ineq5 40973 aks4d1p1p7 40987 aks4d1p1 40989 decaddcom 41244 sqn5i 41245 decpmulnc 41247 decpmul 41248 sqdeccom12 41249 sq3deccom12 41250 235t711 41253 ex-decpmul 41254 sq45 41461 sum9cubes 41462 resqrtvalex 42444 imsqrtvalex 42445 inductionexd 42954 unitadd 42995 fmtno5lem4 46272 257prm 46277 fmtno4prmfac 46288 fmtno5fac 46298 139prmALT 46312 127prm 46315 m11nprm 46317 11t31e341 46448 2exp340mod341 46449 ackval3012 47426 |
Copyright terms: Public domain | W3C validator |