| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wfaxsep | Structured version Visualization version GIF version | ||
| Description: The class of well-founded sets models the Axiom of Separation ax-sep 5236. Actually, our statement is stronger, since it is an instance of Separation only when all quantifiers in 𝜑 are relativized to 𝑊. Part of Corollary II.2.5 of [Kunen2] p. 112. (Contributed by Eric Schmidt, 29-Sep-2025.) |
| Ref | Expression |
|---|---|
| wfax.1 | ⊢ 𝑊 = ∪ (𝑅1 “ On) |
| Ref | Expression |
|---|---|
| wfaxsep | ⊢ ∀𝑧 ∈ 𝑊 ∃𝑦 ∈ 𝑊 ∀𝑥 ∈ 𝑊 (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssclaxsep 45080 | . 2 ⊢ (∀𝑧 ∈ 𝑊 𝒫 𝑧 ⊆ 𝑊 → ∀𝑧 ∈ 𝑊 ∃𝑦 ∈ 𝑊 ∀𝑥 ∈ 𝑊 (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑))) | |
| 2 | pwwf 9706 | . . . 4 ⊢ (𝑧 ∈ ∪ (𝑅1 “ On) ↔ 𝒫 𝑧 ∈ ∪ (𝑅1 “ On)) | |
| 3 | r1elssi 9704 | . . . 4 ⊢ (𝒫 𝑧 ∈ ∪ (𝑅1 “ On) → 𝒫 𝑧 ⊆ ∪ (𝑅1 “ On)) | |
| 4 | 2, 3 | sylbi 217 | . . 3 ⊢ (𝑧 ∈ ∪ (𝑅1 “ On) → 𝒫 𝑧 ⊆ ∪ (𝑅1 “ On)) |
| 5 | wfax.1 | . . . 4 ⊢ 𝑊 = ∪ (𝑅1 “ On) | |
| 6 | 5 | eleq2i 2823 | . . 3 ⊢ (𝑧 ∈ 𝑊 ↔ 𝑧 ∈ ∪ (𝑅1 “ On)) |
| 7 | 5 | sseq2i 3959 | . . 3 ⊢ (𝒫 𝑧 ⊆ 𝑊 ↔ 𝒫 𝑧 ⊆ ∪ (𝑅1 “ On)) |
| 8 | 4, 6, 7 | 3imtr4i 292 | . 2 ⊢ (𝑧 ∈ 𝑊 → 𝒫 𝑧 ⊆ 𝑊) |
| 9 | 1, 8 | mprg 3053 | 1 ⊢ ∀𝑧 ∈ 𝑊 ∃𝑦 ∈ 𝑊 ∀𝑥 ∈ 𝑊 (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 ⊆ wss 3897 𝒫 cpw 4549 ∪ cuni 4858 “ cima 5622 Oncon0 6312 𝑅1cr1 9661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-ov 7355 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-r1 9663 df-rank 9664 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |