Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nn0cni | Structured version Visualization version GIF version |
Description: A nonnegative integer is a complex number. (Contributed by NM, 14-May-2003.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 8-Oct-2022.) |
Ref | Expression |
---|---|
nn0rei.1 | ⊢ 𝐴 ∈ ℕ0 |
Ref | Expression |
---|---|
nn0cni | ⊢ 𝐴 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0sscn 12238 | . 2 ⊢ ℕ0 ⊆ ℂ | |
2 | nn0rei.1 | . 2 ⊢ 𝐴 ∈ ℕ0 | |
3 | 1, 2 | sselii 3918 | 1 ⊢ 𝐴 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ℂcc 10869 ℕ0cn0 12233 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-mulcl 10933 ax-i2m1 10939 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-nn 11974 df-n0 12234 |
This theorem is referenced by: nn0le2xi 12287 num0u 12448 num0h 12449 numsuc 12451 numsucc 12477 numma 12481 nummac 12482 numma2c 12483 numadd 12484 numaddc 12485 nummul1c 12486 nummul2c 12487 decrmanc 12494 decrmac 12495 decaddi 12497 decaddci 12498 decsubi 12500 decmul1 12501 decmulnc 12504 11multnc 12505 decmul10add 12506 6p5lem 12507 4t3lem 12534 7t3e21 12547 7t6e42 12550 8t3e24 12553 8t4e32 12554 8t8e64 12558 9t3e27 12560 9t4e36 12561 9t5e45 12562 9t6e54 12563 9t7e63 12564 9t11e99 12567 decbin0 12577 decbin2 12578 sq10 13978 3dec 13980 nn0le2msqi 13981 nn0opthlem1 13982 nn0opthi 13984 nn0opth2i 13985 faclbnd4lem1 14007 cats1fvn 14571 bpoly4 15769 fsumcube 15770 3dvdsdec 16041 3dvds2dec 16042 divalglem2 16104 3lcm2e6 16436 phiprmpw 16477 dec5dvds 16765 dec5dvds2 16766 dec2nprm 16768 modxai 16769 mod2xi 16770 mod2xnegi 16772 modsubi 16773 gcdi 16774 decexp2 16776 numexp0 16777 numexp1 16778 numexpp1 16779 numexp2x 16780 decsplit0b 16781 decsplit0 16782 decsplit1 16783 decsplit 16784 karatsuba 16785 2exp8 16790 prmlem2 16821 83prm 16824 139prm 16825 163prm 16826 631prm 16828 1259lem1 16832 1259lem2 16833 1259lem3 16834 1259lem4 16835 1259lem5 16836 1259prm 16837 2503lem1 16838 2503lem2 16839 2503lem3 16840 2503prm 16841 4001lem1 16842 4001lem2 16843 4001lem3 16844 4001lem4 16845 4001prm 16846 log2ublem1 26096 log2ublem2 26097 log2ublem3 26098 log2ub 26099 birthday 26104 ppidif 26312 bpos1lem 26430 9p10ne21 28834 dfdec100 31144 dp20u 31152 dp20h 31153 dpmul10 31169 dpmul100 31171 dp3mul10 31172 dpmul1000 31173 dpexpp1 31182 0dp2dp 31183 dpadd2 31184 dpadd 31185 dpmul 31187 dpmul4 31188 lmatfvlem 31765 ballotlemfp1 32458 ballotth 32504 reprlt 32599 hgt750lemd 32628 hgt750lem2 32632 subfacp1lem1 33141 poimirlem26 35803 poimirlem28 35805 420gcd8e4 40014 lcmeprodgcdi 40015 12lcm5e60 40016 60lcm7e420 40018 3exp7 40061 3lexlogpow5ineq1 40062 3lexlogpow5ineq5 40068 aks4d1p1p7 40082 aks4d1p1 40084 decaddcom 40312 sqn5i 40313 decpmulnc 40315 decpmul 40316 sqdeccom12 40317 sq3deccom12 40318 235t711 40319 ex-decpmul 40320 resqrtvalex 41253 imsqrtvalex 41254 inductionexd 41765 unitadd 41806 fmtno5lem4 45008 257prm 45013 fmtno4prmfac 45024 fmtno5fac 45034 139prmALT 45048 127prm 45051 m11nprm 45053 11t31e341 45184 2exp340mod341 45185 ackval3012 46038 |
Copyright terms: Public domain | W3C validator |