ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gausslemma2d Unicode version

Theorem gausslemma2d 15320
Description: Gauss' Lemma (see also theorem 9.6 in [ApostolNT] p. 182) for integer  2: Let p be an odd prime. Let S = {2, 4, 6, ..., p - 1}. Let n denote the number of elements of S whose least positive residue modulo p is greater than p/2. Then ( 2 | p ) = (-1)^n. (Contributed by AV, 14-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2d.p  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
gausslemma2d.h  |-  H  =  ( ( P  - 
1 )  /  2
)
gausslemma2d.r  |-  R  =  ( x  e.  ( 1 ... H ) 
|->  if ( ( x  x.  2 )  < 
( P  /  2
) ,  ( x  x.  2 ) ,  ( P  -  (
x  x.  2 ) ) ) )
gausslemma2d.m  |-  M  =  ( |_ `  ( P  /  4 ) )
gausslemma2d.n  |-  N  =  ( H  -  M
)
Assertion
Ref Expression
gausslemma2d  |-  ( ph  ->  ( 2  /L
P )  =  (
-u 1 ^ N
) )
Distinct variable groups:    x, H    x, P    ph, x    x, M
Allowed substitution hints:    R( x)    N( x)

Proof of Theorem gausslemma2d
StepHypRef Expression
1 gausslemma2d.p . . 3  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
2 gausslemma2d.h . . 3  |-  H  =  ( ( P  - 
1 )  /  2
)
3 gausslemma2d.r . . 3  |-  R  =  ( x  e.  ( 1 ... H ) 
|->  if ( ( x  x.  2 )  < 
( P  /  2
) ,  ( x  x.  2 ) ,  ( P  -  (
x  x.  2 ) ) ) )
4 gausslemma2d.m . . 3  |-  M  =  ( |_ `  ( P  /  4 ) )
5 gausslemma2d.n . . 3  |-  N  =  ( H  -  M
)
61, 2, 3, 4, 5gausslemma2dlem7 15319 . 2  |-  ( ph  ->  ( ( ( -u
1 ^ N )  x.  ( 2 ^ H ) )  mod 
P )  =  1 )
71gausslemma2dlem0a 15300 . . . . . . 7  |-  ( ph  ->  P  e.  NN )
8 nnq 9709 . . . . . . 7  |-  ( P  e.  NN  ->  P  e.  QQ )
97, 8syl 14 . . . . . 6  |-  ( ph  ->  P  e.  QQ )
10 eldifi 3286 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  Prime )
11 prmgt1 12310 . . . . . . 7  |-  ( P  e.  Prime  ->  1  < 
P )
121, 10, 113syl 17 . . . . . 6  |-  ( ph  ->  1  <  P )
13 q1mod 10450 . . . . . 6  |-  ( ( P  e.  QQ  /\  1  <  P )  -> 
( 1  mod  P
)  =  1 )
149, 12, 13syl2anc 411 . . . . 5  |-  ( ph  ->  ( 1  mod  P
)  =  1 )
1514eqcomd 2202 . . . 4  |-  ( ph  ->  1  =  ( 1  mod  P ) )
1615eqeq2d 2208 . . 3  |-  ( ph  ->  ( ( ( (
-u 1 ^ N
)  x.  ( 2 ^ H ) )  mod  P )  =  1  <->  ( ( (
-u 1 ^ N
)  x.  ( 2 ^ H ) )  mod  P )  =  ( 1  mod  P
) ) )
17 neg1z 9360 . . . . . . . . . 10  |-  -u 1  e.  ZZ
181, 4, 2, 5gausslemma2dlem0h 15307 . . . . . . . . . 10  |-  ( ph  ->  N  e.  NN0 )
19 zexpcl 10648 . . . . . . . . . 10  |-  ( (
-u 1  e.  ZZ  /\  N  e.  NN0 )  ->  ( -u 1 ^ N )  e.  ZZ )
2017, 18, 19sylancr 414 . . . . . . . . 9  |-  ( ph  ->  ( -u 1 ^ N )  e.  ZZ )
21 2nn 9154 . . . . . . . . . . . 12  |-  2  e.  NN
2221a1i 9 . . . . . . . . . . 11  |-  ( ph  ->  2  e.  NN )
231, 2gausslemma2dlem0b 15301 . . . . . . . . . . . 12  |-  ( ph  ->  H  e.  NN )
2423nnnn0d 9304 . . . . . . . . . . 11  |-  ( ph  ->  H  e.  NN0 )
2522, 24nnexpcld 10789 . . . . . . . . . 10  |-  ( ph  ->  ( 2 ^ H
)  e.  NN )
2625nnzd 9449 . . . . . . . . 9  |-  ( ph  ->  ( 2 ^ H
)  e.  ZZ )
2720, 26zmulcld 9456 . . . . . . . 8  |-  ( ph  ->  ( ( -u 1 ^ N )  x.  (
2 ^ H ) )  e.  ZZ )
28 zq 9702 . . . . . . . 8  |-  ( ( ( -u 1 ^ N )  x.  (
2 ^ H ) )  e.  ZZ  ->  ( ( -u 1 ^ N )  x.  (
2 ^ H ) )  e.  QQ )
2927, 28syl 14 . . . . . . 7  |-  ( ph  ->  ( ( -u 1 ^ N )  x.  (
2 ^ H ) )  e.  QQ )
3029adantr 276 . . . . . 6  |-  ( (
ph  /\  ( (
( -u 1 ^ N
)  x.  ( 2 ^ H ) )  mod  P )  =  ( 1  mod  P
) )  ->  (
( -u 1 ^ N
)  x.  ( 2 ^ H ) )  e.  QQ )
31 1z 9354 . . . . . . 7  |-  1  e.  ZZ
32 zq 9702 . . . . . . 7  |-  ( 1  e.  ZZ  ->  1  e.  QQ )
3331, 32mp1i 10 . . . . . 6  |-  ( (
ph  /\  ( (
( -u 1 ^ N
)  x.  ( 2 ^ H ) )  mod  P )  =  ( 1  mod  P
) )  ->  1  e.  QQ )
3420adantr 276 . . . . . 6  |-  ( (
ph  /\  ( (
( -u 1 ^ N
)  x.  ( 2 ^ H ) )  mod  P )  =  ( 1  mod  P
) )  ->  ( -u 1 ^ N )  e.  ZZ )
359adantr 276 . . . . . 6  |-  ( (
ph  /\  ( (
( -u 1 ^ N
)  x.  ( 2 ^ H ) )  mod  P )  =  ( 1  mod  P
) )  ->  P  e.  QQ )
367nngt0d 9036 . . . . . . 7  |-  ( ph  ->  0  <  P )
3736adantr 276 . . . . . 6  |-  ( (
ph  /\  ( (
( -u 1 ^ N
)  x.  ( 2 ^ H ) )  mod  P )  =  ( 1  mod  P
) )  ->  0  <  P )
38 simpr 110 . . . . . 6  |-  ( (
ph  /\  ( (
( -u 1 ^ N
)  x.  ( 2 ^ H ) )  mod  P )  =  ( 1  mod  P
) )  ->  (
( ( -u 1 ^ N )  x.  (
2 ^ H ) )  mod  P )  =  ( 1  mod 
P ) )
3930, 33, 34, 35, 37, 38modqmul1 10471 . . . . 5  |-  ( (
ph  /\  ( (
( -u 1 ^ N
)  x.  ( 2 ^ H ) )  mod  P )  =  ( 1  mod  P
) )  ->  (
( ( ( -u
1 ^ N )  x.  ( 2 ^ H ) )  x.  ( -u 1 ^ N ) )  mod 
P )  =  ( ( 1  x.  ( -u 1 ^ N ) )  mod  P ) )
4039ex 115 . . . 4  |-  ( ph  ->  ( ( ( (
-u 1 ^ N
)  x.  ( 2 ^ H ) )  mod  P )  =  ( 1  mod  P
)  ->  ( (
( ( -u 1 ^ N )  x.  (
2 ^ H ) )  x.  ( -u
1 ^ N ) )  mod  P )  =  ( ( 1  x.  ( -u 1 ^ N ) )  mod 
P ) ) )
4120zcnd 9451 . . . . . . . . 9  |-  ( ph  ->  ( -u 1 ^ N )  e.  CC )
4225nncnd 9006 . . . . . . . . 9  |-  ( ph  ->  ( 2 ^ H
)  e.  CC )
4341, 42, 41mul32d 8181 . . . . . . . 8  |-  ( ph  ->  ( ( ( -u
1 ^ N )  x.  ( 2 ^ H ) )  x.  ( -u 1 ^ N ) )  =  ( ( ( -u
1 ^ N )  x.  ( -u 1 ^ N ) )  x.  ( 2 ^ H
) ) )
4418nn0cnd 9306 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  CC )
45442timesd 9236 . . . . . . . . . . . 12  |-  ( ph  ->  ( 2  x.  N
)  =  ( N  +  N ) )
4645eqcomd 2202 . . . . . . . . . . 11  |-  ( ph  ->  ( N  +  N
)  =  ( 2  x.  N ) )
4746oveq2d 5939 . . . . . . . . . 10  |-  ( ph  ->  ( -u 1 ^ ( N  +  N
) )  =  (
-u 1 ^ (
2  x.  N ) ) )
48 neg1cn 9097 . . . . . . . . . . . 12  |-  -u 1  e.  CC
4948a1i 9 . . . . . . . . . . 11  |-  ( ph  -> 
-u 1  e.  CC )
5049, 18, 18expaddd 10769 . . . . . . . . . 10  |-  ( ph  ->  ( -u 1 ^ ( N  +  N
) )  =  ( ( -u 1 ^ N )  x.  ( -u 1 ^ N ) ) )
5118nn0zd 9448 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  ZZ )
52 m1expeven 10680 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  ( -u 1 ^ ( 2  x.  N ) )  =  1 )
5351, 52syl 14 . . . . . . . . . 10  |-  ( ph  ->  ( -u 1 ^ ( 2  x.  N
) )  =  1 )
5447, 50, 533eqtr3d 2237 . . . . . . . . 9  |-  ( ph  ->  ( ( -u 1 ^ N )  x.  ( -u 1 ^ N ) )  =  1 )
5554oveq1d 5938 . . . . . . . 8  |-  ( ph  ->  ( ( ( -u
1 ^ N )  x.  ( -u 1 ^ N ) )  x.  ( 2 ^ H
) )  =  ( 1  x.  ( 2 ^ H ) ) )
5642mullidd 8046 . . . . . . . 8  |-  ( ph  ->  ( 1  x.  (
2 ^ H ) )  =  ( 2 ^ H ) )
5743, 55, 563eqtrd 2233 . . . . . . 7  |-  ( ph  ->  ( ( ( -u
1 ^ N )  x.  ( 2 ^ H ) )  x.  ( -u 1 ^ N ) )  =  ( 2 ^ H
) )
5857oveq1d 5938 . . . . . 6  |-  ( ph  ->  ( ( ( (
-u 1 ^ N
)  x.  ( 2 ^ H ) )  x.  ( -u 1 ^ N ) )  mod 
P )  =  ( ( 2 ^ H
)  mod  P )
)
5941mullidd 8046 . . . . . . 7  |-  ( ph  ->  ( 1  x.  ( -u 1 ^ N ) )  =  ( -u
1 ^ N ) )
6059oveq1d 5938 . . . . . 6  |-  ( ph  ->  ( ( 1  x.  ( -u 1 ^ N ) )  mod 
P )  =  ( ( -u 1 ^ N )  mod  P
) )
6158, 60eqeq12d 2211 . . . . 5  |-  ( ph  ->  ( ( ( ( ( -u 1 ^ N )  x.  (
2 ^ H ) )  x.  ( -u
1 ^ N ) )  mod  P )  =  ( ( 1  x.  ( -u 1 ^ N ) )  mod 
P )  <->  ( (
2 ^ H )  mod  P )  =  ( ( -u 1 ^ N )  mod  P
) ) )
622oveq2i 5934 . . . . . . . 8  |-  ( 2 ^ H )  =  ( 2 ^ (
( P  -  1 )  /  2 ) )
6362oveq1i 5933 . . . . . . 7  |-  ( ( 2 ^ H )  mod  P )  =  ( ( 2 ^ ( ( P  - 
1 )  /  2
) )  mod  P
)
6463eqeq1i 2204 . . . . . 6  |-  ( ( ( 2 ^ H
)  mod  P )  =  ( ( -u
1 ^ N )  mod  P )  <->  ( (
2 ^ ( ( P  -  1 )  /  2 ) )  mod  P )  =  ( ( -u 1 ^ N )  mod  P
) )
65 2z 9356 . . . . . . . . . 10  |-  2  e.  ZZ
66 lgsvalmod 15270 . . . . . . . . . 10  |-  ( ( 2  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
2  /L P )  mod  P )  =  ( ( 2 ^ ( ( P  -  1 )  / 
2 ) )  mod 
P ) )
6765, 1, 66sylancr 414 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  /L P )  mod 
P )  =  ( ( 2 ^ (
( P  -  1 )  /  2 ) )  mod  P ) )
6867eqcomd 2202 . . . . . . . 8  |-  ( ph  ->  ( ( 2 ^ ( ( P  - 
1 )  /  2
) )  mod  P
)  =  ( ( 2  /L P )  mod  P ) )
6968eqeq1d 2205 . . . . . . 7  |-  ( ph  ->  ( ( ( 2 ^ ( ( P  -  1 )  / 
2 ) )  mod 
P )  =  ( ( -u 1 ^ N )  mod  P
)  <->  ( ( 2  /L P )  mod  P )  =  ( ( -u 1 ^ N )  mod  P
) ) )
701, 4, 2, 5gausslemma2dlem0i 15308 . . . . . . 7  |-  ( ph  ->  ( ( ( 2  /L P )  mod  P )  =  ( ( -u 1 ^ N )  mod  P
)  ->  ( 2  /L P )  =  ( -u 1 ^ N ) ) )
7169, 70sylbid 150 . . . . . 6  |-  ( ph  ->  ( ( ( 2 ^ ( ( P  -  1 )  / 
2 ) )  mod 
P )  =  ( ( -u 1 ^ N )  mod  P
)  ->  ( 2  /L P )  =  ( -u 1 ^ N ) ) )
7264, 71biimtrid 152 . . . . 5  |-  ( ph  ->  ( ( ( 2 ^ H )  mod 
P )  =  ( ( -u 1 ^ N )  mod  P
)  ->  ( 2  /L P )  =  ( -u 1 ^ N ) ) )
7361, 72sylbid 150 . . . 4  |-  ( ph  ->  ( ( ( ( ( -u 1 ^ N )  x.  (
2 ^ H ) )  x.  ( -u
1 ^ N ) )  mod  P )  =  ( ( 1  x.  ( -u 1 ^ N ) )  mod 
P )  ->  (
2  /L P )  =  ( -u
1 ^ N ) ) )
7440, 73syld 45 . . 3  |-  ( ph  ->  ( ( ( (
-u 1 ^ N
)  x.  ( 2 ^ H ) )  mod  P )  =  ( 1  mod  P
)  ->  ( 2  /L P )  =  ( -u 1 ^ N ) ) )
7516, 74sylbid 150 . 2  |-  ( ph  ->  ( ( ( (
-u 1 ^ N
)  x.  ( 2 ^ H ) )  mod  P )  =  1  ->  ( 2  /L P )  =  ( -u 1 ^ N ) ) )
766, 75mpd 13 1  |-  ( ph  ->  ( 2  /L
P )  =  (
-u 1 ^ N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167    \ cdif 3154   ifcif 3562   {csn 3623   class class class wbr 4034    |-> cmpt 4095   ` cfv 5259  (class class class)co 5923   CCcc 7879   0cc0 7881   1c1 7882    + caddc 7884    x. cmul 7886    < clt 8063    - cmin 8199   -ucneg 8200    / cdiv 8701   NNcn 8992   2c2 9043   4c4 9045   NN0cn0 9251   ZZcz 9328   QQcq 9695   ...cfz 10085   |_cfl 10360    mod cmo 10416   ^cexp 10632   Primecprime 12285    /Lclgs 15248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-mulrcl 7980  ax-addcom 7981  ax-mulcom 7982  ax-addass 7983  ax-mulass 7984  ax-distr 7985  ax-i2m1 7986  ax-0lt1 7987  ax-1rid 7988  ax-0id 7989  ax-rnegex 7990  ax-precex 7991  ax-cnre 7992  ax-pre-ltirr 7993  ax-pre-ltwlin 7994  ax-pre-lttrn 7995  ax-pre-apti 7996  ax-pre-ltadd 7997  ax-pre-mulgt0 7998  ax-pre-mulext 7999  ax-arch 8000  ax-caucvg 8001
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6199  df-2nd 6200  df-recs 6364  df-irdg 6429  df-frec 6450  df-1o 6475  df-2o 6476  df-oadd 6479  df-er 6593  df-en 6801  df-dom 6802  df-fin 6803  df-sup 7051  df-inf 7052  df-pnf 8065  df-mnf 8066  df-xr 8067  df-ltxr 8068  df-le 8069  df-sub 8201  df-neg 8202  df-reap 8604  df-ap 8611  df-div 8702  df-inn 8993  df-2 9051  df-3 9052  df-4 9053  df-5 9054  df-6 9055  df-7 9056  df-8 9057  df-n0 9252  df-z 9329  df-uz 9604  df-q 9696  df-rp 9731  df-ioo 9969  df-fz 10086  df-fzo 10220  df-fl 10362  df-mod 10417  df-seqfrec 10542  df-exp 10633  df-fac 10820  df-ihash 10870  df-cj 11009  df-re 11010  df-im 11011  df-rsqrt 11165  df-abs 11166  df-clim 11446  df-proddc 11718  df-dvds 11955  df-gcd 12131  df-prm 12286  df-phi 12389  df-pc 12464  df-lgs 15249
This theorem is referenced by:  2lgs  15355
  Copyright terms: Public domain W3C validator