| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0cni | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer is a complex number. (Contributed by NM, 14-May-2003.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 8-Oct-2022.) |
| Ref | Expression |
|---|---|
| nn0rei.1 | ⊢ 𝐴 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| nn0cni | ⊢ 𝐴 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0sscn 12504 | . 2 ⊢ ℕ0 ⊆ ℂ | |
| 2 | nn0rei.1 | . 2 ⊢ 𝐴 ∈ ℕ0 | |
| 3 | 1, 2 | sselii 3955 | 1 ⊢ 𝐴 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 ℂcc 11125 ℕ0cn0 12499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7727 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-mulcl 11189 ax-i2m1 11195 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-nn 12239 df-n0 12500 |
| This theorem is referenced by: num0u 12717 num0h 12718 numsuc 12720 numsucc 12746 numma 12750 nummac 12751 numma2c 12752 numadd 12753 numaddc 12754 nummul1c 12755 nummul2c 12756 decrmanc 12763 decrmac 12764 decaddi 12766 decaddci 12767 decsubi 12769 decmul1 12770 decmulnc 12773 11multnc 12774 decmul10add 12775 6p5lem 12776 4t3lem 12803 7t3e21 12816 7t6e42 12819 8t3e24 12822 8t4e32 12823 8t8e64 12827 9t3e27 12829 9t4e36 12830 9t5e45 12831 9t6e54 12832 9t7e63 12833 9t11e99 12836 decbin0 12846 decbin2 12847 sq10 14280 3dec 14282 nn0le2msqi 14283 nn0opthlem1 14284 nn0opthi 14286 nn0opth2i 14287 faclbnd4lem1 14309 cats1fvn 14875 bpoly4 16073 fsumcube 16074 3dvdsdec 16349 3dvds2dec 16350 divalglem2 16412 3lcm2e6 16749 phiprmpw 16793 dec5dvds 17082 dec5dvds2 17083 dec2nprm 17085 modxai 17086 mod2xi 17087 mod2xnegi 17089 modsubi 17090 gcdi 17091 numexp0 17093 numexp1 17094 numexpp1 17095 numexp2x 17096 decsplit0b 17097 decsplit0 17098 decsplit1 17099 decsplit 17100 karatsuba 17101 2exp8 17106 prmlem2 17137 83prm 17140 139prm 17141 163prm 17142 631prm 17144 1259lem1 17148 1259lem2 17149 1259lem3 17150 1259lem4 17151 1259lem5 17152 1259prm 17153 2503lem1 17154 2503lem2 17155 2503lem3 17156 2503prm 17157 4001lem1 17158 4001lem2 17159 4001lem3 17160 4001lem4 17161 4001prm 17162 psdmul 22102 log2ublem1 26906 log2ublem2 26907 log2ublem3 26908 log2ub 26909 birthday 26914 ppidif 27123 bpos1lem 27243 9p10ne21 30397 dfdec100 32755 dp20u 32798 dp20h 32799 dpmul10 32815 dpmul100 32817 dp3mul10 32818 dpmul1000 32819 dpexpp1 32828 0dp2dp 32829 dpadd2 32830 dpadd 32831 dpmul 32833 dpmul4 32834 lmatfvlem 33792 ballotlemfp1 34470 ballotth 34516 reprlt 34597 hgt750lemd 34626 hgt750lem2 34630 subfacp1lem1 35147 poimirlem26 37616 poimirlem28 37618 420gcd8e4 41965 lcmeprodgcdi 41966 12lcm5e60 41967 60lcm7e420 41969 3exp7 42012 3lexlogpow5ineq1 42013 3lexlogpow5ineq5 42019 aks4d1p1p7 42033 aks4d1p1 42035 decaddcom 42281 sqn5i 42282 decpmulnc 42284 decpmul 42285 sqdeccom12 42286 sq3deccom12 42287 235t711 42301 ex-decpmul 42302 sq45 42641 sum9cubes 42642 resqrtvalex 43616 imsqrtvalex 43617 inductionexd 44126 unitadd 44166 fmtno5lem4 47518 257prm 47523 fmtno4prmfac 47534 fmtno5fac 47544 139prmALT 47558 127prm 47561 m11nprm 47563 11t31e341 47694 2exp340mod341 47695 ackval3012 48620 |
| Copyright terms: Public domain | W3C validator |