Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wfaxsep Structured version   Visualization version   GIF version

Theorem wfaxsep 44968
Description: The class of well-founded sets models the Axiom of Separation ax-sep 5266. Actually, our statement is stronger, since it is an instance of Separation only when all quantifiers in 𝜑 are relativized to 𝑊. Part of Corollary II.2.5 of [Kunen2] p. 112. (Contributed by Eric Schmidt, 29-Sep-2025.)
Hypothesis
Ref Expression
wfax.1 𝑊 = (𝑅1 “ On)
Assertion
Ref Expression
wfaxsep 𝑧𝑊𝑦𝑊𝑥𝑊 (𝑥𝑦 ↔ (𝑥𝑧𝜑))
Distinct variable groups:   𝑥,𝑦,𝑧   𝜑,𝑦,𝑧   𝑦,𝑊
Allowed substitution hints:   𝜑(𝑥)   𝑊(𝑥,𝑧)

Proof of Theorem wfaxsep
StepHypRef Expression
1 ssclaxsep 44955 . 2 (∀𝑧𝑊 𝒫 𝑧𝑊 → ∀𝑧𝑊𝑦𝑊𝑥𝑊 (𝑥𝑦 ↔ (𝑥𝑧𝜑)))
2 pwwf 9819 . . . 4 (𝑧 (𝑅1 “ On) ↔ 𝒫 𝑧 (𝑅1 “ On))
3 r1elssi 9817 . . . 4 (𝒫 𝑧 (𝑅1 “ On) → 𝒫 𝑧 (𝑅1 “ On))
42, 3sylbi 217 . . 3 (𝑧 (𝑅1 “ On) → 𝒫 𝑧 (𝑅1 “ On))
5 wfax.1 . . . 4 𝑊 = (𝑅1 “ On)
65eleq2i 2826 . . 3 (𝑧𝑊𝑧 (𝑅1 “ On))
75sseq2i 3988 . . 3 (𝒫 𝑧𝑊 ↔ 𝒫 𝑧 (𝑅1 “ On))
84, 6, 73imtr4i 292 . 2 (𝑧𝑊 → 𝒫 𝑧𝑊)
91, 8mprg 3057 1 𝑧𝑊𝑦𝑊𝑥𝑊 (𝑥𝑦 ↔ (𝑥𝑧𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060  wss 3926  𝒫 cpw 4575   cuni 4883  cima 5657  Oncon0 6352  𝑅1cr1 9774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-om 7860  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-r1 9776  df-rank 9777
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator