| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0cni | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer is a complex number. (Contributed by NM, 14-May-2003.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 8-Oct-2022.) |
| Ref | Expression |
|---|---|
| nn0rei.1 | ⊢ 𝐴 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| nn0cni | ⊢ 𝐴 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0sscn 12454 | . 2 ⊢ ℕ0 ⊆ ℂ | |
| 2 | nn0rei.1 | . 2 ⊢ 𝐴 ∈ ℕ0 | |
| 3 | 1, 2 | sselii 3946 | 1 ⊢ 𝐴 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ℂcc 11073 ℕ0cn0 12449 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-mulcl 11137 ax-i2m1 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-nn 12194 df-n0 12450 |
| This theorem is referenced by: num0u 12667 num0h 12668 numsuc 12670 numsucc 12696 numma 12700 nummac 12701 numma2c 12702 numadd 12703 numaddc 12704 nummul1c 12705 nummul2c 12706 decrmanc 12713 decrmac 12714 decaddi 12716 decaddci 12717 decsubi 12719 decmul1 12720 decmulnc 12723 11multnc 12724 decmul10add 12725 6p5lem 12726 4t3lem 12753 7t3e21 12766 7t6e42 12769 8t3e24 12772 8t4e32 12773 8t8e64 12777 9t3e27 12779 9t4e36 12780 9t5e45 12781 9t6e54 12782 9t7e63 12783 9t11e99 12786 decbin0 12796 decbin2 12797 sq10 14236 3dec 14238 nn0le2msqi 14239 nn0opthlem1 14240 nn0opthi 14242 nn0opth2i 14243 faclbnd4lem1 14265 cats1fvn 14831 bpoly4 16032 fsumcube 16033 3dvdsdec 16309 3dvds2dec 16310 divalglem2 16372 3lcm2e6 16709 phiprmpw 16753 dec5dvds 17042 dec5dvds2 17043 dec2nprm 17045 modxai 17046 mod2xi 17047 mod2xnegi 17049 modsubi 17050 gcdi 17051 numexp0 17053 numexp1 17054 numexpp1 17055 numexp2x 17056 decsplit0b 17057 decsplit0 17058 decsplit1 17059 decsplit 17060 karatsuba 17061 2exp8 17066 prmlem2 17097 83prm 17100 139prm 17101 163prm 17102 631prm 17104 1259lem1 17108 1259lem2 17109 1259lem3 17110 1259lem4 17111 1259lem5 17112 1259prm 17113 2503lem1 17114 2503lem2 17115 2503lem3 17116 2503prm 17117 4001lem1 17118 4001lem2 17119 4001lem3 17120 4001lem4 17121 4001prm 17122 psdmul 22060 log2ublem1 26863 log2ublem2 26864 log2ublem3 26865 log2ub 26866 birthday 26871 ppidif 27080 bpos1lem 27200 9p10ne21 30406 dfdec100 32762 dp20u 32805 dp20h 32806 dpmul10 32822 dpmul100 32824 dp3mul10 32825 dpmul1000 32826 dpexpp1 32835 0dp2dp 32836 dpadd2 32837 dpadd 32838 dpmul 32840 dpmul4 32841 lmatfvlem 33812 ballotlemfp1 34490 ballotth 34536 reprlt 34617 hgt750lemd 34646 hgt750lem2 34650 subfacp1lem1 35173 poimirlem26 37647 poimirlem28 37649 420gcd8e4 42001 lcmeprodgcdi 42002 12lcm5e60 42003 60lcm7e420 42005 3exp7 42048 3lexlogpow5ineq1 42049 3lexlogpow5ineq5 42055 aks4d1p1p7 42069 aks4d1p1 42071 decaddcom 42279 sqn5i 42280 decpmulnc 42282 decpmul 42283 sqdeccom12 42284 sq3deccom12 42285 235t711 42300 ex-decpmul 42301 sq45 42666 sum9cubes 42667 resqrtvalex 43641 imsqrtvalex 43642 inductionexd 44151 unitadd 44191 fmtno5lem4 47561 257prm 47566 fmtno4prmfac 47577 fmtno5fac 47587 139prmALT 47601 127prm 47604 m11nprm 47606 11t31e341 47737 2exp340mod341 47738 ackval3012 48685 |
| Copyright terms: Public domain | W3C validator |