Mathbox for Stanislas Polu < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumws3 Structured version   Visualization version   GIF version

Theorem gsumws3 41275
 Description: Valuation of a length 3 word in a monoid. (Contributed by Stanislas Polu, 9-Sep-2020.)
Hypotheses
Ref Expression
gsumws3.0 𝐵 = (Base‘𝐺)
gsumws3.1 + = (+g𝐺)
Assertion
Ref Expression
gsumws3 ((𝐺 ∈ Mnd ∧ (𝑆𝐵 ∧ (𝑇𝐵𝑈𝐵))) → (𝐺 Σg ⟨“𝑆𝑇𝑈”⟩) = (𝑆 + (𝑇 + 𝑈)))

Proof of Theorem gsumws3
StepHypRef Expression
1 s1s2 14332 . . . 4 ⟨“𝑆𝑇𝑈”⟩ = (⟨“𝑆”⟩ ++ ⟨“𝑇𝑈”⟩)
21a1i 11 . . 3 ((𝐺 ∈ Mnd ∧ (𝑆𝐵 ∧ (𝑇𝐵𝑈𝐵))) → ⟨“𝑆𝑇𝑈”⟩ = (⟨“𝑆”⟩ ++ ⟨“𝑇𝑈”⟩))
32oveq2d 7166 . 2 ((𝐺 ∈ Mnd ∧ (𝑆𝐵 ∧ (𝑇𝐵𝑈𝐵))) → (𝐺 Σg ⟨“𝑆𝑇𝑈”⟩) = (𝐺 Σg (⟨“𝑆”⟩ ++ ⟨“𝑇𝑈”⟩)))
4 simpl 486 . . 3 ((𝐺 ∈ Mnd ∧ (𝑆𝐵 ∧ (𝑇𝐵𝑈𝐵))) → 𝐺 ∈ Mnd)
5 simprl 770 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑆𝐵 ∧ (𝑇𝐵𝑈𝐵))) → 𝑆𝐵)
65s1cld 14004 . . 3 ((𝐺 ∈ Mnd ∧ (𝑆𝐵 ∧ (𝑇𝐵𝑈𝐵))) → ⟨“𝑆”⟩ ∈ Word 𝐵)
7 simprrl 780 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑆𝐵 ∧ (𝑇𝐵𝑈𝐵))) → 𝑇𝐵)
8 simprrr 781 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑆𝐵 ∧ (𝑇𝐵𝑈𝐵))) → 𝑈𝐵)
97, 8s2cld 14280 . . 3 ((𝐺 ∈ Mnd ∧ (𝑆𝐵 ∧ (𝑇𝐵𝑈𝐵))) → ⟨“𝑇𝑈”⟩ ∈ Word 𝐵)
10 gsumws3.0 . . . 4 𝐵 = (Base‘𝐺)
11 gsumws3.1 . . . 4 + = (+g𝐺)
1210, 11gsumccat 18072 . . 3 ((𝐺 ∈ Mnd ∧ ⟨“𝑆”⟩ ∈ Word 𝐵 ∧ ⟨“𝑇𝑈”⟩ ∈ Word 𝐵) → (𝐺 Σg (⟨“𝑆”⟩ ++ ⟨“𝑇𝑈”⟩)) = ((𝐺 Σg ⟨“𝑆”⟩) + (𝐺 Σg ⟨“𝑇𝑈”⟩)))
134, 6, 9, 12syl3anc 1368 . 2 ((𝐺 ∈ Mnd ∧ (𝑆𝐵 ∧ (𝑇𝐵𝑈𝐵))) → (𝐺 Σg (⟨“𝑆”⟩ ++ ⟨“𝑇𝑈”⟩)) = ((𝐺 Σg ⟨“𝑆”⟩) + (𝐺 Σg ⟨“𝑇𝑈”⟩)))
1410gsumws1 18068 . . . 4 (𝑆𝐵 → (𝐺 Σg ⟨“𝑆”⟩) = 𝑆)
1514ad2antrl 727 . . 3 ((𝐺 ∈ Mnd ∧ (𝑆𝐵 ∧ (𝑇𝐵𝑈𝐵))) → (𝐺 Σg ⟨“𝑆”⟩) = 𝑆)
1610, 11gsumws2 18073 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵) → (𝐺 Σg ⟨“𝑇𝑈”⟩) = (𝑇 + 𝑈))
17163expb 1117 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑇𝐵𝑈𝐵)) → (𝐺 Σg ⟨“𝑇𝑈”⟩) = (𝑇 + 𝑈))
1817adantrl 715 . . 3 ((𝐺 ∈ Mnd ∧ (𝑆𝐵 ∧ (𝑇𝐵𝑈𝐵))) → (𝐺 Σg ⟨“𝑇𝑈”⟩) = (𝑇 + 𝑈))
1915, 18oveq12d 7168 . 2 ((𝐺 ∈ Mnd ∧ (𝑆𝐵 ∧ (𝑇𝐵𝑈𝐵))) → ((𝐺 Σg ⟨“𝑆”⟩) + (𝐺 Σg ⟨“𝑇𝑈”⟩)) = (𝑆 + (𝑇 + 𝑈)))
203, 13, 193eqtrd 2797 1 ((𝐺 ∈ Mnd ∧ (𝑆𝐵 ∧ (𝑇𝐵𝑈𝐵))) → (𝐺 Σg ⟨“𝑆𝑇𝑈”⟩) = (𝑆 + (𝑇 + 𝑈)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ‘cfv 6335  (class class class)co 7150  Word cword 13913   ++ cconcat 13969  ⟨“cs1 13996  ⟨“cs2 14250  ⟨“cs3 14251  Basecbs 16541  +gcplusg 16623   Σg cgsu 16772  Mndcmnd 17977 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-2 11737  df-n0 11935  df-z 12021  df-uz 12283  df-fz 12940  df-fzo 13083  df-seq 13419  df-hash 13741  df-word 13914  df-concat 13970  df-s1 13997  df-s2 14257  df-s3 14258  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-ress 16549  df-plusg 16636  df-0g 16773  df-gsum 16774  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-submnd 18023 This theorem is referenced by:  gsumws4  41276  amgm3d  41278
 Copyright terms: Public domain W3C validator