| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gausslemma2d | Unicode version | ||
| Description: Gauss' Lemma (see also
theorem 9.6 in [ApostolNT] p. 182) for
integer
|
| Ref | Expression |
|---|---|
| gausslemma2d.p |
|
| gausslemma2d.h |
|
| gausslemma2d.r |
|
| gausslemma2d.m |
|
| gausslemma2d.n |
|
| Ref | Expression |
|---|---|
| gausslemma2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gausslemma2d.p |
. . 3
| |
| 2 | gausslemma2d.h |
. . 3
| |
| 3 | gausslemma2d.r |
. . 3
| |
| 4 | gausslemma2d.m |
. . 3
| |
| 5 | gausslemma2d.n |
. . 3
| |
| 6 | 1, 2, 3, 4, 5 | gausslemma2dlem7 15755 |
. 2
|
| 7 | 1 | gausslemma2dlem0a 15736 |
. . . . . . 7
|
| 8 | nnq 9836 |
. . . . . . 7
| |
| 9 | 7, 8 | syl 14 |
. . . . . 6
|
| 10 | eldifi 3326 |
. . . . . . 7
| |
| 11 | prmgt1 12662 |
. . . . . . 7
| |
| 12 | 1, 10, 11 | 3syl 17 |
. . . . . 6
|
| 13 | q1mod 10586 |
. . . . . 6
| |
| 14 | 9, 12, 13 | syl2anc 411 |
. . . . 5
|
| 15 | 14 | eqcomd 2235 |
. . . 4
|
| 16 | 15 | eqeq2d 2241 |
. . 3
|
| 17 | neg1z 9486 |
. . . . . . . . . 10
| |
| 18 | 1, 4, 2, 5 | gausslemma2dlem0h 15743 |
. . . . . . . . . 10
|
| 19 | zexpcl 10784 |
. . . . . . . . . 10
| |
| 20 | 17, 18, 19 | sylancr 414 |
. . . . . . . . 9
|
| 21 | 2nn 9280 |
. . . . . . . . . . . 12
| |
| 22 | 21 | a1i 9 |
. . . . . . . . . . 11
|
| 23 | 1, 2 | gausslemma2dlem0b 15737 |
. . . . . . . . . . . 12
|
| 24 | 23 | nnnn0d 9430 |
. . . . . . . . . . 11
|
| 25 | 22, 24 | nnexpcld 10925 |
. . . . . . . . . 10
|
| 26 | 25 | nnzd 9576 |
. . . . . . . . 9
|
| 27 | 20, 26 | zmulcld 9583 |
. . . . . . . 8
|
| 28 | zq 9829 |
. . . . . . . 8
| |
| 29 | 27, 28 | syl 14 |
. . . . . . 7
|
| 30 | 29 | adantr 276 |
. . . . . 6
|
| 31 | 1z 9480 |
. . . . . . 7
| |
| 32 | zq 9829 |
. . . . . . 7
| |
| 33 | 31, 32 | mp1i 10 |
. . . . . 6
|
| 34 | 20 | adantr 276 |
. . . . . 6
|
| 35 | 9 | adantr 276 |
. . . . . 6
|
| 36 | 7 | nngt0d 9162 |
. . . . . . 7
|
| 37 | 36 | adantr 276 |
. . . . . 6
|
| 38 | simpr 110 |
. . . . . 6
| |
| 39 | 30, 33, 34, 35, 37, 38 | modqmul1 10607 |
. . . . 5
|
| 40 | 39 | ex 115 |
. . . 4
|
| 41 | 20 | zcnd 9578 |
. . . . . . . . 9
|
| 42 | 25 | nncnd 9132 |
. . . . . . . . 9
|
| 43 | 41, 42, 41 | mul32d 8307 |
. . . . . . . 8
|
| 44 | 18 | nn0cnd 9432 |
. . . . . . . . . . . . 13
|
| 45 | 44 | 2timesd 9362 |
. . . . . . . . . . . 12
|
| 46 | 45 | eqcomd 2235 |
. . . . . . . . . . 11
|
| 47 | 46 | oveq2d 6023 |
. . . . . . . . . 10
|
| 48 | neg1cn 9223 |
. . . . . . . . . . . 12
| |
| 49 | 48 | a1i 9 |
. . . . . . . . . . 11
|
| 50 | 49, 18, 18 | expaddd 10905 |
. . . . . . . . . 10
|
| 51 | 18 | nn0zd 9575 |
. . . . . . . . . . 11
|
| 52 | m1expeven 10816 |
. . . . . . . . . . 11
| |
| 53 | 51, 52 | syl 14 |
. . . . . . . . . 10
|
| 54 | 47, 50, 53 | 3eqtr3d 2270 |
. . . . . . . . 9
|
| 55 | 54 | oveq1d 6022 |
. . . . . . . 8
|
| 56 | 42 | mullidd 8172 |
. . . . . . . 8
|
| 57 | 43, 55, 56 | 3eqtrd 2266 |
. . . . . . 7
|
| 58 | 57 | oveq1d 6022 |
. . . . . 6
|
| 59 | 41 | mullidd 8172 |
. . . . . . 7
|
| 60 | 59 | oveq1d 6022 |
. . . . . 6
|
| 61 | 58, 60 | eqeq12d 2244 |
. . . . 5
|
| 62 | 2 | oveq2i 6018 |
. . . . . . . 8
|
| 63 | 62 | oveq1i 6017 |
. . . . . . 7
|
| 64 | 63 | eqeq1i 2237 |
. . . . . 6
|
| 65 | 2z 9482 |
. . . . . . . . . 10
| |
| 66 | lgsvalmod 15706 |
. . . . . . . . . 10
| |
| 67 | 65, 1, 66 | sylancr 414 |
. . . . . . . . 9
|
| 68 | 67 | eqcomd 2235 |
. . . . . . . 8
|
| 69 | 68 | eqeq1d 2238 |
. . . . . . 7
|
| 70 | 1, 4, 2, 5 | gausslemma2dlem0i 15744 |
. . . . . . 7
|
| 71 | 69, 70 | sylbid 150 |
. . . . . 6
|
| 72 | 64, 71 | biimtrid 152 |
. . . . 5
|
| 73 | 61, 72 | sylbid 150 |
. . . 4
|
| 74 | 40, 73 | syld 45 |
. . 3
|
| 75 | 16, 74 | sylbid 150 |
. 2
|
| 76 | 6, 75 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 ax-caucvg 8127 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-xor 1418 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-irdg 6522 df-frec 6543 df-1o 6568 df-2o 6569 df-oadd 6572 df-er 6688 df-en 6896 df-dom 6897 df-fin 6898 df-sup 7159 df-inf 7160 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-n0 9378 df-z 9455 df-uz 9731 df-q 9823 df-rp 9858 df-ioo 10096 df-fz 10213 df-fzo 10347 df-fl 10498 df-mod 10553 df-seqfrec 10678 df-exp 10769 df-fac 10956 df-ihash 11006 df-cj 11361 df-re 11362 df-im 11363 df-rsqrt 11517 df-abs 11518 df-clim 11798 df-proddc 12070 df-dvds 12307 df-gcd 12483 df-prm 12638 df-phi 12741 df-pc 12816 df-lgs 15685 |
| This theorem is referenced by: 2lgs 15791 |
| Copyright terms: Public domain | W3C validator |