| Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gsumws3 | Structured version Visualization version GIF version | ||
| Description: Valuation of a length 3 word in a monoid. (Contributed by Stanislas Polu, 9-Sep-2020.) |
| Ref | Expression |
|---|---|
| gsumws3.0 | ⊢ 𝐵 = (Base‘𝐺) |
| gsumws3.1 | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| gsumws3 | ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵))) → (𝐺 Σg 〈“𝑆𝑇𝑈”〉) = (𝑆 + (𝑇 + 𝑈))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s1s2 14962 | . . . 4 ⊢ 〈“𝑆𝑇𝑈”〉 = (〈“𝑆”〉 ++ 〈“𝑇𝑈”〉) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵))) → 〈“𝑆𝑇𝑈”〉 = (〈“𝑆”〉 ++ 〈“𝑇𝑈”〉)) |
| 3 | 2 | oveq2d 7447 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵))) → (𝐺 Σg 〈“𝑆𝑇𝑈”〉) = (𝐺 Σg (〈“𝑆”〉 ++ 〈“𝑇𝑈”〉))) |
| 4 | simpl 482 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵))) → 𝐺 ∈ Mnd) | |
| 5 | simprl 771 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵))) → 𝑆 ∈ 𝐵) | |
| 6 | 5 | s1cld 14641 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵))) → 〈“𝑆”〉 ∈ Word 𝐵) |
| 7 | simprrl 781 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵))) → 𝑇 ∈ 𝐵) | |
| 8 | simprrr 782 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵))) → 𝑈 ∈ 𝐵) | |
| 9 | 7, 8 | s2cld 14910 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵))) → 〈“𝑇𝑈”〉 ∈ Word 𝐵) |
| 10 | gsumws3.0 | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 11 | gsumws3.1 | . . . 4 ⊢ + = (+g‘𝐺) | |
| 12 | 10, 11 | gsumccat 18854 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 〈“𝑆”〉 ∈ Word 𝐵 ∧ 〈“𝑇𝑈”〉 ∈ Word 𝐵) → (𝐺 Σg (〈“𝑆”〉 ++ 〈“𝑇𝑈”〉)) = ((𝐺 Σg 〈“𝑆”〉) + (𝐺 Σg 〈“𝑇𝑈”〉))) |
| 13 | 4, 6, 9, 12 | syl3anc 1373 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵))) → (𝐺 Σg (〈“𝑆”〉 ++ 〈“𝑇𝑈”〉)) = ((𝐺 Σg 〈“𝑆”〉) + (𝐺 Σg 〈“𝑇𝑈”〉))) |
| 14 | 10 | gsumws1 18851 | . . . 4 ⊢ (𝑆 ∈ 𝐵 → (𝐺 Σg 〈“𝑆”〉) = 𝑆) |
| 15 | 14 | ad2antrl 728 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵))) → (𝐺 Σg 〈“𝑆”〉) = 𝑆) |
| 16 | 10, 11 | gsumws2 18855 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵) → (𝐺 Σg 〈“𝑇𝑈”〉) = (𝑇 + 𝑈)) |
| 17 | 16 | 3expb 1121 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ (𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵)) → (𝐺 Σg 〈“𝑇𝑈”〉) = (𝑇 + 𝑈)) |
| 18 | 17 | adantrl 716 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵))) → (𝐺 Σg 〈“𝑇𝑈”〉) = (𝑇 + 𝑈)) |
| 19 | 15, 18 | oveq12d 7449 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵))) → ((𝐺 Σg 〈“𝑆”〉) + (𝐺 Σg 〈“𝑇𝑈”〉)) = (𝑆 + (𝑇 + 𝑈))) |
| 20 | 3, 13, 19 | 3eqtrd 2781 | 1 ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵))) → (𝐺 Σg 〈“𝑆𝑇𝑈”〉) = (𝑆 + (𝑇 + 𝑈))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ‘cfv 6561 (class class class)co 7431 Word cword 14552 ++ cconcat 14608 〈“cs1 14633 〈“cs2 14880 〈“cs3 14881 Basecbs 17247 +gcplusg 17297 Σg cgsu 17485 Mndcmnd 18747 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-n0 12527 df-z 12614 df-uz 12879 df-fz 13548 df-fzo 13695 df-seq 14043 df-hash 14370 df-word 14553 df-concat 14609 df-s1 14634 df-s2 14887 df-s3 14888 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-0g 17486 df-gsum 17487 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-submnd 18797 |
| This theorem is referenced by: gsumws4 44210 amgm3d 44212 |
| Copyright terms: Public domain | W3C validator |