![]() |
Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > wfaxsep | Structured version Visualization version GIF version |
Description: The class of well-founded sets models the Axiom of Separation ax-sep 5301. Actually, our statement is stronger, since it is an instance of Separation only when all quantifiers in 𝜑 are relativized to 𝑊. Part of Corollary II.2.5 of [Kunen2] p. 112. (Contributed by Eric Schmidt, 29-Sep-2025.) |
Ref | Expression |
---|---|
wfax.1 | ⊢ 𝑊 = ∪ (𝑅1 “ On) |
Ref | Expression |
---|---|
wfaxsep | ⊢ ∀𝑧 ∈ 𝑊 ∃𝑦 ∈ 𝑊 ∀𝑥 ∈ 𝑊 (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssclaxsep 44946 | . 2 ⊢ (∀𝑧 ∈ 𝑊 𝒫 𝑧 ⊆ 𝑊 → ∀𝑧 ∈ 𝑊 ∃𝑦 ∈ 𝑊 ∀𝑥 ∈ 𝑊 (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑))) | |
2 | pwwf 9844 | . . . 4 ⊢ (𝑧 ∈ ∪ (𝑅1 “ On) ↔ 𝒫 𝑧 ∈ ∪ (𝑅1 “ On)) | |
3 | r1elssi 9842 | . . . 4 ⊢ (𝒫 𝑧 ∈ ∪ (𝑅1 “ On) → 𝒫 𝑧 ⊆ ∪ (𝑅1 “ On)) | |
4 | 2, 3 | sylbi 217 | . . 3 ⊢ (𝑧 ∈ ∪ (𝑅1 “ On) → 𝒫 𝑧 ⊆ ∪ (𝑅1 “ On)) |
5 | wfax.1 | . . . 4 ⊢ 𝑊 = ∪ (𝑅1 “ On) | |
6 | 5 | eleq2i 2830 | . . 3 ⊢ (𝑧 ∈ 𝑊 ↔ 𝑧 ∈ ∪ (𝑅1 “ On)) |
7 | 5 | sseq2i 4024 | . . 3 ⊢ (𝒫 𝑧 ⊆ 𝑊 ↔ 𝒫 𝑧 ⊆ ∪ (𝑅1 “ On)) |
8 | 4, 6, 7 | 3imtr4i 292 | . 2 ⊢ (𝑧 ∈ 𝑊 → 𝒫 𝑧 ⊆ 𝑊) |
9 | 1, 8 | mprg 3064 | 1 ⊢ ∀𝑧 ∈ 𝑊 ∃𝑦 ∈ 𝑊 ∀𝑥 ∈ 𝑊 (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ∀wral 3058 ∃wrex 3067 ⊆ wss 3962 𝒫 cpw 4604 ∪ cuni 4911 “ cima 5691 Oncon0 6385 𝑅1cr1 9799 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-r1 9801 df-rank 9802 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |