ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gausslemma2d Unicode version

Theorem gausslemma2d 15596
Description: Gauss' Lemma (see also theorem 9.6 in [ApostolNT] p. 182) for integer  2: Let p be an odd prime. Let S = {2, 4, 6, ..., p - 1}. Let n denote the number of elements of S whose least positive residue modulo p is greater than p/2. Then ( 2 | p ) = (-1)^n. (Contributed by AV, 14-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2d.p  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
gausslemma2d.h  |-  H  =  ( ( P  - 
1 )  /  2
)
gausslemma2d.r  |-  R  =  ( x  e.  ( 1 ... H ) 
|->  if ( ( x  x.  2 )  < 
( P  /  2
) ,  ( x  x.  2 ) ,  ( P  -  (
x  x.  2 ) ) ) )
gausslemma2d.m  |-  M  =  ( |_ `  ( P  /  4 ) )
gausslemma2d.n  |-  N  =  ( H  -  M
)
Assertion
Ref Expression
gausslemma2d  |-  ( ph  ->  ( 2  /L
P )  =  (
-u 1 ^ N
) )
Distinct variable groups:    x, H    x, P    ph, x    x, M
Allowed substitution hints:    R( x)    N( x)

Proof of Theorem gausslemma2d
StepHypRef Expression
1 gausslemma2d.p . . 3  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
2 gausslemma2d.h . . 3  |-  H  =  ( ( P  - 
1 )  /  2
)
3 gausslemma2d.r . . 3  |-  R  =  ( x  e.  ( 1 ... H ) 
|->  if ( ( x  x.  2 )  < 
( P  /  2
) ,  ( x  x.  2 ) ,  ( P  -  (
x  x.  2 ) ) ) )
4 gausslemma2d.m . . 3  |-  M  =  ( |_ `  ( P  /  4 ) )
5 gausslemma2d.n . . 3  |-  N  =  ( H  -  M
)
61, 2, 3, 4, 5gausslemma2dlem7 15595 . 2  |-  ( ph  ->  ( ( ( -u
1 ^ N )  x.  ( 2 ^ H ) )  mod 
P )  =  1 )
71gausslemma2dlem0a 15576 . . . . . . 7  |-  ( ph  ->  P  e.  NN )
8 nnq 9767 . . . . . . 7  |-  ( P  e.  NN  ->  P  e.  QQ )
97, 8syl 14 . . . . . 6  |-  ( ph  ->  P  e.  QQ )
10 eldifi 3297 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  Prime )
11 prmgt1 12504 . . . . . . 7  |-  ( P  e.  Prime  ->  1  < 
P )
121, 10, 113syl 17 . . . . . 6  |-  ( ph  ->  1  <  P )
13 q1mod 10514 . . . . . 6  |-  ( ( P  e.  QQ  /\  1  <  P )  -> 
( 1  mod  P
)  =  1 )
149, 12, 13syl2anc 411 . . . . 5  |-  ( ph  ->  ( 1  mod  P
)  =  1 )
1514eqcomd 2212 . . . 4  |-  ( ph  ->  1  =  ( 1  mod  P ) )
1615eqeq2d 2218 . . 3  |-  ( ph  ->  ( ( ( (
-u 1 ^ N
)  x.  ( 2 ^ H ) )  mod  P )  =  1  <->  ( ( (
-u 1 ^ N
)  x.  ( 2 ^ H ) )  mod  P )  =  ( 1  mod  P
) ) )
17 neg1z 9417 . . . . . . . . . 10  |-  -u 1  e.  ZZ
181, 4, 2, 5gausslemma2dlem0h 15583 . . . . . . . . . 10  |-  ( ph  ->  N  e.  NN0 )
19 zexpcl 10712 . . . . . . . . . 10  |-  ( (
-u 1  e.  ZZ  /\  N  e.  NN0 )  ->  ( -u 1 ^ N )  e.  ZZ )
2017, 18, 19sylancr 414 . . . . . . . . 9  |-  ( ph  ->  ( -u 1 ^ N )  e.  ZZ )
21 2nn 9211 . . . . . . . . . . . 12  |-  2  e.  NN
2221a1i 9 . . . . . . . . . . 11  |-  ( ph  ->  2  e.  NN )
231, 2gausslemma2dlem0b 15577 . . . . . . . . . . . 12  |-  ( ph  ->  H  e.  NN )
2423nnnn0d 9361 . . . . . . . . . . 11  |-  ( ph  ->  H  e.  NN0 )
2522, 24nnexpcld 10853 . . . . . . . . . 10  |-  ( ph  ->  ( 2 ^ H
)  e.  NN )
2625nnzd 9507 . . . . . . . . 9  |-  ( ph  ->  ( 2 ^ H
)  e.  ZZ )
2720, 26zmulcld 9514 . . . . . . . 8  |-  ( ph  ->  ( ( -u 1 ^ N )  x.  (
2 ^ H ) )  e.  ZZ )
28 zq 9760 . . . . . . . 8  |-  ( ( ( -u 1 ^ N )  x.  (
2 ^ H ) )  e.  ZZ  ->  ( ( -u 1 ^ N )  x.  (
2 ^ H ) )  e.  QQ )
2927, 28syl 14 . . . . . . 7  |-  ( ph  ->  ( ( -u 1 ^ N )  x.  (
2 ^ H ) )  e.  QQ )
3029adantr 276 . . . . . 6  |-  ( (
ph  /\  ( (
( -u 1 ^ N
)  x.  ( 2 ^ H ) )  mod  P )  =  ( 1  mod  P
) )  ->  (
( -u 1 ^ N
)  x.  ( 2 ^ H ) )  e.  QQ )
31 1z 9411 . . . . . . 7  |-  1  e.  ZZ
32 zq 9760 . . . . . . 7  |-  ( 1  e.  ZZ  ->  1  e.  QQ )
3331, 32mp1i 10 . . . . . 6  |-  ( (
ph  /\  ( (
( -u 1 ^ N
)  x.  ( 2 ^ H ) )  mod  P )  =  ( 1  mod  P
) )  ->  1  e.  QQ )
3420adantr 276 . . . . . 6  |-  ( (
ph  /\  ( (
( -u 1 ^ N
)  x.  ( 2 ^ H ) )  mod  P )  =  ( 1  mod  P
) )  ->  ( -u 1 ^ N )  e.  ZZ )
359adantr 276 . . . . . 6  |-  ( (
ph  /\  ( (
( -u 1 ^ N
)  x.  ( 2 ^ H ) )  mod  P )  =  ( 1  mod  P
) )  ->  P  e.  QQ )
367nngt0d 9093 . . . . . . 7  |-  ( ph  ->  0  <  P )
3736adantr 276 . . . . . 6  |-  ( (
ph  /\  ( (
( -u 1 ^ N
)  x.  ( 2 ^ H ) )  mod  P )  =  ( 1  mod  P
) )  ->  0  <  P )
38 simpr 110 . . . . . 6  |-  ( (
ph  /\  ( (
( -u 1 ^ N
)  x.  ( 2 ^ H ) )  mod  P )  =  ( 1  mod  P
) )  ->  (
( ( -u 1 ^ N )  x.  (
2 ^ H ) )  mod  P )  =  ( 1  mod 
P ) )
3930, 33, 34, 35, 37, 38modqmul1 10535 . . . . 5  |-  ( (
ph  /\  ( (
( -u 1 ^ N
)  x.  ( 2 ^ H ) )  mod  P )  =  ( 1  mod  P
) )  ->  (
( ( ( -u
1 ^ N )  x.  ( 2 ^ H ) )  x.  ( -u 1 ^ N ) )  mod 
P )  =  ( ( 1  x.  ( -u 1 ^ N ) )  mod  P ) )
4039ex 115 . . . 4  |-  ( ph  ->  ( ( ( (
-u 1 ^ N
)  x.  ( 2 ^ H ) )  mod  P )  =  ( 1  mod  P
)  ->  ( (
( ( -u 1 ^ N )  x.  (
2 ^ H ) )  x.  ( -u
1 ^ N ) )  mod  P )  =  ( ( 1  x.  ( -u 1 ^ N ) )  mod 
P ) ) )
4120zcnd 9509 . . . . . . . . 9  |-  ( ph  ->  ( -u 1 ^ N )  e.  CC )
4225nncnd 9063 . . . . . . . . 9  |-  ( ph  ->  ( 2 ^ H
)  e.  CC )
4341, 42, 41mul32d 8238 . . . . . . . 8  |-  ( ph  ->  ( ( ( -u
1 ^ N )  x.  ( 2 ^ H ) )  x.  ( -u 1 ^ N ) )  =  ( ( ( -u
1 ^ N )  x.  ( -u 1 ^ N ) )  x.  ( 2 ^ H
) ) )
4418nn0cnd 9363 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  CC )
45442timesd 9293 . . . . . . . . . . . 12  |-  ( ph  ->  ( 2  x.  N
)  =  ( N  +  N ) )
4645eqcomd 2212 . . . . . . . . . . 11  |-  ( ph  ->  ( N  +  N
)  =  ( 2  x.  N ) )
4746oveq2d 5970 . . . . . . . . . 10  |-  ( ph  ->  ( -u 1 ^ ( N  +  N
) )  =  (
-u 1 ^ (
2  x.  N ) ) )
48 neg1cn 9154 . . . . . . . . . . . 12  |-  -u 1  e.  CC
4948a1i 9 . . . . . . . . . . 11  |-  ( ph  -> 
-u 1  e.  CC )
5049, 18, 18expaddd 10833 . . . . . . . . . 10  |-  ( ph  ->  ( -u 1 ^ ( N  +  N
) )  =  ( ( -u 1 ^ N )  x.  ( -u 1 ^ N ) ) )
5118nn0zd 9506 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  ZZ )
52 m1expeven 10744 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  ( -u 1 ^ ( 2  x.  N ) )  =  1 )
5351, 52syl 14 . . . . . . . . . 10  |-  ( ph  ->  ( -u 1 ^ ( 2  x.  N
) )  =  1 )
5447, 50, 533eqtr3d 2247 . . . . . . . . 9  |-  ( ph  ->  ( ( -u 1 ^ N )  x.  ( -u 1 ^ N ) )  =  1 )
5554oveq1d 5969 . . . . . . . 8  |-  ( ph  ->  ( ( ( -u
1 ^ N )  x.  ( -u 1 ^ N ) )  x.  ( 2 ^ H
) )  =  ( 1  x.  ( 2 ^ H ) ) )
5642mullidd 8103 . . . . . . . 8  |-  ( ph  ->  ( 1  x.  (
2 ^ H ) )  =  ( 2 ^ H ) )
5743, 55, 563eqtrd 2243 . . . . . . 7  |-  ( ph  ->  ( ( ( -u
1 ^ N )  x.  ( 2 ^ H ) )  x.  ( -u 1 ^ N ) )  =  ( 2 ^ H
) )
5857oveq1d 5969 . . . . . 6  |-  ( ph  ->  ( ( ( (
-u 1 ^ N
)  x.  ( 2 ^ H ) )  x.  ( -u 1 ^ N ) )  mod 
P )  =  ( ( 2 ^ H
)  mod  P )
)
5941mullidd 8103 . . . . . . 7  |-  ( ph  ->  ( 1  x.  ( -u 1 ^ N ) )  =  ( -u
1 ^ N ) )
6059oveq1d 5969 . . . . . 6  |-  ( ph  ->  ( ( 1  x.  ( -u 1 ^ N ) )  mod 
P )  =  ( ( -u 1 ^ N )  mod  P
) )
6158, 60eqeq12d 2221 . . . . 5  |-  ( ph  ->  ( ( ( ( ( -u 1 ^ N )  x.  (
2 ^ H ) )  x.  ( -u
1 ^ N ) )  mod  P )  =  ( ( 1  x.  ( -u 1 ^ N ) )  mod 
P )  <->  ( (
2 ^ H )  mod  P )  =  ( ( -u 1 ^ N )  mod  P
) ) )
622oveq2i 5965 . . . . . . . 8  |-  ( 2 ^ H )  =  ( 2 ^ (
( P  -  1 )  /  2 ) )
6362oveq1i 5964 . . . . . . 7  |-  ( ( 2 ^ H )  mod  P )  =  ( ( 2 ^ ( ( P  - 
1 )  /  2
) )  mod  P
)
6463eqeq1i 2214 . . . . . 6  |-  ( ( ( 2 ^ H
)  mod  P )  =  ( ( -u
1 ^ N )  mod  P )  <->  ( (
2 ^ ( ( P  -  1 )  /  2 ) )  mod  P )  =  ( ( -u 1 ^ N )  mod  P
) )
65 2z 9413 . . . . . . . . . 10  |-  2  e.  ZZ
66 lgsvalmod 15546 . . . . . . . . . 10  |-  ( ( 2  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
2  /L P )  mod  P )  =  ( ( 2 ^ ( ( P  -  1 )  / 
2 ) )  mod 
P ) )
6765, 1, 66sylancr 414 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  /L P )  mod 
P )  =  ( ( 2 ^ (
( P  -  1 )  /  2 ) )  mod  P ) )
6867eqcomd 2212 . . . . . . . 8  |-  ( ph  ->  ( ( 2 ^ ( ( P  - 
1 )  /  2
) )  mod  P
)  =  ( ( 2  /L P )  mod  P ) )
6968eqeq1d 2215 . . . . . . 7  |-  ( ph  ->  ( ( ( 2 ^ ( ( P  -  1 )  / 
2 ) )  mod 
P )  =  ( ( -u 1 ^ N )  mod  P
)  <->  ( ( 2  /L P )  mod  P )  =  ( ( -u 1 ^ N )  mod  P
) ) )
701, 4, 2, 5gausslemma2dlem0i 15584 . . . . . . 7  |-  ( ph  ->  ( ( ( 2  /L P )  mod  P )  =  ( ( -u 1 ^ N )  mod  P
)  ->  ( 2  /L P )  =  ( -u 1 ^ N ) ) )
7169, 70sylbid 150 . . . . . 6  |-  ( ph  ->  ( ( ( 2 ^ ( ( P  -  1 )  / 
2 ) )  mod 
P )  =  ( ( -u 1 ^ N )  mod  P
)  ->  ( 2  /L P )  =  ( -u 1 ^ N ) ) )
7264, 71biimtrid 152 . . . . 5  |-  ( ph  ->  ( ( ( 2 ^ H )  mod 
P )  =  ( ( -u 1 ^ N )  mod  P
)  ->  ( 2  /L P )  =  ( -u 1 ^ N ) ) )
7361, 72sylbid 150 . . . 4  |-  ( ph  ->  ( ( ( ( ( -u 1 ^ N )  x.  (
2 ^ H ) )  x.  ( -u
1 ^ N ) )  mod  P )  =  ( ( 1  x.  ( -u 1 ^ N ) )  mod 
P )  ->  (
2  /L P )  =  ( -u
1 ^ N ) ) )
7440, 73syld 45 . . 3  |-  ( ph  ->  ( ( ( (
-u 1 ^ N
)  x.  ( 2 ^ H ) )  mod  P )  =  ( 1  mod  P
)  ->  ( 2  /L P )  =  ( -u 1 ^ N ) ) )
7516, 74sylbid 150 . 2  |-  ( ph  ->  ( ( ( (
-u 1 ^ N
)  x.  ( 2 ^ H ) )  mod  P )  =  1  ->  ( 2  /L P )  =  ( -u 1 ^ N ) ) )
766, 75mpd 13 1  |-  ( ph  ->  ( 2  /L
P )  =  (
-u 1 ^ N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177    \ cdif 3165   ifcif 3573   {csn 3635   class class class wbr 4048    |-> cmpt 4110   ` cfv 5277  (class class class)co 5954   CCcc 7936   0cc0 7938   1c1 7939    + caddc 7941    x. cmul 7943    < clt 8120    - cmin 8256   -ucneg 8257    / cdiv 8758   NNcn 9049   2c2 9100   4c4 9102   NN0cn0 9308   ZZcz 9385   QQcq 9753   ...cfz 10143   |_cfl 10424    mod cmo 10480   ^cexp 10696   Primecprime 12479    /Lclgs 15524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-mulrcl 8037  ax-addcom 8038  ax-mulcom 8039  ax-addass 8040  ax-mulass 8041  ax-distr 8042  ax-i2m1 8043  ax-0lt1 8044  ax-1rid 8045  ax-0id 8046  ax-rnegex 8047  ax-precex 8048  ax-cnre 8049  ax-pre-ltirr 8050  ax-pre-ltwlin 8051  ax-pre-lttrn 8052  ax-pre-apti 8053  ax-pre-ltadd 8054  ax-pre-mulgt0 8055  ax-pre-mulext 8056  ax-arch 8057  ax-caucvg 8058
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-xor 1396  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-if 3574  df-pw 3620  df-sn 3641  df-pr 3642  df-tp 3643  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-id 4345  df-po 4348  df-iso 4349  df-iord 4418  df-on 4420  df-ilim 4421  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-isom 5286  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-recs 6401  df-irdg 6466  df-frec 6487  df-1o 6512  df-2o 6513  df-oadd 6516  df-er 6630  df-en 6838  df-dom 6839  df-fin 6840  df-sup 7098  df-inf 7099  df-pnf 8122  df-mnf 8123  df-xr 8124  df-ltxr 8125  df-le 8126  df-sub 8258  df-neg 8259  df-reap 8661  df-ap 8668  df-div 8759  df-inn 9050  df-2 9108  df-3 9109  df-4 9110  df-5 9111  df-6 9112  df-7 9113  df-8 9114  df-n0 9309  df-z 9386  df-uz 9662  df-q 9754  df-rp 9789  df-ioo 10027  df-fz 10144  df-fzo 10278  df-fl 10426  df-mod 10481  df-seqfrec 10606  df-exp 10697  df-fac 10884  df-ihash 10934  df-cj 11203  df-re 11204  df-im 11205  df-rsqrt 11359  df-abs 11360  df-clim 11640  df-proddc 11912  df-dvds 12149  df-gcd 12325  df-prm 12480  df-phi 12583  df-pc 12658  df-lgs 15525
This theorem is referenced by:  2lgs  15631
  Copyright terms: Public domain W3C validator