| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wfaxsep | Structured version Visualization version GIF version | ||
| Description: The class of well-founded sets models the Axiom of Separation ax-sep 5231. Actually, our statement is stronger, since it is an instance of Separation only when all quantifiers in 𝜑 are relativized to 𝑊. Part of Corollary II.2.5 of [Kunen2] p. 112. (Contributed by Eric Schmidt, 29-Sep-2025.) |
| Ref | Expression |
|---|---|
| wfax.1 | ⊢ 𝑊 = ∪ (𝑅1 “ On) |
| Ref | Expression |
|---|---|
| wfaxsep | ⊢ ∀𝑧 ∈ 𝑊 ∃𝑦 ∈ 𝑊 ∀𝑥 ∈ 𝑊 (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssclaxsep 44972 | . 2 ⊢ (∀𝑧 ∈ 𝑊 𝒫 𝑧 ⊆ 𝑊 → ∀𝑧 ∈ 𝑊 ∃𝑦 ∈ 𝑊 ∀𝑥 ∈ 𝑊 (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑))) | |
| 2 | pwwf 9691 | . . . 4 ⊢ (𝑧 ∈ ∪ (𝑅1 “ On) ↔ 𝒫 𝑧 ∈ ∪ (𝑅1 “ On)) | |
| 3 | r1elssi 9689 | . . . 4 ⊢ (𝒫 𝑧 ∈ ∪ (𝑅1 “ On) → 𝒫 𝑧 ⊆ ∪ (𝑅1 “ On)) | |
| 4 | 2, 3 | sylbi 217 | . . 3 ⊢ (𝑧 ∈ ∪ (𝑅1 “ On) → 𝒫 𝑧 ⊆ ∪ (𝑅1 “ On)) |
| 5 | wfax.1 | . . . 4 ⊢ 𝑊 = ∪ (𝑅1 “ On) | |
| 6 | 5 | eleq2i 2820 | . . 3 ⊢ (𝑧 ∈ 𝑊 ↔ 𝑧 ∈ ∪ (𝑅1 “ On)) |
| 7 | 5 | sseq2i 3961 | . . 3 ⊢ (𝒫 𝑧 ⊆ 𝑊 ↔ 𝒫 𝑧 ⊆ ∪ (𝑅1 “ On)) |
| 8 | 4, 6, 7 | 3imtr4i 292 | . 2 ⊢ (𝑧 ∈ 𝑊 → 𝒫 𝑧 ⊆ 𝑊) |
| 9 | 1, 8 | mprg 3050 | 1 ⊢ ∀𝑧 ∈ 𝑊 ∃𝑦 ∈ 𝑊 ∀𝑥 ∈ 𝑊 (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ⊆ wss 3899 𝒫 cpw 4547 ∪ cuni 4856 “ cima 5616 Oncon0 6301 𝑅1cr1 9646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5231 ax-nul 5241 ax-pow 5300 ax-pr 5367 ax-un 7662 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3393 df-v 3435 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4895 df-iun 4940 df-br 5089 df-opab 5151 df-mpt 5170 df-tr 5196 df-id 5508 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5566 df-we 5568 df-xp 5619 df-rel 5620 df-cnv 5621 df-co 5622 df-dm 5623 df-rn 5624 df-res 5625 df-ima 5626 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7343 df-om 7791 df-2nd 7916 df-frecs 8205 df-wrecs 8236 df-recs 8285 df-rdg 8323 df-r1 9648 df-rank 9649 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |