| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gausslemma2d | Unicode version | ||
| Description: Gauss' Lemma (see also
theorem 9.6 in [ApostolNT] p. 182) for
integer
|
| Ref | Expression |
|---|---|
| gausslemma2d.p |
|
| gausslemma2d.h |
|
| gausslemma2d.r |
|
| gausslemma2d.m |
|
| gausslemma2d.n |
|
| Ref | Expression |
|---|---|
| gausslemma2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gausslemma2d.p |
. . 3
| |
| 2 | gausslemma2d.h |
. . 3
| |
| 3 | gausslemma2d.r |
. . 3
| |
| 4 | gausslemma2d.m |
. . 3
| |
| 5 | gausslemma2d.n |
. . 3
| |
| 6 | 1, 2, 3, 4, 5 | gausslemma2dlem7 15319 |
. 2
|
| 7 | 1 | gausslemma2dlem0a 15300 |
. . . . . . 7
|
| 8 | nnq 9709 |
. . . . . . 7
| |
| 9 | 7, 8 | syl 14 |
. . . . . 6
|
| 10 | eldifi 3286 |
. . . . . . 7
| |
| 11 | prmgt1 12310 |
. . . . . . 7
| |
| 12 | 1, 10, 11 | 3syl 17 |
. . . . . 6
|
| 13 | q1mod 10450 |
. . . . . 6
| |
| 14 | 9, 12, 13 | syl2anc 411 |
. . . . 5
|
| 15 | 14 | eqcomd 2202 |
. . . 4
|
| 16 | 15 | eqeq2d 2208 |
. . 3
|
| 17 | neg1z 9360 |
. . . . . . . . . 10
| |
| 18 | 1, 4, 2, 5 | gausslemma2dlem0h 15307 |
. . . . . . . . . 10
|
| 19 | zexpcl 10648 |
. . . . . . . . . 10
| |
| 20 | 17, 18, 19 | sylancr 414 |
. . . . . . . . 9
|
| 21 | 2nn 9154 |
. . . . . . . . . . . 12
| |
| 22 | 21 | a1i 9 |
. . . . . . . . . . 11
|
| 23 | 1, 2 | gausslemma2dlem0b 15301 |
. . . . . . . . . . . 12
|
| 24 | 23 | nnnn0d 9304 |
. . . . . . . . . . 11
|
| 25 | 22, 24 | nnexpcld 10789 |
. . . . . . . . . 10
|
| 26 | 25 | nnzd 9449 |
. . . . . . . . 9
|
| 27 | 20, 26 | zmulcld 9456 |
. . . . . . . 8
|
| 28 | zq 9702 |
. . . . . . . 8
| |
| 29 | 27, 28 | syl 14 |
. . . . . . 7
|
| 30 | 29 | adantr 276 |
. . . . . 6
|
| 31 | 1z 9354 |
. . . . . . 7
| |
| 32 | zq 9702 |
. . . . . . 7
| |
| 33 | 31, 32 | mp1i 10 |
. . . . . 6
|
| 34 | 20 | adantr 276 |
. . . . . 6
|
| 35 | 9 | adantr 276 |
. . . . . 6
|
| 36 | 7 | nngt0d 9036 |
. . . . . . 7
|
| 37 | 36 | adantr 276 |
. . . . . 6
|
| 38 | simpr 110 |
. . . . . 6
| |
| 39 | 30, 33, 34, 35, 37, 38 | modqmul1 10471 |
. . . . 5
|
| 40 | 39 | ex 115 |
. . . 4
|
| 41 | 20 | zcnd 9451 |
. . . . . . . . 9
|
| 42 | 25 | nncnd 9006 |
. . . . . . . . 9
|
| 43 | 41, 42, 41 | mul32d 8181 |
. . . . . . . 8
|
| 44 | 18 | nn0cnd 9306 |
. . . . . . . . . . . . 13
|
| 45 | 44 | 2timesd 9236 |
. . . . . . . . . . . 12
|
| 46 | 45 | eqcomd 2202 |
. . . . . . . . . . 11
|
| 47 | 46 | oveq2d 5939 |
. . . . . . . . . 10
|
| 48 | neg1cn 9097 |
. . . . . . . . . . . 12
| |
| 49 | 48 | a1i 9 |
. . . . . . . . . . 11
|
| 50 | 49, 18, 18 | expaddd 10769 |
. . . . . . . . . 10
|
| 51 | 18 | nn0zd 9448 |
. . . . . . . . . . 11
|
| 52 | m1expeven 10680 |
. . . . . . . . . . 11
| |
| 53 | 51, 52 | syl 14 |
. . . . . . . . . 10
|
| 54 | 47, 50, 53 | 3eqtr3d 2237 |
. . . . . . . . 9
|
| 55 | 54 | oveq1d 5938 |
. . . . . . . 8
|
| 56 | 42 | mullidd 8046 |
. . . . . . . 8
|
| 57 | 43, 55, 56 | 3eqtrd 2233 |
. . . . . . 7
|
| 58 | 57 | oveq1d 5938 |
. . . . . 6
|
| 59 | 41 | mullidd 8046 |
. . . . . . 7
|
| 60 | 59 | oveq1d 5938 |
. . . . . 6
|
| 61 | 58, 60 | eqeq12d 2211 |
. . . . 5
|
| 62 | 2 | oveq2i 5934 |
. . . . . . . 8
|
| 63 | 62 | oveq1i 5933 |
. . . . . . 7
|
| 64 | 63 | eqeq1i 2204 |
. . . . . 6
|
| 65 | 2z 9356 |
. . . . . . . . . 10
| |
| 66 | lgsvalmod 15270 |
. . . . . . . . . 10
| |
| 67 | 65, 1, 66 | sylancr 414 |
. . . . . . . . 9
|
| 68 | 67 | eqcomd 2202 |
. . . . . . . 8
|
| 69 | 68 | eqeq1d 2205 |
. . . . . . 7
|
| 70 | 1, 4, 2, 5 | gausslemma2dlem0i 15308 |
. . . . . . 7
|
| 71 | 69, 70 | sylbid 150 |
. . . . . 6
|
| 72 | 64, 71 | biimtrid 152 |
. . . . 5
|
| 73 | 61, 72 | sylbid 150 |
. . . 4
|
| 74 | 40, 73 | syld 45 |
. . 3
|
| 75 | 16, 74 | sylbid 150 |
. 2
|
| 76 | 6, 75 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7972 ax-resscn 7973 ax-1cn 7974 ax-1re 7975 ax-icn 7976 ax-addcl 7977 ax-addrcl 7978 ax-mulcl 7979 ax-mulrcl 7980 ax-addcom 7981 ax-mulcom 7982 ax-addass 7983 ax-mulass 7984 ax-distr 7985 ax-i2m1 7986 ax-0lt1 7987 ax-1rid 7988 ax-0id 7989 ax-rnegex 7990 ax-precex 7991 ax-cnre 7992 ax-pre-ltirr 7993 ax-pre-ltwlin 7994 ax-pre-lttrn 7995 ax-pre-apti 7996 ax-pre-ltadd 7997 ax-pre-mulgt0 7998 ax-pre-mulext 7999 ax-arch 8000 ax-caucvg 8001 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-xor 1387 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-tp 3631 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-1st 6199 df-2nd 6200 df-recs 6364 df-irdg 6429 df-frec 6450 df-1o 6475 df-2o 6476 df-oadd 6479 df-er 6593 df-en 6801 df-dom 6802 df-fin 6803 df-sup 7051 df-inf 7052 df-pnf 8065 df-mnf 8066 df-xr 8067 df-ltxr 8068 df-le 8069 df-sub 8201 df-neg 8202 df-reap 8604 df-ap 8611 df-div 8702 df-inn 8993 df-2 9051 df-3 9052 df-4 9053 df-5 9054 df-6 9055 df-7 9056 df-8 9057 df-n0 9252 df-z 9329 df-uz 9604 df-q 9696 df-rp 9731 df-ioo 9969 df-fz 10086 df-fzo 10220 df-fl 10362 df-mod 10417 df-seqfrec 10542 df-exp 10633 df-fac 10820 df-ihash 10870 df-cj 11009 df-re 11010 df-im 11011 df-rsqrt 11165 df-abs 11166 df-clim 11446 df-proddc 11718 df-dvds 11955 df-gcd 12131 df-prm 12286 df-phi 12389 df-pc 12464 df-lgs 15249 |
| This theorem is referenced by: 2lgs 15355 |
| Copyright terms: Public domain | W3C validator |