![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn0cni | Structured version Visualization version GIF version |
Description: A nonnegative integer is a complex number. (Contributed by NM, 14-May-2003.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 8-Oct-2022.) |
Ref | Expression |
---|---|
nn0rei.1 | ⊢ 𝐴 ∈ ℕ0 |
Ref | Expression |
---|---|
nn0cni | ⊢ 𝐴 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0sscn 12528 | . 2 ⊢ ℕ0 ⊆ ℂ | |
2 | nn0rei.1 | . 2 ⊢ 𝐴 ∈ ℕ0 | |
3 | 1, 2 | sselii 3991 | 1 ⊢ 𝐴 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 ℂcc 11150 ℕ0cn0 12523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-mulcl 11214 ax-i2m1 11220 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-nn 12264 df-n0 12524 |
This theorem is referenced by: num0u 12741 num0h 12742 numsuc 12744 numsucc 12770 numma 12774 nummac 12775 numma2c 12776 numadd 12777 numaddc 12778 nummul1c 12779 nummul2c 12780 decrmanc 12787 decrmac 12788 decaddi 12790 decaddci 12791 decsubi 12793 decmul1 12794 decmulnc 12797 11multnc 12798 decmul10add 12799 6p5lem 12800 4t3lem 12827 7t3e21 12840 7t6e42 12843 8t3e24 12846 8t4e32 12847 8t8e64 12851 9t3e27 12853 9t4e36 12854 9t5e45 12855 9t6e54 12856 9t7e63 12857 9t11e99 12860 decbin0 12870 decbin2 12871 sq10 14299 3dec 14301 nn0le2msqi 14302 nn0opthlem1 14303 nn0opthi 14305 nn0opth2i 14306 faclbnd4lem1 14328 cats1fvn 14893 bpoly4 16091 fsumcube 16092 3dvdsdec 16365 3dvds2dec 16366 divalglem2 16428 3lcm2e6 16765 phiprmpw 16809 dec5dvds 17097 dec5dvds2 17098 dec2nprm 17100 modxai 17101 mod2xi 17102 mod2xnegi 17104 modsubi 17105 gcdi 17106 decexp2 17108 numexp0 17109 numexp1 17110 numexpp1 17111 numexp2x 17112 decsplit0b 17113 decsplit0 17114 decsplit1 17115 decsplit 17116 karatsuba 17117 2exp8 17122 prmlem2 17153 83prm 17156 139prm 17157 163prm 17158 631prm 17160 1259lem1 17164 1259lem2 17165 1259lem3 17166 1259lem4 17167 1259lem5 17168 1259prm 17169 2503lem1 17170 2503lem2 17171 2503lem3 17172 2503prm 17173 4001lem1 17174 4001lem2 17175 4001lem3 17176 4001lem4 17177 4001prm 17178 psdmul 22187 log2ublem1 27003 log2ublem2 27004 log2ublem3 27005 log2ub 27006 birthday 27011 ppidif 27220 bpos1lem 27340 9p10ne21 30498 dfdec100 32836 dp20u 32844 dp20h 32845 dpmul10 32861 dpmul100 32863 dp3mul10 32864 dpmul1000 32865 dpexpp1 32874 0dp2dp 32875 dpadd2 32876 dpadd 32877 dpmul 32879 dpmul4 32880 lmatfvlem 33775 ballotlemfp1 34472 ballotth 34518 reprlt 34612 hgt750lemd 34641 hgt750lem2 34645 subfacp1lem1 35163 poimirlem26 37632 poimirlem28 37634 420gcd8e4 41987 lcmeprodgcdi 41988 12lcm5e60 41989 60lcm7e420 41991 3exp7 42034 3lexlogpow5ineq1 42035 3lexlogpow5ineq5 42041 aks4d1p1p7 42055 aks4d1p1 42057 decaddcom 42297 sqn5i 42298 decpmulnc 42300 decpmul 42301 sqdeccom12 42302 sq3deccom12 42303 235t711 42317 ex-decpmul 42318 sq45 42657 sum9cubes 42658 resqrtvalex 43634 imsqrtvalex 43635 inductionexd 44144 unitadd 44184 fmtno5lem4 47480 257prm 47485 fmtno4prmfac 47496 fmtno5fac 47506 139prmALT 47520 127prm 47523 m11nprm 47525 11t31e341 47656 2exp340mod341 47657 ackval3012 48541 |
Copyright terms: Public domain | W3C validator |