Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > gsumws3 | Structured version Visualization version GIF version |
Description: Valuation of a length 3 word in a monoid. (Contributed by Stanislas Polu, 9-Sep-2020.) |
Ref | Expression |
---|---|
gsumws3.0 | ⊢ 𝐵 = (Base‘𝐺) |
gsumws3.1 | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
gsumws3 | ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵))) → (𝐺 Σg 〈“𝑆𝑇𝑈”〉) = (𝑆 + (𝑇 + 𝑈))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s1s2 14332 | . . . 4 ⊢ 〈“𝑆𝑇𝑈”〉 = (〈“𝑆”〉 ++ 〈“𝑇𝑈”〉) | |
2 | 1 | a1i 11 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵))) → 〈“𝑆𝑇𝑈”〉 = (〈“𝑆”〉 ++ 〈“𝑇𝑈”〉)) |
3 | 2 | oveq2d 7166 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵))) → (𝐺 Σg 〈“𝑆𝑇𝑈”〉) = (𝐺 Σg (〈“𝑆”〉 ++ 〈“𝑇𝑈”〉))) |
4 | simpl 486 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵))) → 𝐺 ∈ Mnd) | |
5 | simprl 770 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵))) → 𝑆 ∈ 𝐵) | |
6 | 5 | s1cld 14004 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵))) → 〈“𝑆”〉 ∈ Word 𝐵) |
7 | simprrl 780 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵))) → 𝑇 ∈ 𝐵) | |
8 | simprrr 781 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵))) → 𝑈 ∈ 𝐵) | |
9 | 7, 8 | s2cld 14280 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵))) → 〈“𝑇𝑈”〉 ∈ Word 𝐵) |
10 | gsumws3.0 | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
11 | gsumws3.1 | . . . 4 ⊢ + = (+g‘𝐺) | |
12 | 10, 11 | gsumccat 18072 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 〈“𝑆”〉 ∈ Word 𝐵 ∧ 〈“𝑇𝑈”〉 ∈ Word 𝐵) → (𝐺 Σg (〈“𝑆”〉 ++ 〈“𝑇𝑈”〉)) = ((𝐺 Σg 〈“𝑆”〉) + (𝐺 Σg 〈“𝑇𝑈”〉))) |
13 | 4, 6, 9, 12 | syl3anc 1368 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵))) → (𝐺 Σg (〈“𝑆”〉 ++ 〈“𝑇𝑈”〉)) = ((𝐺 Σg 〈“𝑆”〉) + (𝐺 Σg 〈“𝑇𝑈”〉))) |
14 | 10 | gsumws1 18068 | . . . 4 ⊢ (𝑆 ∈ 𝐵 → (𝐺 Σg 〈“𝑆”〉) = 𝑆) |
15 | 14 | ad2antrl 727 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵))) → (𝐺 Σg 〈“𝑆”〉) = 𝑆) |
16 | 10, 11 | gsumws2 18073 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵) → (𝐺 Σg 〈“𝑇𝑈”〉) = (𝑇 + 𝑈)) |
17 | 16 | 3expb 1117 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ (𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵)) → (𝐺 Σg 〈“𝑇𝑈”〉) = (𝑇 + 𝑈)) |
18 | 17 | adantrl 715 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵))) → (𝐺 Σg 〈“𝑇𝑈”〉) = (𝑇 + 𝑈)) |
19 | 15, 18 | oveq12d 7168 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵))) → ((𝐺 Σg 〈“𝑆”〉) + (𝐺 Σg 〈“𝑇𝑈”〉)) = (𝑆 + (𝑇 + 𝑈))) |
20 | 3, 13, 19 | 3eqtrd 2797 | 1 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵))) → (𝐺 Σg 〈“𝑆𝑇𝑈”〉) = (𝑆 + (𝑇 + 𝑈))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ‘cfv 6335 (class class class)co 7150 Word cword 13913 ++ cconcat 13969 〈“cs1 13996 〈“cs2 14250 〈“cs3 14251 Basecbs 16541 +gcplusg 16623 Σg cgsu 16772 Mndcmnd 17977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-card 9401 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-2 11737 df-n0 11935 df-z 12021 df-uz 12283 df-fz 12940 df-fzo 13083 df-seq 13419 df-hash 13741 df-word 13914 df-concat 13970 df-s1 13997 df-s2 14257 df-s3 14258 df-ndx 16544 df-slot 16545 df-base 16547 df-sets 16548 df-ress 16549 df-plusg 16636 df-0g 16773 df-gsum 16774 df-mgm 17918 df-sgrp 17967 df-mnd 17978 df-submnd 18023 |
This theorem is referenced by: gsumws4 41276 amgm3d 41278 |
Copyright terms: Public domain | W3C validator |