Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumws3 Structured version   Visualization version   GIF version

Theorem gsumws3 44169
Description: Valuation of a length 3 word in a monoid. (Contributed by Stanislas Polu, 9-Sep-2020.)
Hypotheses
Ref Expression
gsumws3.0 𝐵 = (Base‘𝐺)
gsumws3.1 + = (+g𝐺)
Assertion
Ref Expression
gsumws3 ((𝐺 ∈ Mnd ∧ (𝑆𝐵 ∧ (𝑇𝐵𝑈𝐵))) → (𝐺 Σg ⟨“𝑆𝑇𝑈”⟩) = (𝑆 + (𝑇 + 𝑈)))

Proof of Theorem gsumws3
StepHypRef Expression
1 s1s2 14830 . . . 4 ⟨“𝑆𝑇𝑈”⟩ = (⟨“𝑆”⟩ ++ ⟨“𝑇𝑈”⟩)
21a1i 11 . . 3 ((𝐺 ∈ Mnd ∧ (𝑆𝐵 ∧ (𝑇𝐵𝑈𝐵))) → ⟨“𝑆𝑇𝑈”⟩ = (⟨“𝑆”⟩ ++ ⟨“𝑇𝑈”⟩))
32oveq2d 7365 . 2 ((𝐺 ∈ Mnd ∧ (𝑆𝐵 ∧ (𝑇𝐵𝑈𝐵))) → (𝐺 Σg ⟨“𝑆𝑇𝑈”⟩) = (𝐺 Σg (⟨“𝑆”⟩ ++ ⟨“𝑇𝑈”⟩)))
4 simpl 482 . . 3 ((𝐺 ∈ Mnd ∧ (𝑆𝐵 ∧ (𝑇𝐵𝑈𝐵))) → 𝐺 ∈ Mnd)
5 simprl 770 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑆𝐵 ∧ (𝑇𝐵𝑈𝐵))) → 𝑆𝐵)
65s1cld 14510 . . 3 ((𝐺 ∈ Mnd ∧ (𝑆𝐵 ∧ (𝑇𝐵𝑈𝐵))) → ⟨“𝑆”⟩ ∈ Word 𝐵)
7 simprrl 780 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑆𝐵 ∧ (𝑇𝐵𝑈𝐵))) → 𝑇𝐵)
8 simprrr 781 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑆𝐵 ∧ (𝑇𝐵𝑈𝐵))) → 𝑈𝐵)
97, 8s2cld 14778 . . 3 ((𝐺 ∈ Mnd ∧ (𝑆𝐵 ∧ (𝑇𝐵𝑈𝐵))) → ⟨“𝑇𝑈”⟩ ∈ Word 𝐵)
10 gsumws3.0 . . . 4 𝐵 = (Base‘𝐺)
11 gsumws3.1 . . . 4 + = (+g𝐺)
1210, 11gsumccat 18715 . . 3 ((𝐺 ∈ Mnd ∧ ⟨“𝑆”⟩ ∈ Word 𝐵 ∧ ⟨“𝑇𝑈”⟩ ∈ Word 𝐵) → (𝐺 Σg (⟨“𝑆”⟩ ++ ⟨“𝑇𝑈”⟩)) = ((𝐺 Σg ⟨“𝑆”⟩) + (𝐺 Σg ⟨“𝑇𝑈”⟩)))
134, 6, 9, 12syl3anc 1373 . 2 ((𝐺 ∈ Mnd ∧ (𝑆𝐵 ∧ (𝑇𝐵𝑈𝐵))) → (𝐺 Σg (⟨“𝑆”⟩ ++ ⟨“𝑇𝑈”⟩)) = ((𝐺 Σg ⟨“𝑆”⟩) + (𝐺 Σg ⟨“𝑇𝑈”⟩)))
1410gsumws1 18712 . . . 4 (𝑆𝐵 → (𝐺 Σg ⟨“𝑆”⟩) = 𝑆)
1514ad2antrl 728 . . 3 ((𝐺 ∈ Mnd ∧ (𝑆𝐵 ∧ (𝑇𝐵𝑈𝐵))) → (𝐺 Σg ⟨“𝑆”⟩) = 𝑆)
1610, 11gsumws2 18716 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵) → (𝐺 Σg ⟨“𝑇𝑈”⟩) = (𝑇 + 𝑈))
17163expb 1120 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑇𝐵𝑈𝐵)) → (𝐺 Σg ⟨“𝑇𝑈”⟩) = (𝑇 + 𝑈))
1817adantrl 716 . . 3 ((𝐺 ∈ Mnd ∧ (𝑆𝐵 ∧ (𝑇𝐵𝑈𝐵))) → (𝐺 Σg ⟨“𝑇𝑈”⟩) = (𝑇 + 𝑈))
1915, 18oveq12d 7367 . 2 ((𝐺 ∈ Mnd ∧ (𝑆𝐵 ∧ (𝑇𝐵𝑈𝐵))) → ((𝐺 Σg ⟨“𝑆”⟩) + (𝐺 Σg ⟨“𝑇𝑈”⟩)) = (𝑆 + (𝑇 + 𝑈)))
203, 13, 193eqtrd 2768 1 ((𝐺 ∈ Mnd ∧ (𝑆𝐵 ∧ (𝑇𝐵𝑈𝐵))) → (𝐺 Σg ⟨“𝑆𝑇𝑈”⟩) = (𝑆 + (𝑇 + 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6482  (class class class)co 7349  Word cword 14420   ++ cconcat 14477  ⟨“cs1 14502  ⟨“cs2 14748  ⟨“cs3 14749  Basecbs 17120  +gcplusg 17161   Σg cgsu 17344  Mndcmnd 18608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-fzo 13558  df-seq 13909  df-hash 14238  df-word 14421  df-concat 14478  df-s1 14503  df-s2 14755  df-s3 14756  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-0g 17345  df-gsum 17346  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658
This theorem is referenced by:  gsumws4  44170  amgm3d  44172
  Copyright terms: Public domain W3C validator