Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wfaxsep Structured version   Visualization version   GIF version

Theorem wfaxsep 44992
Description: The class of well-founded sets models the Axiom of Separation ax-sep 5254. Actually, our statement is stronger, since it is an instance of Separation only when all quantifiers in 𝜑 are relativized to 𝑊. Part of Corollary II.2.5 of [Kunen2] p. 112. (Contributed by Eric Schmidt, 29-Sep-2025.)
Hypothesis
Ref Expression
wfax.1 𝑊 = (𝑅1 “ On)
Assertion
Ref Expression
wfaxsep 𝑧𝑊𝑦𝑊𝑥𝑊 (𝑥𝑦 ↔ (𝑥𝑧𝜑))
Distinct variable groups:   𝑥,𝑦,𝑧   𝜑,𝑦,𝑧   𝑦,𝑊
Allowed substitution hints:   𝜑(𝑥)   𝑊(𝑥,𝑧)

Proof of Theorem wfaxsep
StepHypRef Expression
1 ssclaxsep 44979 . 2 (∀𝑧𝑊 𝒫 𝑧𝑊 → ∀𝑧𝑊𝑦𝑊𝑥𝑊 (𝑥𝑦 ↔ (𝑥𝑧𝜑)))
2 pwwf 9767 . . . 4 (𝑧 (𝑅1 “ On) ↔ 𝒫 𝑧 (𝑅1 “ On))
3 r1elssi 9765 . . . 4 (𝒫 𝑧 (𝑅1 “ On) → 𝒫 𝑧 (𝑅1 “ On))
42, 3sylbi 217 . . 3 (𝑧 (𝑅1 “ On) → 𝒫 𝑧 (𝑅1 “ On))
5 wfax.1 . . . 4 𝑊 = (𝑅1 “ On)
65eleq2i 2821 . . 3 (𝑧𝑊𝑧 (𝑅1 “ On))
75sseq2i 3979 . . 3 (𝒫 𝑧𝑊 ↔ 𝒫 𝑧 (𝑅1 “ On))
84, 6, 73imtr4i 292 . 2 (𝑧𝑊 → 𝒫 𝑧𝑊)
91, 8mprg 3051 1 𝑧𝑊𝑦𝑊𝑥𝑊 (𝑥𝑦 ↔ (𝑥𝑧𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  wss 3917  𝒫 cpw 4566   cuni 4874  cima 5644  Oncon0 6335  𝑅1cr1 9722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-r1 9724  df-rank 9725
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator