| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gausslemma2d | Unicode version | ||
| Description: Gauss' Lemma (see also
theorem 9.6 in [ApostolNT] p. 182) for
integer
|
| Ref | Expression |
|---|---|
| gausslemma2d.p |
|
| gausslemma2d.h |
|
| gausslemma2d.r |
|
| gausslemma2d.m |
|
| gausslemma2d.n |
|
| Ref | Expression |
|---|---|
| gausslemma2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gausslemma2d.p |
. . 3
| |
| 2 | gausslemma2d.h |
. . 3
| |
| 3 | gausslemma2d.r |
. . 3
| |
| 4 | gausslemma2d.m |
. . 3
| |
| 5 | gausslemma2d.n |
. . 3
| |
| 6 | 1, 2, 3, 4, 5 | gausslemma2dlem7 15595 |
. 2
|
| 7 | 1 | gausslemma2dlem0a 15576 |
. . . . . . 7
|
| 8 | nnq 9767 |
. . . . . . 7
| |
| 9 | 7, 8 | syl 14 |
. . . . . 6
|
| 10 | eldifi 3297 |
. . . . . . 7
| |
| 11 | prmgt1 12504 |
. . . . . . 7
| |
| 12 | 1, 10, 11 | 3syl 17 |
. . . . . 6
|
| 13 | q1mod 10514 |
. . . . . 6
| |
| 14 | 9, 12, 13 | syl2anc 411 |
. . . . 5
|
| 15 | 14 | eqcomd 2212 |
. . . 4
|
| 16 | 15 | eqeq2d 2218 |
. . 3
|
| 17 | neg1z 9417 |
. . . . . . . . . 10
| |
| 18 | 1, 4, 2, 5 | gausslemma2dlem0h 15583 |
. . . . . . . . . 10
|
| 19 | zexpcl 10712 |
. . . . . . . . . 10
| |
| 20 | 17, 18, 19 | sylancr 414 |
. . . . . . . . 9
|
| 21 | 2nn 9211 |
. . . . . . . . . . . 12
| |
| 22 | 21 | a1i 9 |
. . . . . . . . . . 11
|
| 23 | 1, 2 | gausslemma2dlem0b 15577 |
. . . . . . . . . . . 12
|
| 24 | 23 | nnnn0d 9361 |
. . . . . . . . . . 11
|
| 25 | 22, 24 | nnexpcld 10853 |
. . . . . . . . . 10
|
| 26 | 25 | nnzd 9507 |
. . . . . . . . 9
|
| 27 | 20, 26 | zmulcld 9514 |
. . . . . . . 8
|
| 28 | zq 9760 |
. . . . . . . 8
| |
| 29 | 27, 28 | syl 14 |
. . . . . . 7
|
| 30 | 29 | adantr 276 |
. . . . . 6
|
| 31 | 1z 9411 |
. . . . . . 7
| |
| 32 | zq 9760 |
. . . . . . 7
| |
| 33 | 31, 32 | mp1i 10 |
. . . . . 6
|
| 34 | 20 | adantr 276 |
. . . . . 6
|
| 35 | 9 | adantr 276 |
. . . . . 6
|
| 36 | 7 | nngt0d 9093 |
. . . . . . 7
|
| 37 | 36 | adantr 276 |
. . . . . 6
|
| 38 | simpr 110 |
. . . . . 6
| |
| 39 | 30, 33, 34, 35, 37, 38 | modqmul1 10535 |
. . . . 5
|
| 40 | 39 | ex 115 |
. . . 4
|
| 41 | 20 | zcnd 9509 |
. . . . . . . . 9
|
| 42 | 25 | nncnd 9063 |
. . . . . . . . 9
|
| 43 | 41, 42, 41 | mul32d 8238 |
. . . . . . . 8
|
| 44 | 18 | nn0cnd 9363 |
. . . . . . . . . . . . 13
|
| 45 | 44 | 2timesd 9293 |
. . . . . . . . . . . 12
|
| 46 | 45 | eqcomd 2212 |
. . . . . . . . . . 11
|
| 47 | 46 | oveq2d 5970 |
. . . . . . . . . 10
|
| 48 | neg1cn 9154 |
. . . . . . . . . . . 12
| |
| 49 | 48 | a1i 9 |
. . . . . . . . . . 11
|
| 50 | 49, 18, 18 | expaddd 10833 |
. . . . . . . . . 10
|
| 51 | 18 | nn0zd 9506 |
. . . . . . . . . . 11
|
| 52 | m1expeven 10744 |
. . . . . . . . . . 11
| |
| 53 | 51, 52 | syl 14 |
. . . . . . . . . 10
|
| 54 | 47, 50, 53 | 3eqtr3d 2247 |
. . . . . . . . 9
|
| 55 | 54 | oveq1d 5969 |
. . . . . . . 8
|
| 56 | 42 | mullidd 8103 |
. . . . . . . 8
|
| 57 | 43, 55, 56 | 3eqtrd 2243 |
. . . . . . 7
|
| 58 | 57 | oveq1d 5969 |
. . . . . 6
|
| 59 | 41 | mullidd 8103 |
. . . . . . 7
|
| 60 | 59 | oveq1d 5969 |
. . . . . 6
|
| 61 | 58, 60 | eqeq12d 2221 |
. . . . 5
|
| 62 | 2 | oveq2i 5965 |
. . . . . . . 8
|
| 63 | 62 | oveq1i 5964 |
. . . . . . 7
|
| 64 | 63 | eqeq1i 2214 |
. . . . . 6
|
| 65 | 2z 9413 |
. . . . . . . . . 10
| |
| 66 | lgsvalmod 15546 |
. . . . . . . . . 10
| |
| 67 | 65, 1, 66 | sylancr 414 |
. . . . . . . . 9
|
| 68 | 67 | eqcomd 2212 |
. . . . . . . 8
|
| 69 | 68 | eqeq1d 2215 |
. . . . . . 7
|
| 70 | 1, 4, 2, 5 | gausslemma2dlem0i 15584 |
. . . . . . 7
|
| 71 | 69, 70 | sylbid 150 |
. . . . . 6
|
| 72 | 64, 71 | biimtrid 152 |
. . . . 5
|
| 73 | 61, 72 | sylbid 150 |
. . . 4
|
| 74 | 40, 73 | syld 45 |
. . 3
|
| 75 | 16, 74 | sylbid 150 |
. 2
|
| 76 | 6, 75 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-iinf 4641 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-mulrcl 8037 ax-addcom 8038 ax-mulcom 8039 ax-addass 8040 ax-mulass 8041 ax-distr 8042 ax-i2m1 8043 ax-0lt1 8044 ax-1rid 8045 ax-0id 8046 ax-rnegex 8047 ax-precex 8048 ax-cnre 8049 ax-pre-ltirr 8050 ax-pre-ltwlin 8051 ax-pre-lttrn 8052 ax-pre-apti 8053 ax-pre-ltadd 8054 ax-pre-mulgt0 8055 ax-pre-mulext 8056 ax-arch 8057 ax-caucvg 8058 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-xor 1396 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-if 3574 df-pw 3620 df-sn 3641 df-pr 3642 df-tp 3643 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-tr 4148 df-id 4345 df-po 4348 df-iso 4349 df-iord 4418 df-on 4420 df-ilim 4421 df-suc 4423 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-isom 5286 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-recs 6401 df-irdg 6466 df-frec 6487 df-1o 6512 df-2o 6513 df-oadd 6516 df-er 6630 df-en 6838 df-dom 6839 df-fin 6840 df-sup 7098 df-inf 7099 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-sub 8258 df-neg 8259 df-reap 8661 df-ap 8668 df-div 8759 df-inn 9050 df-2 9108 df-3 9109 df-4 9110 df-5 9111 df-6 9112 df-7 9113 df-8 9114 df-n0 9309 df-z 9386 df-uz 9662 df-q 9754 df-rp 9789 df-ioo 10027 df-fz 10144 df-fzo 10278 df-fl 10426 df-mod 10481 df-seqfrec 10606 df-exp 10697 df-fac 10884 df-ihash 10934 df-cj 11203 df-re 11204 df-im 11205 df-rsqrt 11359 df-abs 11360 df-clim 11640 df-proddc 11912 df-dvds 12149 df-gcd 12325 df-prm 12480 df-phi 12583 df-pc 12658 df-lgs 15525 |
| This theorem is referenced by: 2lgs 15631 |
| Copyright terms: Public domain | W3C validator |