| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gausslemma2d | Unicode version | ||
| Description: Gauss' Lemma (see also
theorem 9.6 in [ApostolNT] p. 182) for
integer
|
| Ref | Expression |
|---|---|
| gausslemma2d.p |
|
| gausslemma2d.h |
|
| gausslemma2d.r |
|
| gausslemma2d.m |
|
| gausslemma2d.n |
|
| Ref | Expression |
|---|---|
| gausslemma2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gausslemma2d.p |
. . 3
| |
| 2 | gausslemma2d.h |
. . 3
| |
| 3 | gausslemma2d.r |
. . 3
| |
| 4 | gausslemma2d.m |
. . 3
| |
| 5 | gausslemma2d.n |
. . 3
| |
| 6 | 1, 2, 3, 4, 5 | gausslemma2dlem7 15732 |
. 2
|
| 7 | 1 | gausslemma2dlem0a 15713 |
. . . . . . 7
|
| 8 | nnq 9816 |
. . . . . . 7
| |
| 9 | 7, 8 | syl 14 |
. . . . . 6
|
| 10 | eldifi 3326 |
. . . . . . 7
| |
| 11 | prmgt1 12640 |
. . . . . . 7
| |
| 12 | 1, 10, 11 | 3syl 17 |
. . . . . 6
|
| 13 | q1mod 10565 |
. . . . . 6
| |
| 14 | 9, 12, 13 | syl2anc 411 |
. . . . 5
|
| 15 | 14 | eqcomd 2235 |
. . . 4
|
| 16 | 15 | eqeq2d 2241 |
. . 3
|
| 17 | neg1z 9466 |
. . . . . . . . . 10
| |
| 18 | 1, 4, 2, 5 | gausslemma2dlem0h 15720 |
. . . . . . . . . 10
|
| 19 | zexpcl 10763 |
. . . . . . . . . 10
| |
| 20 | 17, 18, 19 | sylancr 414 |
. . . . . . . . 9
|
| 21 | 2nn 9260 |
. . . . . . . . . . . 12
| |
| 22 | 21 | a1i 9 |
. . . . . . . . . . 11
|
| 23 | 1, 2 | gausslemma2dlem0b 15714 |
. . . . . . . . . . . 12
|
| 24 | 23 | nnnn0d 9410 |
. . . . . . . . . . 11
|
| 25 | 22, 24 | nnexpcld 10904 |
. . . . . . . . . 10
|
| 26 | 25 | nnzd 9556 |
. . . . . . . . 9
|
| 27 | 20, 26 | zmulcld 9563 |
. . . . . . . 8
|
| 28 | zq 9809 |
. . . . . . . 8
| |
| 29 | 27, 28 | syl 14 |
. . . . . . 7
|
| 30 | 29 | adantr 276 |
. . . . . 6
|
| 31 | 1z 9460 |
. . . . . . 7
| |
| 32 | zq 9809 |
. . . . . . 7
| |
| 33 | 31, 32 | mp1i 10 |
. . . . . 6
|
| 34 | 20 | adantr 276 |
. . . . . 6
|
| 35 | 9 | adantr 276 |
. . . . . 6
|
| 36 | 7 | nngt0d 9142 |
. . . . . . 7
|
| 37 | 36 | adantr 276 |
. . . . . 6
|
| 38 | simpr 110 |
. . . . . 6
| |
| 39 | 30, 33, 34, 35, 37, 38 | modqmul1 10586 |
. . . . 5
|
| 40 | 39 | ex 115 |
. . . 4
|
| 41 | 20 | zcnd 9558 |
. . . . . . . . 9
|
| 42 | 25 | nncnd 9112 |
. . . . . . . . 9
|
| 43 | 41, 42, 41 | mul32d 8287 |
. . . . . . . 8
|
| 44 | 18 | nn0cnd 9412 |
. . . . . . . . . . . . 13
|
| 45 | 44 | 2timesd 9342 |
. . . . . . . . . . . 12
|
| 46 | 45 | eqcomd 2235 |
. . . . . . . . . . 11
|
| 47 | 46 | oveq2d 6010 |
. . . . . . . . . 10
|
| 48 | neg1cn 9203 |
. . . . . . . . . . . 12
| |
| 49 | 48 | a1i 9 |
. . . . . . . . . . 11
|
| 50 | 49, 18, 18 | expaddd 10884 |
. . . . . . . . . 10
|
| 51 | 18 | nn0zd 9555 |
. . . . . . . . . . 11
|
| 52 | m1expeven 10795 |
. . . . . . . . . . 11
| |
| 53 | 51, 52 | syl 14 |
. . . . . . . . . 10
|
| 54 | 47, 50, 53 | 3eqtr3d 2270 |
. . . . . . . . 9
|
| 55 | 54 | oveq1d 6009 |
. . . . . . . 8
|
| 56 | 42 | mullidd 8152 |
. . . . . . . 8
|
| 57 | 43, 55, 56 | 3eqtrd 2266 |
. . . . . . 7
|
| 58 | 57 | oveq1d 6009 |
. . . . . 6
|
| 59 | 41 | mullidd 8152 |
. . . . . . 7
|
| 60 | 59 | oveq1d 6009 |
. . . . . 6
|
| 61 | 58, 60 | eqeq12d 2244 |
. . . . 5
|
| 62 | 2 | oveq2i 6005 |
. . . . . . . 8
|
| 63 | 62 | oveq1i 6004 |
. . . . . . 7
|
| 64 | 63 | eqeq1i 2237 |
. . . . . 6
|
| 65 | 2z 9462 |
. . . . . . . . . 10
| |
| 66 | lgsvalmod 15683 |
. . . . . . . . . 10
| |
| 67 | 65, 1, 66 | sylancr 414 |
. . . . . . . . 9
|
| 68 | 67 | eqcomd 2235 |
. . . . . . . 8
|
| 69 | 68 | eqeq1d 2238 |
. . . . . . 7
|
| 70 | 1, 4, 2, 5 | gausslemma2dlem0i 15721 |
. . . . . . 7
|
| 71 | 69, 70 | sylbid 150 |
. . . . . 6
|
| 72 | 64, 71 | biimtrid 152 |
. . . . 5
|
| 73 | 61, 72 | sylbid 150 |
. . . 4
|
| 74 | 40, 73 | syld 45 |
. . 3
|
| 75 | 16, 74 | sylbid 150 |
. 2
|
| 76 | 6, 75 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 ax-pre-mulext 8105 ax-arch 8106 ax-caucvg 8107 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-xor 1418 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-isom 5323 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-irdg 6506 df-frec 6527 df-1o 6552 df-2o 6553 df-oadd 6556 df-er 6670 df-en 6878 df-dom 6879 df-fin 6880 df-sup 7139 df-inf 7140 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 df-div 8808 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-5 9160 df-6 9161 df-7 9162 df-8 9163 df-n0 9358 df-z 9435 df-uz 9711 df-q 9803 df-rp 9838 df-ioo 10076 df-fz 10193 df-fzo 10327 df-fl 10477 df-mod 10532 df-seqfrec 10657 df-exp 10748 df-fac 10935 df-ihash 10985 df-cj 11339 df-re 11340 df-im 11341 df-rsqrt 11495 df-abs 11496 df-clim 11776 df-proddc 12048 df-dvds 12285 df-gcd 12461 df-prm 12616 df-phi 12719 df-pc 12794 df-lgs 15662 |
| This theorem is referenced by: 2lgs 15768 |
| Copyright terms: Public domain | W3C validator |