ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gausslemma2dlem7 Unicode version

Theorem gausslemma2dlem7 15755
Description: Lemma 7 for gausslemma2d 15756. (Contributed by AV, 13-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2d.p  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
gausslemma2d.h  |-  H  =  ( ( P  - 
1 )  /  2
)
gausslemma2d.r  |-  R  =  ( x  e.  ( 1 ... H ) 
|->  if ( ( x  x.  2 )  < 
( P  /  2
) ,  ( x  x.  2 ) ,  ( P  -  (
x  x.  2 ) ) ) )
gausslemma2d.m  |-  M  =  ( |_ `  ( P  /  4 ) )
gausslemma2d.n  |-  N  =  ( H  -  M
)
Assertion
Ref Expression
gausslemma2dlem7  |-  ( ph  ->  ( ( ( -u
1 ^ N )  x.  ( 2 ^ H ) )  mod 
P )  =  1 )
Distinct variable groups:    x, H    x, P    ph, x    x, M
Allowed substitution hints:    R( x)    N( x)

Proof of Theorem gausslemma2dlem7
StepHypRef Expression
1 gausslemma2d.p . . 3  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
2 gausslemma2d.h . . 3  |-  H  =  ( ( P  - 
1 )  /  2
)
3 gausslemma2d.r . . 3  |-  R  =  ( x  e.  ( 1 ... H ) 
|->  if ( ( x  x.  2 )  < 
( P  /  2
) ,  ( x  x.  2 ) ,  ( P  -  (
x  x.  2 ) ) ) )
4 gausslemma2d.m . . 3  |-  M  =  ( |_ `  ( P  /  4 ) )
5 gausslemma2d.n . . 3  |-  N  =  ( H  -  M
)
61, 2, 3, 4, 5gausslemma2dlem6 15754 . 2  |-  ( ph  ->  ( ( ! `  H )  mod  P
)  =  ( ( ( ( -u 1 ^ N )  x.  (
2 ^ H ) )  x.  ( ! `
 H ) )  mod  P ) )
71, 2gausslemma2dlem0b 15737 . . . . . . . . . . 11  |-  ( ph  ->  H  e.  NN )
87nnnn0d 9430 . . . . . . . . . 10  |-  ( ph  ->  H  e.  NN0 )
98faccld 10966 . . . . . . . . 9  |-  ( ph  ->  ( ! `  H
)  e.  NN )
109nncnd 9132 . . . . . . . 8  |-  ( ph  ->  ( ! `  H
)  e.  CC )
1110mullidd 8172 . . . . . . 7  |-  ( ph  ->  ( 1  x.  ( ! `  H )
)  =  ( ! `
 H ) )
1211eqcomd 2235 . . . . . 6  |-  ( ph  ->  ( ! `  H
)  =  ( 1  x.  ( ! `  H ) ) )
1312oveq1d 6022 . . . . 5  |-  ( ph  ->  ( ( ! `  H )  mod  P
)  =  ( ( 1  x.  ( ! `
 H ) )  mod  P ) )
1413eqeq1d 2238 . . . 4  |-  ( ph  ->  ( ( ( ! `
 H )  mod 
P )  =  ( ( ( ( -u
1 ^ N )  x.  ( 2 ^ H ) )  x.  ( ! `  H
) )  mod  P
)  <->  ( ( 1  x.  ( ! `  H ) )  mod 
P )  =  ( ( ( ( -u
1 ^ N )  x.  ( 2 ^ H ) )  x.  ( ! `  H
) )  mod  P
) ) )
15 1zzd 9481 . . . . 5  |-  ( ph  ->  1  e.  ZZ )
16 neg1z 9486 . . . . . . 7  |-  -u 1  e.  ZZ
171, 4, 2, 5gausslemma2dlem0h 15743 . . . . . . 7  |-  ( ph  ->  N  e.  NN0 )
18 zexpcl 10784 . . . . . . 7  |-  ( (
-u 1  e.  ZZ  /\  N  e.  NN0 )  ->  ( -u 1 ^ N )  e.  ZZ )
1916, 17, 18sylancr 414 . . . . . 6  |-  ( ph  ->  ( -u 1 ^ N )  e.  ZZ )
20 2z 9482 . . . . . . 7  |-  2  e.  ZZ
21 zexpcl 10784 . . . . . . 7  |-  ( ( 2  e.  ZZ  /\  H  e.  NN0 )  -> 
( 2 ^ H
)  e.  ZZ )
2220, 8, 21sylancr 414 . . . . . 6  |-  ( ph  ->  ( 2 ^ H
)  e.  ZZ )
2319, 22zmulcld 9583 . . . . 5  |-  ( ph  ->  ( ( -u 1 ^ N )  x.  (
2 ^ H ) )  e.  ZZ )
249nnzd 9576 . . . . 5  |-  ( ph  ->  ( ! `  H
)  e.  ZZ )
251gausslemma2dlem0a 15736 . . . . 5  |-  ( ph  ->  P  e.  NN )
261, 2gausslemma2dlem0c 15738 . . . . 5  |-  ( ph  ->  ( ( ! `  H )  gcd  P
)  =  1 )
27 cncongrcoprm 12636 . . . . 5  |-  ( ( ( 1  e.  ZZ  /\  ( ( -u 1 ^ N )  x.  (
2 ^ H ) )  e.  ZZ  /\  ( ! `  H )  e.  ZZ )  /\  ( P  e.  NN  /\  ( ( ! `  H )  gcd  P
)  =  1 ) )  ->  ( (
( 1  x.  ( ! `  H )
)  mod  P )  =  ( ( ( ( -u 1 ^ N )  x.  (
2 ^ H ) )  x.  ( ! `
 H ) )  mod  P )  <->  ( 1  mod  P )  =  ( ( ( -u
1 ^ N )  x.  ( 2 ^ H ) )  mod 
P ) ) )
2815, 23, 24, 25, 26, 27syl32anc 1279 . . . 4  |-  ( ph  ->  ( ( ( 1  x.  ( ! `  H ) )  mod 
P )  =  ( ( ( ( -u
1 ^ N )  x.  ( 2 ^ H ) )  x.  ( ! `  H
) )  mod  P
)  <->  ( 1  mod 
P )  =  ( ( ( -u 1 ^ N )  x.  (
2 ^ H ) )  mod  P ) ) )
2914, 28bitrd 188 . . 3  |-  ( ph  ->  ( ( ( ! `
 H )  mod 
P )  =  ( ( ( ( -u
1 ^ N )  x.  ( 2 ^ H ) )  x.  ( ! `  H
) )  mod  P
)  <->  ( 1  mod 
P )  =  ( ( ( -u 1 ^ N )  x.  (
2 ^ H ) )  mod  P ) ) )
30 simpr 110 . . . . 5  |-  ( (
ph  /\  ( 1  mod  P )  =  ( ( ( -u
1 ^ N )  x.  ( 2 ^ H ) )  mod 
P ) )  -> 
( 1  mod  P
)  =  ( ( ( -u 1 ^ N )  x.  (
2 ^ H ) )  mod  P ) )
31 nnq 9836 . . . . . . . 8  |-  ( P  e.  NN  ->  P  e.  QQ )
3225, 31syl 14 . . . . . . 7  |-  ( ph  ->  P  e.  QQ )
331eldifad 3208 . . . . . . . 8  |-  ( ph  ->  P  e.  Prime )
34 prmgt1 12662 . . . . . . . 8  |-  ( P  e.  Prime  ->  1  < 
P )
3533, 34syl 14 . . . . . . 7  |-  ( ph  ->  1  <  P )
36 q1mod 10586 . . . . . . 7  |-  ( ( P  e.  QQ  /\  1  <  P )  -> 
( 1  mod  P
)  =  1 )
3732, 35, 36syl2anc 411 . . . . . 6  |-  ( ph  ->  ( 1  mod  P
)  =  1 )
3837adantr 276 . . . . 5  |-  ( (
ph  /\  ( 1  mod  P )  =  ( ( ( -u
1 ^ N )  x.  ( 2 ^ H ) )  mod 
P ) )  -> 
( 1  mod  P
)  =  1 )
3930, 38eqtr3d 2264 . . . 4  |-  ( (
ph  /\  ( 1  mod  P )  =  ( ( ( -u
1 ^ N )  x.  ( 2 ^ H ) )  mod 
P ) )  -> 
( ( ( -u
1 ^ N )  x.  ( 2 ^ H ) )  mod 
P )  =  1 )
4039ex 115 . . 3  |-  ( ph  ->  ( ( 1  mod 
P )  =  ( ( ( -u 1 ^ N )  x.  (
2 ^ H ) )  mod  P )  ->  ( ( (
-u 1 ^ N
)  x.  ( 2 ^ H ) )  mod  P )  =  1 ) )
4129, 40sylbid 150 . 2  |-  ( ph  ->  ( ( ( ! `
 H )  mod 
P )  =  ( ( ( ( -u
1 ^ N )  x.  ( 2 ^ H ) )  x.  ( ! `  H
) )  mod  P
)  ->  ( (
( -u 1 ^ N
)  x.  ( 2 ^ H ) )  mod  P )  =  1 ) )
426, 41mpd 13 1  |-  ( ph  ->  ( ( ( -u
1 ^ N )  x.  ( 2 ^ H ) )  mod 
P )  =  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200    \ cdif 3194   ifcif 3602   {csn 3666   class class class wbr 4083    |-> cmpt 4145   ` cfv 5318  (class class class)co 6007   1c1 8008    x. cmul 8012    < clt 8189    - cmin 8325   -ucneg 8326    / cdiv 8827   NNcn 9118   2c2 9169   4c4 9171   NN0cn0 9377   ZZcz 9454   QQcq 9822   ...cfz 10212   |_cfl 10496    mod cmo 10552   ^cexp 10768   !cfa 10955    gcd cgcd 12482   Primecprime 12637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-xor 1418  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-frec 6543  df-1o 6568  df-2o 6569  df-oadd 6572  df-er 6688  df-en 6896  df-dom 6897  df-fin 6898  df-sup 7159  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-ioo 10096  df-fz 10213  df-fzo 10347  df-fl 10498  df-mod 10553  df-seqfrec 10678  df-exp 10769  df-fac 10956  df-ihash 11006  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-clim 11798  df-proddc 12070  df-dvds 12307  df-gcd 12483  df-prm 12638
This theorem is referenced by:  gausslemma2d  15756
  Copyright terms: Public domain W3C validator