| Step | Hyp | Ref
| Expression |
| 1 | | gsummhm.k |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ (𝐺 MndHom 𝐻)) |
| 2 | | gsummhm.z |
. . . . . 6
⊢ 0 =
(0g‘𝐺) |
| 3 | | eqid 2196 |
. . . . . 6
⊢
(0g‘𝐻) = (0g‘𝐻) |
| 4 | 2, 3 | mhm0 13100 |
. . . . 5
⊢ (𝐾 ∈ (𝐺 MndHom 𝐻) → (𝐾‘ 0 ) =
(0g‘𝐻)) |
| 5 | 1, 4 | syl 14 |
. . . 4
⊢ (𝜑 → (𝐾‘ 0 ) =
(0g‘𝐻)) |
| 6 | 5 | adantr 276 |
. . 3
⊢ ((𝜑 ∧ 𝑁 < 𝑀) → (𝐾‘ 0 ) =
(0g‘𝐻)) |
| 7 | | gsummhm.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐺) |
| 8 | | eqid 2196 |
. . . . . . 7
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 9 | | gsummhm.g |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ CMnd) |
| 10 | | gsummhm.m |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 11 | | gsummhm.n |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 12 | | gsummhm.f |
. . . . . . 7
⊢ (𝜑 → 𝐹:(𝑀...𝑁)⟶𝐵) |
| 13 | 7, 2, 8, 9, 10, 11, 12 | gsumfzval 13034 |
. . . . . 6
⊢ (𝜑 → (𝐺 Σg 𝐹) = if(𝑁 < 𝑀, 0 , (seq𝑀((+g‘𝐺), 𝐹)‘𝑁))) |
| 14 | 13 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 < 𝑀) → (𝐺 Σg 𝐹) = if(𝑁 < 𝑀, 0 , (seq𝑀((+g‘𝐺), 𝐹)‘𝑁))) |
| 15 | | simpr 110 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 < 𝑀) → 𝑁 < 𝑀) |
| 16 | 15 | iftrued 3568 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 < 𝑀) → if(𝑁 < 𝑀, 0 , (seq𝑀((+g‘𝐺), 𝐹)‘𝑁)) = 0 ) |
| 17 | 14, 16 | eqtrd 2229 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 < 𝑀) → (𝐺 Σg 𝐹) = 0 ) |
| 18 | 17 | fveq2d 5562 |
. . 3
⊢ ((𝜑 ∧ 𝑁 < 𝑀) → (𝐾‘(𝐺 Σg 𝐹)) = (𝐾‘ 0 )) |
| 19 | | eqid 2196 |
. . . . . 6
⊢
(Base‘𝐻) =
(Base‘𝐻) |
| 20 | | eqid 2196 |
. . . . . 6
⊢
(+g‘𝐻) = (+g‘𝐻) |
| 21 | | gsummhm.h |
. . . . . 6
⊢ (𝜑 → 𝐻 ∈ Mnd) |
| 22 | 7, 19 | mhmf 13097 |
. . . . . . . 8
⊢ (𝐾 ∈ (𝐺 MndHom 𝐻) → 𝐾:𝐵⟶(Base‘𝐻)) |
| 23 | 1, 22 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝐾:𝐵⟶(Base‘𝐻)) |
| 24 | | fco 5423 |
. . . . . . 7
⊢ ((𝐾:𝐵⟶(Base‘𝐻) ∧ 𝐹:(𝑀...𝑁)⟶𝐵) → (𝐾 ∘ 𝐹):(𝑀...𝑁)⟶(Base‘𝐻)) |
| 25 | 23, 12, 24 | syl2anc 411 |
. . . . . 6
⊢ (𝜑 → (𝐾 ∘ 𝐹):(𝑀...𝑁)⟶(Base‘𝐻)) |
| 26 | 19, 3, 20, 21, 10, 11, 25 | gsumfzval 13034 |
. . . . 5
⊢ (𝜑 → (𝐻 Σg (𝐾 ∘ 𝐹)) = if(𝑁 < 𝑀, (0g‘𝐻), (seq𝑀((+g‘𝐻), (𝐾 ∘ 𝐹))‘𝑁))) |
| 27 | 26 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 < 𝑀) → (𝐻 Σg (𝐾 ∘ 𝐹)) = if(𝑁 < 𝑀, (0g‘𝐻), (seq𝑀((+g‘𝐻), (𝐾 ∘ 𝐹))‘𝑁))) |
| 28 | 15 | iftrued 3568 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 < 𝑀) → if(𝑁 < 𝑀, (0g‘𝐻), (seq𝑀((+g‘𝐻), (𝐾 ∘ 𝐹))‘𝑁)) = (0g‘𝐻)) |
| 29 | 27, 28 | eqtrd 2229 |
. . 3
⊢ ((𝜑 ∧ 𝑁 < 𝑀) → (𝐻 Σg (𝐾 ∘ 𝐹)) = (0g‘𝐻)) |
| 30 | 6, 18, 29 | 3eqtr4rd 2240 |
. 2
⊢ ((𝜑 ∧ 𝑁 < 𝑀) → (𝐻 Σg (𝐾 ∘ 𝐹)) = (𝐾‘(𝐺 Σg 𝐹))) |
| 31 | 9 | cmnmndd 13438 |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 32 | 31 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐺 ∈ Mnd) |
| 33 | | simprl 529 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
| 34 | | simprr 531 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
| 35 | 7, 8 | mndcl 13064 |
. . . . . 6
⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
| 36 | 32, 33, 34, 35 | syl3anc 1249 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
| 37 | 36 | adantlr 477 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
| 38 | 12 | ffvelcdmda 5697 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) ∈ 𝐵) |
| 39 | 38 | adantlr 477 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) ∈ 𝐵) |
| 40 | 10 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑀 ∈ ℤ) |
| 41 | 11 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑁 ∈ ℤ) |
| 42 | 40 | zred 9448 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑀 ∈ ℝ) |
| 43 | 41 | zred 9448 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑁 ∈ ℝ) |
| 44 | | simpr 110 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → ¬ 𝑁 < 𝑀) |
| 45 | 42, 43, 44 | nltled 8147 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑀 ≤ 𝑁) |
| 46 | | eluz2 9607 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
| 47 | 40, 41, 45, 46 | syl3anbrc 1183 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 48 | 1 | ad2antrr 488 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐾 ∈ (𝐺 MndHom 𝐻)) |
| 49 | | simprl 529 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
| 50 | | simprr 531 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
| 51 | 7, 8, 20 | mhmlin 13099 |
. . . . 5
⊢ ((𝐾 ∈ (𝐺 MndHom 𝐻) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝐾‘(𝑥(+g‘𝐺)𝑦)) = ((𝐾‘𝑥)(+g‘𝐻)(𝐾‘𝑦))) |
| 52 | 48, 49, 50, 51 | syl3anc 1249 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐾‘(𝑥(+g‘𝐺)𝑦)) = ((𝐾‘𝑥)(+g‘𝐻)(𝐾‘𝑦))) |
| 53 | 12 | ad2antrr 488 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐹:(𝑀...𝑁)⟶𝐵) |
| 54 | | simpr 110 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 ∈ (𝑀...𝑁)) |
| 55 | | fvco3 5632 |
. . . . . 6
⊢ ((𝐹:(𝑀...𝑁)⟶𝐵 ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝐾 ∘ 𝐹)‘𝑥) = (𝐾‘(𝐹‘𝑥))) |
| 56 | 53, 54, 55 | syl2anc 411 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝐾 ∘ 𝐹)‘𝑥) = (𝐾‘(𝐹‘𝑥))) |
| 57 | 56 | eqcomd 2202 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐾‘(𝐹‘𝑥)) = ((𝐾 ∘ 𝐹)‘𝑥)) |
| 58 | 10, 11 | fzfigd 10523 |
. . . . . 6
⊢ (𝜑 → (𝑀...𝑁) ∈ Fin) |
| 59 | 12, 58 | fexd 5792 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ V) |
| 60 | 59 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝐹 ∈ V) |
| 61 | | coexg 5214 |
. . . . . 6
⊢ ((𝐾 ∈ (𝐺 MndHom 𝐻) ∧ 𝐹 ∈ V) → (𝐾 ∘ 𝐹) ∈ V) |
| 62 | 1, 59, 61 | syl2anc 411 |
. . . . 5
⊢ (𝜑 → (𝐾 ∘ 𝐹) ∈ V) |
| 63 | 62 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐾 ∘ 𝐹) ∈ V) |
| 64 | | plusgslid 12790 |
. . . . . . 7
⊢
(+g = Slot (+g‘ndx) ∧
(+g‘ndx) ∈ ℕ) |
| 65 | 64 | slotex 12705 |
. . . . . 6
⊢ (𝐺 ∈ CMnd →
(+g‘𝐺)
∈ V) |
| 66 | 9, 65 | syl 14 |
. . . . 5
⊢ (𝜑 → (+g‘𝐺) ∈ V) |
| 67 | 66 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (+g‘𝐺) ∈ V) |
| 68 | 64 | slotex 12705 |
. . . . . 6
⊢ (𝐻 ∈ Mnd →
(+g‘𝐻)
∈ V) |
| 69 | 21, 68 | syl 14 |
. . . . 5
⊢ (𝜑 → (+g‘𝐻) ∈ V) |
| 70 | 69 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (+g‘𝐻) ∈ V) |
| 71 | 37, 39, 47, 52, 57, 60, 63, 67, 70 | seqhomog 10622 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐾‘(seq𝑀((+g‘𝐺), 𝐹)‘𝑁)) = (seq𝑀((+g‘𝐻), (𝐾 ∘ 𝐹))‘𝑁)) |
| 72 | 13 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐺 Σg 𝐹) = if(𝑁 < 𝑀, 0 , (seq𝑀((+g‘𝐺), 𝐹)‘𝑁))) |
| 73 | 44 | iffalsed 3571 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → if(𝑁 < 𝑀, 0 , (seq𝑀((+g‘𝐺), 𝐹)‘𝑁)) = (seq𝑀((+g‘𝐺), 𝐹)‘𝑁)) |
| 74 | 72, 73 | eqtrd 2229 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐺 Σg 𝐹) = (seq𝑀((+g‘𝐺), 𝐹)‘𝑁)) |
| 75 | 74 | fveq2d 5562 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐾‘(𝐺 Σg 𝐹)) = (𝐾‘(seq𝑀((+g‘𝐺), 𝐹)‘𝑁))) |
| 76 | 26 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐻 Σg (𝐾 ∘ 𝐹)) = if(𝑁 < 𝑀, (0g‘𝐻), (seq𝑀((+g‘𝐻), (𝐾 ∘ 𝐹))‘𝑁))) |
| 77 | 44 | iffalsed 3571 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → if(𝑁 < 𝑀, (0g‘𝐻), (seq𝑀((+g‘𝐻), (𝐾 ∘ 𝐹))‘𝑁)) = (seq𝑀((+g‘𝐻), (𝐾 ∘ 𝐹))‘𝑁)) |
| 78 | 76, 77 | eqtrd 2229 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐻 Σg (𝐾 ∘ 𝐹)) = (seq𝑀((+g‘𝐻), (𝐾 ∘ 𝐹))‘𝑁)) |
| 79 | 71, 75, 78 | 3eqtr4rd 2240 |
. 2
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐻 Σg (𝐾 ∘ 𝐹)) = (𝐾‘(𝐺 Σg 𝐹))) |
| 80 | | zdclt 9403 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) →
DECID 𝑁 <
𝑀) |
| 81 | 11, 10, 80 | syl2anc 411 |
. . 3
⊢ (𝜑 → DECID 𝑁 < 𝑀) |
| 82 | | exmiddc 837 |
. . 3
⊢
(DECID 𝑁 < 𝑀 → (𝑁 < 𝑀 ∨ ¬ 𝑁 < 𝑀)) |
| 83 | 81, 82 | syl 14 |
. 2
⊢ (𝜑 → (𝑁 < 𝑀 ∨ ¬ 𝑁 < 𝑀)) |
| 84 | 30, 79, 83 | mpjaodan 799 |
1
⊢ (𝜑 → (𝐻 Σg (𝐾 ∘ 𝐹)) = (𝐾‘(𝐺 Σg 𝐹))) |