![]() |
Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gsumws3 | Structured version Visualization version GIF version |
Description: Valuation of a length 3 word in a monoid. (Contributed by Stanislas Polu, 9-Sep-2020.) |
Ref | Expression |
---|---|
gsumws3.0 | ⊢ 𝐵 = (Base‘𝐺) |
gsumws3.1 | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
gsumws3 | ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵))) → (𝐺 Σg ⟨“𝑆𝑇𝑈”⟩) = (𝑆 + (𝑇 + 𝑈))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s1s2 14877 | . . . 4 ⊢ ⟨“𝑆𝑇𝑈”⟩ = (⟨“𝑆”⟩ ++ ⟨“𝑇𝑈”⟩) | |
2 | 1 | a1i 11 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵))) → ⟨“𝑆𝑇𝑈”⟩ = (⟨“𝑆”⟩ ++ ⟨“𝑇𝑈”⟩)) |
3 | 2 | oveq2d 7420 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵))) → (𝐺 Σg ⟨“𝑆𝑇𝑈”⟩) = (𝐺 Σg (⟨“𝑆”⟩ ++ ⟨“𝑇𝑈”⟩))) |
4 | simpl 482 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵))) → 𝐺 ∈ Mnd) | |
5 | simprl 768 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵))) → 𝑆 ∈ 𝐵) | |
6 | 5 | s1cld 14556 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵))) → ⟨“𝑆”⟩ ∈ Word 𝐵) |
7 | simprrl 778 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵))) → 𝑇 ∈ 𝐵) | |
8 | simprrr 779 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵))) → 𝑈 ∈ 𝐵) | |
9 | 7, 8 | s2cld 14825 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵))) → ⟨“𝑇𝑈”⟩ ∈ Word 𝐵) |
10 | gsumws3.0 | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
11 | gsumws3.1 | . . . 4 ⊢ + = (+g‘𝐺) | |
12 | 10, 11 | gsumccat 18763 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ ⟨“𝑆”⟩ ∈ Word 𝐵 ∧ ⟨“𝑇𝑈”⟩ ∈ Word 𝐵) → (𝐺 Σg (⟨“𝑆”⟩ ++ ⟨“𝑇𝑈”⟩)) = ((𝐺 Σg ⟨“𝑆”⟩) + (𝐺 Σg ⟨“𝑇𝑈”⟩))) |
13 | 4, 6, 9, 12 | syl3anc 1368 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵))) → (𝐺 Σg (⟨“𝑆”⟩ ++ ⟨“𝑇𝑈”⟩)) = ((𝐺 Σg ⟨“𝑆”⟩) + (𝐺 Σg ⟨“𝑇𝑈”⟩))) |
14 | 10 | gsumws1 18760 | . . . 4 ⊢ (𝑆 ∈ 𝐵 → (𝐺 Σg ⟨“𝑆”⟩) = 𝑆) |
15 | 14 | ad2antrl 725 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵))) → (𝐺 Σg ⟨“𝑆”⟩) = 𝑆) |
16 | 10, 11 | gsumws2 18764 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵) → (𝐺 Σg ⟨“𝑇𝑈”⟩) = (𝑇 + 𝑈)) |
17 | 16 | 3expb 1117 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ (𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵)) → (𝐺 Σg ⟨“𝑇𝑈”⟩) = (𝑇 + 𝑈)) |
18 | 17 | adantrl 713 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵))) → (𝐺 Σg ⟨“𝑇𝑈”⟩) = (𝑇 + 𝑈)) |
19 | 15, 18 | oveq12d 7422 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵))) → ((𝐺 Σg ⟨“𝑆”⟩) + (𝐺 Σg ⟨“𝑇𝑈”⟩)) = (𝑆 + (𝑇 + 𝑈))) |
20 | 3, 13, 19 | 3eqtrd 2770 | 1 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵))) → (𝐺 Σg ⟨“𝑆𝑇𝑈”⟩) = (𝑆 + (𝑇 + 𝑈))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ‘cfv 6536 (class class class)co 7404 Word cword 14467 ++ cconcat 14523 ⟨“cs1 14548 ⟨“cs2 14795 ⟨“cs3 14796 Basecbs 17150 +gcplusg 17203 Σg cgsu 17392 Mndcmnd 18664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-card 9933 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-2 12276 df-n0 12474 df-z 12560 df-uz 12824 df-fz 13488 df-fzo 13631 df-seq 13970 df-hash 14293 df-word 14468 df-concat 14524 df-s1 14549 df-s2 14802 df-s3 14803 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-ress 17180 df-plusg 17216 df-0g 17393 df-gsum 17394 df-mgm 18570 df-sgrp 18649 df-mnd 18665 df-submnd 18711 |
This theorem is referenced by: gsumws4 43507 amgm3d 43509 |
Copyright terms: Public domain | W3C validator |