ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumfzmhm GIF version

Theorem gsumfzmhm 13473
Description: Apply a monoid homomorphism to a group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by AV, 6-Jun-2019.) (Revised by Jim Kingdon, 8-Sep-2025.)
Hypotheses
Ref Expression
gsummhm.b 𝐵 = (Base‘𝐺)
gsummhm.z 0 = (0g𝐺)
gsummhm.g (𝜑𝐺 ∈ CMnd)
gsummhm.h (𝜑𝐻 ∈ Mnd)
gsummhm.m (𝜑𝑀 ∈ ℤ)
gsummhm.n (𝜑𝑁 ∈ ℤ)
gsummhm.k (𝜑𝐾 ∈ (𝐺 MndHom 𝐻))
gsummhm.f (𝜑𝐹:(𝑀...𝑁)⟶𝐵)
Assertion
Ref Expression
gsumfzmhm (𝜑 → (𝐻 Σg (𝐾𝐹)) = (𝐾‘(𝐺 Σg 𝐹)))

Proof of Theorem gsumfzmhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsummhm.k . . . . 5 (𝜑𝐾 ∈ (𝐺 MndHom 𝐻))
2 gsummhm.z . . . . . 6 0 = (0g𝐺)
3 eqid 2196 . . . . . 6 (0g𝐻) = (0g𝐻)
42, 3mhm0 13100 . . . . 5 (𝐾 ∈ (𝐺 MndHom 𝐻) → (𝐾0 ) = (0g𝐻))
51, 4syl 14 . . . 4 (𝜑 → (𝐾0 ) = (0g𝐻))
65adantr 276 . . 3 ((𝜑𝑁 < 𝑀) → (𝐾0 ) = (0g𝐻))
7 gsummhm.b . . . . . . 7 𝐵 = (Base‘𝐺)
8 eqid 2196 . . . . . . 7 (+g𝐺) = (+g𝐺)
9 gsummhm.g . . . . . . 7 (𝜑𝐺 ∈ CMnd)
10 gsummhm.m . . . . . . 7 (𝜑𝑀 ∈ ℤ)
11 gsummhm.n . . . . . . 7 (𝜑𝑁 ∈ ℤ)
12 gsummhm.f . . . . . . 7 (𝜑𝐹:(𝑀...𝑁)⟶𝐵)
137, 2, 8, 9, 10, 11, 12gsumfzval 13034 . . . . . 6 (𝜑 → (𝐺 Σg 𝐹) = if(𝑁 < 𝑀, 0 , (seq𝑀((+g𝐺), 𝐹)‘𝑁)))
1413adantr 276 . . . . 5 ((𝜑𝑁 < 𝑀) → (𝐺 Σg 𝐹) = if(𝑁 < 𝑀, 0 , (seq𝑀((+g𝐺), 𝐹)‘𝑁)))
15 simpr 110 . . . . . 6 ((𝜑𝑁 < 𝑀) → 𝑁 < 𝑀)
1615iftrued 3568 . . . . 5 ((𝜑𝑁 < 𝑀) → if(𝑁 < 𝑀, 0 , (seq𝑀((+g𝐺), 𝐹)‘𝑁)) = 0 )
1714, 16eqtrd 2229 . . . 4 ((𝜑𝑁 < 𝑀) → (𝐺 Σg 𝐹) = 0 )
1817fveq2d 5562 . . 3 ((𝜑𝑁 < 𝑀) → (𝐾‘(𝐺 Σg 𝐹)) = (𝐾0 ))
19 eqid 2196 . . . . . 6 (Base‘𝐻) = (Base‘𝐻)
20 eqid 2196 . . . . . 6 (+g𝐻) = (+g𝐻)
21 gsummhm.h . . . . . 6 (𝜑𝐻 ∈ Mnd)
227, 19mhmf 13097 . . . . . . . 8 (𝐾 ∈ (𝐺 MndHom 𝐻) → 𝐾:𝐵⟶(Base‘𝐻))
231, 22syl 14 . . . . . . 7 (𝜑𝐾:𝐵⟶(Base‘𝐻))
24 fco 5423 . . . . . . 7 ((𝐾:𝐵⟶(Base‘𝐻) ∧ 𝐹:(𝑀...𝑁)⟶𝐵) → (𝐾𝐹):(𝑀...𝑁)⟶(Base‘𝐻))
2523, 12, 24syl2anc 411 . . . . . 6 (𝜑 → (𝐾𝐹):(𝑀...𝑁)⟶(Base‘𝐻))
2619, 3, 20, 21, 10, 11, 25gsumfzval 13034 . . . . 5 (𝜑 → (𝐻 Σg (𝐾𝐹)) = if(𝑁 < 𝑀, (0g𝐻), (seq𝑀((+g𝐻), (𝐾𝐹))‘𝑁)))
2726adantr 276 . . . 4 ((𝜑𝑁 < 𝑀) → (𝐻 Σg (𝐾𝐹)) = if(𝑁 < 𝑀, (0g𝐻), (seq𝑀((+g𝐻), (𝐾𝐹))‘𝑁)))
2815iftrued 3568 . . . 4 ((𝜑𝑁 < 𝑀) → if(𝑁 < 𝑀, (0g𝐻), (seq𝑀((+g𝐻), (𝐾𝐹))‘𝑁)) = (0g𝐻))
2927, 28eqtrd 2229 . . 3 ((𝜑𝑁 < 𝑀) → (𝐻 Σg (𝐾𝐹)) = (0g𝐻))
306, 18, 293eqtr4rd 2240 . 2 ((𝜑𝑁 < 𝑀) → (𝐻 Σg (𝐾𝐹)) = (𝐾‘(𝐺 Σg 𝐹)))
319cmnmndd 13438 . . . . . . 7 (𝜑𝐺 ∈ Mnd)
3231adantr 276 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐺 ∈ Mnd)
33 simprl 529 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
34 simprr 531 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
357, 8mndcl 13064 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
3632, 33, 34, 35syl3anc 1249 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
3736adantlr 477 . . . 4 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
3812ffvelcdmda 5697 . . . . 5 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝐵)
3938adantlr 477 . . . 4 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝐵)
4010adantr 276 . . . . 5 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑀 ∈ ℤ)
4111adantr 276 . . . . 5 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑁 ∈ ℤ)
4240zred 9448 . . . . . 6 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑀 ∈ ℝ)
4341zred 9448 . . . . . 6 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑁 ∈ ℝ)
44 simpr 110 . . . . . 6 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → ¬ 𝑁 < 𝑀)
4542, 43, 44nltled 8147 . . . . 5 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑀𝑁)
46 eluz2 9607 . . . . 5 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
4740, 41, 45, 46syl3anbrc 1183 . . . 4 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑁 ∈ (ℤ𝑀))
481ad2antrr 488 . . . . 5 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥𝐵𝑦𝐵)) → 𝐾 ∈ (𝐺 MndHom 𝐻))
49 simprl 529 . . . . 5 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
50 simprr 531 . . . . 5 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
517, 8, 20mhmlin 13099 . . . . 5 ((𝐾 ∈ (𝐺 MndHom 𝐻) ∧ 𝑥𝐵𝑦𝐵) → (𝐾‘(𝑥(+g𝐺)𝑦)) = ((𝐾𝑥)(+g𝐻)(𝐾𝑦)))
5248, 49, 50, 51syl3anc 1249 . . . 4 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥𝐵𝑦𝐵)) → (𝐾‘(𝑥(+g𝐺)𝑦)) = ((𝐾𝑥)(+g𝐻)(𝐾𝑦)))
5312ad2antrr 488 . . . . . 6 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐹:(𝑀...𝑁)⟶𝐵)
54 simpr 110 . . . . . 6 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 ∈ (𝑀...𝑁))
55 fvco3 5632 . . . . . 6 ((𝐹:(𝑀...𝑁)⟶𝐵𝑥 ∈ (𝑀...𝑁)) → ((𝐾𝐹)‘𝑥) = (𝐾‘(𝐹𝑥)))
5653, 54, 55syl2anc 411 . . . . 5 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝐾𝐹)‘𝑥) = (𝐾‘(𝐹𝑥)))
5756eqcomd 2202 . . . 4 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐾‘(𝐹𝑥)) = ((𝐾𝐹)‘𝑥))
5810, 11fzfigd 10523 . . . . . 6 (𝜑 → (𝑀...𝑁) ∈ Fin)
5912, 58fexd 5792 . . . . 5 (𝜑𝐹 ∈ V)
6059adantr 276 . . . 4 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝐹 ∈ V)
61 coexg 5214 . . . . . 6 ((𝐾 ∈ (𝐺 MndHom 𝐻) ∧ 𝐹 ∈ V) → (𝐾𝐹) ∈ V)
621, 59, 61syl2anc 411 . . . . 5 (𝜑 → (𝐾𝐹) ∈ V)
6362adantr 276 . . . 4 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐾𝐹) ∈ V)
64 plusgslid 12790 . . . . . . 7 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
6564slotex 12705 . . . . . 6 (𝐺 ∈ CMnd → (+g𝐺) ∈ V)
669, 65syl 14 . . . . 5 (𝜑 → (+g𝐺) ∈ V)
6766adantr 276 . . . 4 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (+g𝐺) ∈ V)
6864slotex 12705 . . . . . 6 (𝐻 ∈ Mnd → (+g𝐻) ∈ V)
6921, 68syl 14 . . . . 5 (𝜑 → (+g𝐻) ∈ V)
7069adantr 276 . . . 4 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (+g𝐻) ∈ V)
7137, 39, 47, 52, 57, 60, 63, 67, 70seqhomog 10622 . . 3 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐾‘(seq𝑀((+g𝐺), 𝐹)‘𝑁)) = (seq𝑀((+g𝐻), (𝐾𝐹))‘𝑁))
7213adantr 276 . . . . 5 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐺 Σg 𝐹) = if(𝑁 < 𝑀, 0 , (seq𝑀((+g𝐺), 𝐹)‘𝑁)))
7344iffalsed 3571 . . . . 5 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → if(𝑁 < 𝑀, 0 , (seq𝑀((+g𝐺), 𝐹)‘𝑁)) = (seq𝑀((+g𝐺), 𝐹)‘𝑁))
7472, 73eqtrd 2229 . . . 4 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐺 Σg 𝐹) = (seq𝑀((+g𝐺), 𝐹)‘𝑁))
7574fveq2d 5562 . . 3 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐾‘(𝐺 Σg 𝐹)) = (𝐾‘(seq𝑀((+g𝐺), 𝐹)‘𝑁)))
7626adantr 276 . . . 4 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐻 Σg (𝐾𝐹)) = if(𝑁 < 𝑀, (0g𝐻), (seq𝑀((+g𝐻), (𝐾𝐹))‘𝑁)))
7744iffalsed 3571 . . . 4 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → if(𝑁 < 𝑀, (0g𝐻), (seq𝑀((+g𝐻), (𝐾𝐹))‘𝑁)) = (seq𝑀((+g𝐻), (𝐾𝐹))‘𝑁))
7876, 77eqtrd 2229 . . 3 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐻 Σg (𝐾𝐹)) = (seq𝑀((+g𝐻), (𝐾𝐹))‘𝑁))
7971, 75, 783eqtr4rd 2240 . 2 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐻 Σg (𝐾𝐹)) = (𝐾‘(𝐺 Σg 𝐹)))
80 zdclt 9403 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → DECID 𝑁 < 𝑀)
8111, 10, 80syl2anc 411 . . 3 (𝜑DECID 𝑁 < 𝑀)
82 exmiddc 837 . . 3 (DECID 𝑁 < 𝑀 → (𝑁 < 𝑀 ∨ ¬ 𝑁 < 𝑀))
8381, 82syl 14 . 2 (𝜑 → (𝑁 < 𝑀 ∨ ¬ 𝑁 < 𝑀))
8430, 79, 83mpjaodan 799 1 (𝜑 → (𝐻 Σg (𝐾𝐹)) = (𝐾‘(𝐺 Σg 𝐹)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835   = wceq 1364  wcel 2167  Vcvv 2763  ifcif 3561   class class class wbr 4033  ccom 4667  wf 5254  cfv 5258  (class class class)co 5922  Fincfn 6799   < clt 8061  cle 8062  cz 9326  cuz 9601  ...cfz 10083  seqcseq 10539  Basecbs 12678  +gcplusg 12755  0gc0g 12927   Σg cgsu 12928  Mndcmnd 13057   MndHom cmhm 13089  CMndccmn 13414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-1o 6474  df-er 6592  df-map 6709  df-en 6800  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-0g 12929  df-igsum 12930  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-mhm 13091  df-cmn 13416
This theorem is referenced by:  gsumfzmhm2  13474
  Copyright terms: Public domain W3C validator