ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gausslemma2d Unicode version

Theorem gausslemma2d 15733
Description: Gauss' Lemma (see also theorem 9.6 in [ApostolNT] p. 182) for integer  2: Let p be an odd prime. Let S = {2, 4, 6, ..., p - 1}. Let n denote the number of elements of S whose least positive residue modulo p is greater than p/2. Then ( 2 | p ) = (-1)^n. (Contributed by AV, 14-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2d.p  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
gausslemma2d.h  |-  H  =  ( ( P  - 
1 )  /  2
)
gausslemma2d.r  |-  R  =  ( x  e.  ( 1 ... H ) 
|->  if ( ( x  x.  2 )  < 
( P  /  2
) ,  ( x  x.  2 ) ,  ( P  -  (
x  x.  2 ) ) ) )
gausslemma2d.m  |-  M  =  ( |_ `  ( P  /  4 ) )
gausslemma2d.n  |-  N  =  ( H  -  M
)
Assertion
Ref Expression
gausslemma2d  |-  ( ph  ->  ( 2  /L
P )  =  (
-u 1 ^ N
) )
Distinct variable groups:    x, H    x, P    ph, x    x, M
Allowed substitution hints:    R( x)    N( x)

Proof of Theorem gausslemma2d
StepHypRef Expression
1 gausslemma2d.p . . 3  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
2 gausslemma2d.h . . 3  |-  H  =  ( ( P  - 
1 )  /  2
)
3 gausslemma2d.r . . 3  |-  R  =  ( x  e.  ( 1 ... H ) 
|->  if ( ( x  x.  2 )  < 
( P  /  2
) ,  ( x  x.  2 ) ,  ( P  -  (
x  x.  2 ) ) ) )
4 gausslemma2d.m . . 3  |-  M  =  ( |_ `  ( P  /  4 ) )
5 gausslemma2d.n . . 3  |-  N  =  ( H  -  M
)
61, 2, 3, 4, 5gausslemma2dlem7 15732 . 2  |-  ( ph  ->  ( ( ( -u
1 ^ N )  x.  ( 2 ^ H ) )  mod 
P )  =  1 )
71gausslemma2dlem0a 15713 . . . . . . 7  |-  ( ph  ->  P  e.  NN )
8 nnq 9816 . . . . . . 7  |-  ( P  e.  NN  ->  P  e.  QQ )
97, 8syl 14 . . . . . 6  |-  ( ph  ->  P  e.  QQ )
10 eldifi 3326 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  Prime )
11 prmgt1 12640 . . . . . . 7  |-  ( P  e.  Prime  ->  1  < 
P )
121, 10, 113syl 17 . . . . . 6  |-  ( ph  ->  1  <  P )
13 q1mod 10565 . . . . . 6  |-  ( ( P  e.  QQ  /\  1  <  P )  -> 
( 1  mod  P
)  =  1 )
149, 12, 13syl2anc 411 . . . . 5  |-  ( ph  ->  ( 1  mod  P
)  =  1 )
1514eqcomd 2235 . . . 4  |-  ( ph  ->  1  =  ( 1  mod  P ) )
1615eqeq2d 2241 . . 3  |-  ( ph  ->  ( ( ( (
-u 1 ^ N
)  x.  ( 2 ^ H ) )  mod  P )  =  1  <->  ( ( (
-u 1 ^ N
)  x.  ( 2 ^ H ) )  mod  P )  =  ( 1  mod  P
) ) )
17 neg1z 9466 . . . . . . . . . 10  |-  -u 1  e.  ZZ
181, 4, 2, 5gausslemma2dlem0h 15720 . . . . . . . . . 10  |-  ( ph  ->  N  e.  NN0 )
19 zexpcl 10763 . . . . . . . . . 10  |-  ( (
-u 1  e.  ZZ  /\  N  e.  NN0 )  ->  ( -u 1 ^ N )  e.  ZZ )
2017, 18, 19sylancr 414 . . . . . . . . 9  |-  ( ph  ->  ( -u 1 ^ N )  e.  ZZ )
21 2nn 9260 . . . . . . . . . . . 12  |-  2  e.  NN
2221a1i 9 . . . . . . . . . . 11  |-  ( ph  ->  2  e.  NN )
231, 2gausslemma2dlem0b 15714 . . . . . . . . . . . 12  |-  ( ph  ->  H  e.  NN )
2423nnnn0d 9410 . . . . . . . . . . 11  |-  ( ph  ->  H  e.  NN0 )
2522, 24nnexpcld 10904 . . . . . . . . . 10  |-  ( ph  ->  ( 2 ^ H
)  e.  NN )
2625nnzd 9556 . . . . . . . . 9  |-  ( ph  ->  ( 2 ^ H
)  e.  ZZ )
2720, 26zmulcld 9563 . . . . . . . 8  |-  ( ph  ->  ( ( -u 1 ^ N )  x.  (
2 ^ H ) )  e.  ZZ )
28 zq 9809 . . . . . . . 8  |-  ( ( ( -u 1 ^ N )  x.  (
2 ^ H ) )  e.  ZZ  ->  ( ( -u 1 ^ N )  x.  (
2 ^ H ) )  e.  QQ )
2927, 28syl 14 . . . . . . 7  |-  ( ph  ->  ( ( -u 1 ^ N )  x.  (
2 ^ H ) )  e.  QQ )
3029adantr 276 . . . . . 6  |-  ( (
ph  /\  ( (
( -u 1 ^ N
)  x.  ( 2 ^ H ) )  mod  P )  =  ( 1  mod  P
) )  ->  (
( -u 1 ^ N
)  x.  ( 2 ^ H ) )  e.  QQ )
31 1z 9460 . . . . . . 7  |-  1  e.  ZZ
32 zq 9809 . . . . . . 7  |-  ( 1  e.  ZZ  ->  1  e.  QQ )
3331, 32mp1i 10 . . . . . 6  |-  ( (
ph  /\  ( (
( -u 1 ^ N
)  x.  ( 2 ^ H ) )  mod  P )  =  ( 1  mod  P
) )  ->  1  e.  QQ )
3420adantr 276 . . . . . 6  |-  ( (
ph  /\  ( (
( -u 1 ^ N
)  x.  ( 2 ^ H ) )  mod  P )  =  ( 1  mod  P
) )  ->  ( -u 1 ^ N )  e.  ZZ )
359adantr 276 . . . . . 6  |-  ( (
ph  /\  ( (
( -u 1 ^ N
)  x.  ( 2 ^ H ) )  mod  P )  =  ( 1  mod  P
) )  ->  P  e.  QQ )
367nngt0d 9142 . . . . . . 7  |-  ( ph  ->  0  <  P )
3736adantr 276 . . . . . 6  |-  ( (
ph  /\  ( (
( -u 1 ^ N
)  x.  ( 2 ^ H ) )  mod  P )  =  ( 1  mod  P
) )  ->  0  <  P )
38 simpr 110 . . . . . 6  |-  ( (
ph  /\  ( (
( -u 1 ^ N
)  x.  ( 2 ^ H ) )  mod  P )  =  ( 1  mod  P
) )  ->  (
( ( -u 1 ^ N )  x.  (
2 ^ H ) )  mod  P )  =  ( 1  mod 
P ) )
3930, 33, 34, 35, 37, 38modqmul1 10586 . . . . 5  |-  ( (
ph  /\  ( (
( -u 1 ^ N
)  x.  ( 2 ^ H ) )  mod  P )  =  ( 1  mod  P
) )  ->  (
( ( ( -u
1 ^ N )  x.  ( 2 ^ H ) )  x.  ( -u 1 ^ N ) )  mod 
P )  =  ( ( 1  x.  ( -u 1 ^ N ) )  mod  P ) )
4039ex 115 . . . 4  |-  ( ph  ->  ( ( ( (
-u 1 ^ N
)  x.  ( 2 ^ H ) )  mod  P )  =  ( 1  mod  P
)  ->  ( (
( ( -u 1 ^ N )  x.  (
2 ^ H ) )  x.  ( -u
1 ^ N ) )  mod  P )  =  ( ( 1  x.  ( -u 1 ^ N ) )  mod 
P ) ) )
4120zcnd 9558 . . . . . . . . 9  |-  ( ph  ->  ( -u 1 ^ N )  e.  CC )
4225nncnd 9112 . . . . . . . . 9  |-  ( ph  ->  ( 2 ^ H
)  e.  CC )
4341, 42, 41mul32d 8287 . . . . . . . 8  |-  ( ph  ->  ( ( ( -u
1 ^ N )  x.  ( 2 ^ H ) )  x.  ( -u 1 ^ N ) )  =  ( ( ( -u
1 ^ N )  x.  ( -u 1 ^ N ) )  x.  ( 2 ^ H
) ) )
4418nn0cnd 9412 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  CC )
45442timesd 9342 . . . . . . . . . . . 12  |-  ( ph  ->  ( 2  x.  N
)  =  ( N  +  N ) )
4645eqcomd 2235 . . . . . . . . . . 11  |-  ( ph  ->  ( N  +  N
)  =  ( 2  x.  N ) )
4746oveq2d 6010 . . . . . . . . . 10  |-  ( ph  ->  ( -u 1 ^ ( N  +  N
) )  =  (
-u 1 ^ (
2  x.  N ) ) )
48 neg1cn 9203 . . . . . . . . . . . 12  |-  -u 1  e.  CC
4948a1i 9 . . . . . . . . . . 11  |-  ( ph  -> 
-u 1  e.  CC )
5049, 18, 18expaddd 10884 . . . . . . . . . 10  |-  ( ph  ->  ( -u 1 ^ ( N  +  N
) )  =  ( ( -u 1 ^ N )  x.  ( -u 1 ^ N ) ) )
5118nn0zd 9555 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  ZZ )
52 m1expeven 10795 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  ( -u 1 ^ ( 2  x.  N ) )  =  1 )
5351, 52syl 14 . . . . . . . . . 10  |-  ( ph  ->  ( -u 1 ^ ( 2  x.  N
) )  =  1 )
5447, 50, 533eqtr3d 2270 . . . . . . . . 9  |-  ( ph  ->  ( ( -u 1 ^ N )  x.  ( -u 1 ^ N ) )  =  1 )
5554oveq1d 6009 . . . . . . . 8  |-  ( ph  ->  ( ( ( -u
1 ^ N )  x.  ( -u 1 ^ N ) )  x.  ( 2 ^ H
) )  =  ( 1  x.  ( 2 ^ H ) ) )
5642mullidd 8152 . . . . . . . 8  |-  ( ph  ->  ( 1  x.  (
2 ^ H ) )  =  ( 2 ^ H ) )
5743, 55, 563eqtrd 2266 . . . . . . 7  |-  ( ph  ->  ( ( ( -u
1 ^ N )  x.  ( 2 ^ H ) )  x.  ( -u 1 ^ N ) )  =  ( 2 ^ H
) )
5857oveq1d 6009 . . . . . 6  |-  ( ph  ->  ( ( ( (
-u 1 ^ N
)  x.  ( 2 ^ H ) )  x.  ( -u 1 ^ N ) )  mod 
P )  =  ( ( 2 ^ H
)  mod  P )
)
5941mullidd 8152 . . . . . . 7  |-  ( ph  ->  ( 1  x.  ( -u 1 ^ N ) )  =  ( -u
1 ^ N ) )
6059oveq1d 6009 . . . . . 6  |-  ( ph  ->  ( ( 1  x.  ( -u 1 ^ N ) )  mod 
P )  =  ( ( -u 1 ^ N )  mod  P
) )
6158, 60eqeq12d 2244 . . . . 5  |-  ( ph  ->  ( ( ( ( ( -u 1 ^ N )  x.  (
2 ^ H ) )  x.  ( -u
1 ^ N ) )  mod  P )  =  ( ( 1  x.  ( -u 1 ^ N ) )  mod 
P )  <->  ( (
2 ^ H )  mod  P )  =  ( ( -u 1 ^ N )  mod  P
) ) )
622oveq2i 6005 . . . . . . . 8  |-  ( 2 ^ H )  =  ( 2 ^ (
( P  -  1 )  /  2 ) )
6362oveq1i 6004 . . . . . . 7  |-  ( ( 2 ^ H )  mod  P )  =  ( ( 2 ^ ( ( P  - 
1 )  /  2
) )  mod  P
)
6463eqeq1i 2237 . . . . . 6  |-  ( ( ( 2 ^ H
)  mod  P )  =  ( ( -u
1 ^ N )  mod  P )  <->  ( (
2 ^ ( ( P  -  1 )  /  2 ) )  mod  P )  =  ( ( -u 1 ^ N )  mod  P
) )
65 2z 9462 . . . . . . . . . 10  |-  2  e.  ZZ
66 lgsvalmod 15683 . . . . . . . . . 10  |-  ( ( 2  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
2  /L P )  mod  P )  =  ( ( 2 ^ ( ( P  -  1 )  / 
2 ) )  mod 
P ) )
6765, 1, 66sylancr 414 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  /L P )  mod 
P )  =  ( ( 2 ^ (
( P  -  1 )  /  2 ) )  mod  P ) )
6867eqcomd 2235 . . . . . . . 8  |-  ( ph  ->  ( ( 2 ^ ( ( P  - 
1 )  /  2
) )  mod  P
)  =  ( ( 2  /L P )  mod  P ) )
6968eqeq1d 2238 . . . . . . 7  |-  ( ph  ->  ( ( ( 2 ^ ( ( P  -  1 )  / 
2 ) )  mod 
P )  =  ( ( -u 1 ^ N )  mod  P
)  <->  ( ( 2  /L P )  mod  P )  =  ( ( -u 1 ^ N )  mod  P
) ) )
701, 4, 2, 5gausslemma2dlem0i 15721 . . . . . . 7  |-  ( ph  ->  ( ( ( 2  /L P )  mod  P )  =  ( ( -u 1 ^ N )  mod  P
)  ->  ( 2  /L P )  =  ( -u 1 ^ N ) ) )
7169, 70sylbid 150 . . . . . 6  |-  ( ph  ->  ( ( ( 2 ^ ( ( P  -  1 )  / 
2 ) )  mod 
P )  =  ( ( -u 1 ^ N )  mod  P
)  ->  ( 2  /L P )  =  ( -u 1 ^ N ) ) )
7264, 71biimtrid 152 . . . . 5  |-  ( ph  ->  ( ( ( 2 ^ H )  mod 
P )  =  ( ( -u 1 ^ N )  mod  P
)  ->  ( 2  /L P )  =  ( -u 1 ^ N ) ) )
7361, 72sylbid 150 . . . 4  |-  ( ph  ->  ( ( ( ( ( -u 1 ^ N )  x.  (
2 ^ H ) )  x.  ( -u
1 ^ N ) )  mod  P )  =  ( ( 1  x.  ( -u 1 ^ N ) )  mod 
P )  ->  (
2  /L P )  =  ( -u
1 ^ N ) ) )
7440, 73syld 45 . . 3  |-  ( ph  ->  ( ( ( (
-u 1 ^ N
)  x.  ( 2 ^ H ) )  mod  P )  =  ( 1  mod  P
)  ->  ( 2  /L P )  =  ( -u 1 ^ N ) ) )
7516, 74sylbid 150 . 2  |-  ( ph  ->  ( ( ( (
-u 1 ^ N
)  x.  ( 2 ^ H ) )  mod  P )  =  1  ->  ( 2  /L P )  =  ( -u 1 ^ N ) ) )
766, 75mpd 13 1  |-  ( ph  ->  ( 2  /L
P )  =  (
-u 1 ^ N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200    \ cdif 3194   ifcif 3602   {csn 3666   class class class wbr 4082    |-> cmpt 4144   ` cfv 5314  (class class class)co 5994   CCcc 7985   0cc0 7987   1c1 7988    + caddc 7990    x. cmul 7992    < clt 8169    - cmin 8305   -ucneg 8306    / cdiv 8807   NNcn 9098   2c2 9149   4c4 9151   NN0cn0 9357   ZZcz 9434   QQcq 9802   ...cfz 10192   |_cfl 10475    mod cmo 10531   ^cexp 10747   Primecprime 12615    /Lclgs 15661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106  ax-caucvg 8107
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-xor 1418  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-isom 5323  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-irdg 6506  df-frec 6527  df-1o 6552  df-2o 6553  df-oadd 6556  df-er 6670  df-en 6878  df-dom 6879  df-fin 6880  df-sup 7139  df-inf 7140  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-5 9160  df-6 9161  df-7 9162  df-8 9163  df-n0 9358  df-z 9435  df-uz 9711  df-q 9803  df-rp 9838  df-ioo 10076  df-fz 10193  df-fzo 10327  df-fl 10477  df-mod 10532  df-seqfrec 10657  df-exp 10748  df-fac 10935  df-ihash 10985  df-cj 11339  df-re 11340  df-im 11341  df-rsqrt 11495  df-abs 11496  df-clim 11776  df-proddc 12048  df-dvds 12285  df-gcd 12461  df-prm 12616  df-phi 12719  df-pc 12794  df-lgs 15662
This theorem is referenced by:  2lgs  15768
  Copyright terms: Public domain W3C validator