Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumws3 Structured version   Visualization version   GIF version

Theorem gsumws3 44192
Description: Valuation of a length 3 word in a monoid. (Contributed by Stanislas Polu, 9-Sep-2020.)
Hypotheses
Ref Expression
gsumws3.0 𝐵 = (Base‘𝐺)
gsumws3.1 + = (+g𝐺)
Assertion
Ref Expression
gsumws3 ((𝐺 ∈ Mnd ∧ (𝑆𝐵 ∧ (𝑇𝐵𝑈𝐵))) → (𝐺 Σg ⟨“𝑆𝑇𝑈”⟩) = (𝑆 + (𝑇 + 𝑈)))

Proof of Theorem gsumws3
StepHypRef Expression
1 s1s2 14896 . . . 4 ⟨“𝑆𝑇𝑈”⟩ = (⟨“𝑆”⟩ ++ ⟨“𝑇𝑈”⟩)
21a1i 11 . . 3 ((𝐺 ∈ Mnd ∧ (𝑆𝐵 ∧ (𝑇𝐵𝑈𝐵))) → ⟨“𝑆𝑇𝑈”⟩ = (⟨“𝑆”⟩ ++ ⟨“𝑇𝑈”⟩))
32oveq2d 7406 . 2 ((𝐺 ∈ Mnd ∧ (𝑆𝐵 ∧ (𝑇𝐵𝑈𝐵))) → (𝐺 Σg ⟨“𝑆𝑇𝑈”⟩) = (𝐺 Σg (⟨“𝑆”⟩ ++ ⟨“𝑇𝑈”⟩)))
4 simpl 482 . . 3 ((𝐺 ∈ Mnd ∧ (𝑆𝐵 ∧ (𝑇𝐵𝑈𝐵))) → 𝐺 ∈ Mnd)
5 simprl 770 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑆𝐵 ∧ (𝑇𝐵𝑈𝐵))) → 𝑆𝐵)
65s1cld 14575 . . 3 ((𝐺 ∈ Mnd ∧ (𝑆𝐵 ∧ (𝑇𝐵𝑈𝐵))) → ⟨“𝑆”⟩ ∈ Word 𝐵)
7 simprrl 780 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑆𝐵 ∧ (𝑇𝐵𝑈𝐵))) → 𝑇𝐵)
8 simprrr 781 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑆𝐵 ∧ (𝑇𝐵𝑈𝐵))) → 𝑈𝐵)
97, 8s2cld 14844 . . 3 ((𝐺 ∈ Mnd ∧ (𝑆𝐵 ∧ (𝑇𝐵𝑈𝐵))) → ⟨“𝑇𝑈”⟩ ∈ Word 𝐵)
10 gsumws3.0 . . . 4 𝐵 = (Base‘𝐺)
11 gsumws3.1 . . . 4 + = (+g𝐺)
1210, 11gsumccat 18775 . . 3 ((𝐺 ∈ Mnd ∧ ⟨“𝑆”⟩ ∈ Word 𝐵 ∧ ⟨“𝑇𝑈”⟩ ∈ Word 𝐵) → (𝐺 Σg (⟨“𝑆”⟩ ++ ⟨“𝑇𝑈”⟩)) = ((𝐺 Σg ⟨“𝑆”⟩) + (𝐺 Σg ⟨“𝑇𝑈”⟩)))
134, 6, 9, 12syl3anc 1373 . 2 ((𝐺 ∈ Mnd ∧ (𝑆𝐵 ∧ (𝑇𝐵𝑈𝐵))) → (𝐺 Σg (⟨“𝑆”⟩ ++ ⟨“𝑇𝑈”⟩)) = ((𝐺 Σg ⟨“𝑆”⟩) + (𝐺 Σg ⟨“𝑇𝑈”⟩)))
1410gsumws1 18772 . . . 4 (𝑆𝐵 → (𝐺 Σg ⟨“𝑆”⟩) = 𝑆)
1514ad2antrl 728 . . 3 ((𝐺 ∈ Mnd ∧ (𝑆𝐵 ∧ (𝑇𝐵𝑈𝐵))) → (𝐺 Σg ⟨“𝑆”⟩) = 𝑆)
1610, 11gsumws2 18776 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵) → (𝐺 Σg ⟨“𝑇𝑈”⟩) = (𝑇 + 𝑈))
17163expb 1120 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑇𝐵𝑈𝐵)) → (𝐺 Σg ⟨“𝑇𝑈”⟩) = (𝑇 + 𝑈))
1817adantrl 716 . . 3 ((𝐺 ∈ Mnd ∧ (𝑆𝐵 ∧ (𝑇𝐵𝑈𝐵))) → (𝐺 Σg ⟨“𝑇𝑈”⟩) = (𝑇 + 𝑈))
1915, 18oveq12d 7408 . 2 ((𝐺 ∈ Mnd ∧ (𝑆𝐵 ∧ (𝑇𝐵𝑈𝐵))) → ((𝐺 Σg ⟨“𝑆”⟩) + (𝐺 Σg ⟨“𝑇𝑈”⟩)) = (𝑆 + (𝑇 + 𝑈)))
203, 13, 193eqtrd 2769 1 ((𝐺 ∈ Mnd ∧ (𝑆𝐵 ∧ (𝑇𝐵𝑈𝐵))) → (𝐺 Σg ⟨“𝑆𝑇𝑈”⟩) = (𝑆 + (𝑇 + 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6514  (class class class)co 7390  Word cword 14485   ++ cconcat 14542  ⟨“cs1 14567  ⟨“cs2 14814  ⟨“cs3 14815  Basecbs 17186  +gcplusg 17227   Σg cgsu 17410  Mndcmnd 18668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-word 14486  df-concat 14543  df-s1 14568  df-s2 14821  df-s3 14822  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-0g 17411  df-gsum 17412  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718
This theorem is referenced by:  gsumws4  44193  amgm3d  44195
  Copyright terms: Public domain W3C validator