| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wfaxsep | Structured version Visualization version GIF version | ||
| Description: The class of well-founded sets models the Axiom of Separation ax-sep 5254. Actually, our statement is stronger, since it is an instance of Separation only when all quantifiers in 𝜑 are relativized to 𝑊. Part of Corollary II.2.5 of [Kunen2] p. 112. (Contributed by Eric Schmidt, 29-Sep-2025.) |
| Ref | Expression |
|---|---|
| wfax.1 | ⊢ 𝑊 = ∪ (𝑅1 “ On) |
| Ref | Expression |
|---|---|
| wfaxsep | ⊢ ∀𝑧 ∈ 𝑊 ∃𝑦 ∈ 𝑊 ∀𝑥 ∈ 𝑊 (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssclaxsep 44979 | . 2 ⊢ (∀𝑧 ∈ 𝑊 𝒫 𝑧 ⊆ 𝑊 → ∀𝑧 ∈ 𝑊 ∃𝑦 ∈ 𝑊 ∀𝑥 ∈ 𝑊 (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑))) | |
| 2 | pwwf 9767 | . . . 4 ⊢ (𝑧 ∈ ∪ (𝑅1 “ On) ↔ 𝒫 𝑧 ∈ ∪ (𝑅1 “ On)) | |
| 3 | r1elssi 9765 | . . . 4 ⊢ (𝒫 𝑧 ∈ ∪ (𝑅1 “ On) → 𝒫 𝑧 ⊆ ∪ (𝑅1 “ On)) | |
| 4 | 2, 3 | sylbi 217 | . . 3 ⊢ (𝑧 ∈ ∪ (𝑅1 “ On) → 𝒫 𝑧 ⊆ ∪ (𝑅1 “ On)) |
| 5 | wfax.1 | . . . 4 ⊢ 𝑊 = ∪ (𝑅1 “ On) | |
| 6 | 5 | eleq2i 2821 | . . 3 ⊢ (𝑧 ∈ 𝑊 ↔ 𝑧 ∈ ∪ (𝑅1 “ On)) |
| 7 | 5 | sseq2i 3979 | . . 3 ⊢ (𝒫 𝑧 ⊆ 𝑊 ↔ 𝒫 𝑧 ⊆ ∪ (𝑅1 “ On)) |
| 8 | 4, 6, 7 | 3imtr4i 292 | . 2 ⊢ (𝑧 ∈ 𝑊 → 𝒫 𝑧 ⊆ 𝑊) |
| 9 | 1, 8 | mprg 3051 | 1 ⊢ ∀𝑧 ∈ 𝑊 ∃𝑦 ∈ 𝑊 ∀𝑥 ∈ 𝑊 (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 ⊆ wss 3917 𝒫 cpw 4566 ∪ cuni 4874 “ cima 5644 Oncon0 6335 𝑅1cr1 9722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-r1 9724 df-rank 9725 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |