ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumfzmhm GIF version

Theorem gsumfzmhm 13888
Description: Apply a monoid homomorphism to a group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by AV, 6-Jun-2019.) (Revised by Jim Kingdon, 8-Sep-2025.)
Hypotheses
Ref Expression
gsummhm.b 𝐵 = (Base‘𝐺)
gsummhm.z 0 = (0g𝐺)
gsummhm.g (𝜑𝐺 ∈ CMnd)
gsummhm.h (𝜑𝐻 ∈ Mnd)
gsummhm.m (𝜑𝑀 ∈ ℤ)
gsummhm.n (𝜑𝑁 ∈ ℤ)
gsummhm.k (𝜑𝐾 ∈ (𝐺 MndHom 𝐻))
gsummhm.f (𝜑𝐹:(𝑀...𝑁)⟶𝐵)
Assertion
Ref Expression
gsumfzmhm (𝜑 → (𝐻 Σg (𝐾𝐹)) = (𝐾‘(𝐺 Σg 𝐹)))

Proof of Theorem gsumfzmhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsummhm.k . . . . 5 (𝜑𝐾 ∈ (𝐺 MndHom 𝐻))
2 gsummhm.z . . . . . 6 0 = (0g𝐺)
3 eqid 2229 . . . . . 6 (0g𝐻) = (0g𝐻)
42, 3mhm0 13509 . . . . 5 (𝐾 ∈ (𝐺 MndHom 𝐻) → (𝐾0 ) = (0g𝐻))
51, 4syl 14 . . . 4 (𝜑 → (𝐾0 ) = (0g𝐻))
65adantr 276 . . 3 ((𝜑𝑁 < 𝑀) → (𝐾0 ) = (0g𝐻))
7 gsummhm.b . . . . . . 7 𝐵 = (Base‘𝐺)
8 eqid 2229 . . . . . . 7 (+g𝐺) = (+g𝐺)
9 gsummhm.g . . . . . . 7 (𝜑𝐺 ∈ CMnd)
10 gsummhm.m . . . . . . 7 (𝜑𝑀 ∈ ℤ)
11 gsummhm.n . . . . . . 7 (𝜑𝑁 ∈ ℤ)
12 gsummhm.f . . . . . . 7 (𝜑𝐹:(𝑀...𝑁)⟶𝐵)
137, 2, 8, 9, 10, 11, 12gsumfzval 13432 . . . . . 6 (𝜑 → (𝐺 Σg 𝐹) = if(𝑁 < 𝑀, 0 , (seq𝑀((+g𝐺), 𝐹)‘𝑁)))
1413adantr 276 . . . . 5 ((𝜑𝑁 < 𝑀) → (𝐺 Σg 𝐹) = if(𝑁 < 𝑀, 0 , (seq𝑀((+g𝐺), 𝐹)‘𝑁)))
15 simpr 110 . . . . . 6 ((𝜑𝑁 < 𝑀) → 𝑁 < 𝑀)
1615iftrued 3609 . . . . 5 ((𝜑𝑁 < 𝑀) → if(𝑁 < 𝑀, 0 , (seq𝑀((+g𝐺), 𝐹)‘𝑁)) = 0 )
1714, 16eqtrd 2262 . . . 4 ((𝜑𝑁 < 𝑀) → (𝐺 Σg 𝐹) = 0 )
1817fveq2d 5633 . . 3 ((𝜑𝑁 < 𝑀) → (𝐾‘(𝐺 Σg 𝐹)) = (𝐾0 ))
19 eqid 2229 . . . . . 6 (Base‘𝐻) = (Base‘𝐻)
20 eqid 2229 . . . . . 6 (+g𝐻) = (+g𝐻)
21 gsummhm.h . . . . . 6 (𝜑𝐻 ∈ Mnd)
227, 19mhmf 13506 . . . . . . . 8 (𝐾 ∈ (𝐺 MndHom 𝐻) → 𝐾:𝐵⟶(Base‘𝐻))
231, 22syl 14 . . . . . . 7 (𝜑𝐾:𝐵⟶(Base‘𝐻))
24 fco 5491 . . . . . . 7 ((𝐾:𝐵⟶(Base‘𝐻) ∧ 𝐹:(𝑀...𝑁)⟶𝐵) → (𝐾𝐹):(𝑀...𝑁)⟶(Base‘𝐻))
2523, 12, 24syl2anc 411 . . . . . 6 (𝜑 → (𝐾𝐹):(𝑀...𝑁)⟶(Base‘𝐻))
2619, 3, 20, 21, 10, 11, 25gsumfzval 13432 . . . . 5 (𝜑 → (𝐻 Σg (𝐾𝐹)) = if(𝑁 < 𝑀, (0g𝐻), (seq𝑀((+g𝐻), (𝐾𝐹))‘𝑁)))
2726adantr 276 . . . 4 ((𝜑𝑁 < 𝑀) → (𝐻 Σg (𝐾𝐹)) = if(𝑁 < 𝑀, (0g𝐻), (seq𝑀((+g𝐻), (𝐾𝐹))‘𝑁)))
2815iftrued 3609 . . . 4 ((𝜑𝑁 < 𝑀) → if(𝑁 < 𝑀, (0g𝐻), (seq𝑀((+g𝐻), (𝐾𝐹))‘𝑁)) = (0g𝐻))
2927, 28eqtrd 2262 . . 3 ((𝜑𝑁 < 𝑀) → (𝐻 Σg (𝐾𝐹)) = (0g𝐻))
306, 18, 293eqtr4rd 2273 . 2 ((𝜑𝑁 < 𝑀) → (𝐻 Σg (𝐾𝐹)) = (𝐾‘(𝐺 Σg 𝐹)))
319cmnmndd 13853 . . . . . . 7 (𝜑𝐺 ∈ Mnd)
3231adantr 276 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐺 ∈ Mnd)
33 simprl 529 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
34 simprr 531 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
357, 8mndcl 13464 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
3632, 33, 34, 35syl3anc 1271 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
3736adantlr 477 . . . 4 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
3812ffvelcdmda 5772 . . . . 5 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝐵)
3938adantlr 477 . . . 4 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝐵)
4010adantr 276 . . . . 5 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑀 ∈ ℤ)
4111adantr 276 . . . . 5 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑁 ∈ ℤ)
4240zred 9577 . . . . . 6 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑀 ∈ ℝ)
4341zred 9577 . . . . . 6 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑁 ∈ ℝ)
44 simpr 110 . . . . . 6 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → ¬ 𝑁 < 𝑀)
4542, 43, 44nltled 8275 . . . . 5 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑀𝑁)
46 eluz2 9736 . . . . 5 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
4740, 41, 45, 46syl3anbrc 1205 . . . 4 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑁 ∈ (ℤ𝑀))
481ad2antrr 488 . . . . 5 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥𝐵𝑦𝐵)) → 𝐾 ∈ (𝐺 MndHom 𝐻))
49 simprl 529 . . . . 5 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
50 simprr 531 . . . . 5 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
517, 8, 20mhmlin 13508 . . . . 5 ((𝐾 ∈ (𝐺 MndHom 𝐻) ∧ 𝑥𝐵𝑦𝐵) → (𝐾‘(𝑥(+g𝐺)𝑦)) = ((𝐾𝑥)(+g𝐻)(𝐾𝑦)))
5248, 49, 50, 51syl3anc 1271 . . . 4 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥𝐵𝑦𝐵)) → (𝐾‘(𝑥(+g𝐺)𝑦)) = ((𝐾𝑥)(+g𝐻)(𝐾𝑦)))
5312ad2antrr 488 . . . . . 6 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐹:(𝑀...𝑁)⟶𝐵)
54 simpr 110 . . . . . 6 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 ∈ (𝑀...𝑁))
55 fvco3 5707 . . . . . 6 ((𝐹:(𝑀...𝑁)⟶𝐵𝑥 ∈ (𝑀...𝑁)) → ((𝐾𝐹)‘𝑥) = (𝐾‘(𝐹𝑥)))
5653, 54, 55syl2anc 411 . . . . 5 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝐾𝐹)‘𝑥) = (𝐾‘(𝐹𝑥)))
5756eqcomd 2235 . . . 4 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐾‘(𝐹𝑥)) = ((𝐾𝐹)‘𝑥))
5810, 11fzfigd 10661 . . . . . 6 (𝜑 → (𝑀...𝑁) ∈ Fin)
5912, 58fexd 5873 . . . . 5 (𝜑𝐹 ∈ V)
6059adantr 276 . . . 4 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝐹 ∈ V)
61 coexg 5273 . . . . . 6 ((𝐾 ∈ (𝐺 MndHom 𝐻) ∧ 𝐹 ∈ V) → (𝐾𝐹) ∈ V)
621, 59, 61syl2anc 411 . . . . 5 (𝜑 → (𝐾𝐹) ∈ V)
6362adantr 276 . . . 4 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐾𝐹) ∈ V)
64 plusgslid 13153 . . . . . . 7 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
6564slotex 13067 . . . . . 6 (𝐺 ∈ CMnd → (+g𝐺) ∈ V)
669, 65syl 14 . . . . 5 (𝜑 → (+g𝐺) ∈ V)
6766adantr 276 . . . 4 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (+g𝐺) ∈ V)
6864slotex 13067 . . . . . 6 (𝐻 ∈ Mnd → (+g𝐻) ∈ V)
6921, 68syl 14 . . . . 5 (𝜑 → (+g𝐻) ∈ V)
7069adantr 276 . . . 4 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (+g𝐻) ∈ V)
7137, 39, 47, 52, 57, 60, 63, 67, 70seqhomog 10760 . . 3 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐾‘(seq𝑀((+g𝐺), 𝐹)‘𝑁)) = (seq𝑀((+g𝐻), (𝐾𝐹))‘𝑁))
7213adantr 276 . . . . 5 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐺 Σg 𝐹) = if(𝑁 < 𝑀, 0 , (seq𝑀((+g𝐺), 𝐹)‘𝑁)))
7344iffalsed 3612 . . . . 5 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → if(𝑁 < 𝑀, 0 , (seq𝑀((+g𝐺), 𝐹)‘𝑁)) = (seq𝑀((+g𝐺), 𝐹)‘𝑁))
7472, 73eqtrd 2262 . . . 4 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐺 Σg 𝐹) = (seq𝑀((+g𝐺), 𝐹)‘𝑁))
7574fveq2d 5633 . . 3 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐾‘(𝐺 Σg 𝐹)) = (𝐾‘(seq𝑀((+g𝐺), 𝐹)‘𝑁)))
7626adantr 276 . . . 4 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐻 Σg (𝐾𝐹)) = if(𝑁 < 𝑀, (0g𝐻), (seq𝑀((+g𝐻), (𝐾𝐹))‘𝑁)))
7744iffalsed 3612 . . . 4 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → if(𝑁 < 𝑀, (0g𝐻), (seq𝑀((+g𝐻), (𝐾𝐹))‘𝑁)) = (seq𝑀((+g𝐻), (𝐾𝐹))‘𝑁))
7876, 77eqtrd 2262 . . 3 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐻 Σg (𝐾𝐹)) = (seq𝑀((+g𝐻), (𝐾𝐹))‘𝑁))
7971, 75, 783eqtr4rd 2273 . 2 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐻 Σg (𝐾𝐹)) = (𝐾‘(𝐺 Σg 𝐹)))
80 zdclt 9532 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → DECID 𝑁 < 𝑀)
8111, 10, 80syl2anc 411 . . 3 (𝜑DECID 𝑁 < 𝑀)
82 exmiddc 841 . . 3 (DECID 𝑁 < 𝑀 → (𝑁 < 𝑀 ∨ ¬ 𝑁 < 𝑀))
8381, 82syl 14 . 2 (𝜑 → (𝑁 < 𝑀 ∨ ¬ 𝑁 < 𝑀))
8430, 79, 83mpjaodan 803 1 (𝜑 → (𝐻 Σg (𝐾𝐹)) = (𝐾‘(𝐺 Σg 𝐹)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 713  DECID wdc 839   = wceq 1395  wcel 2200  Vcvv 2799  ifcif 3602   class class class wbr 4083  ccom 4723  wf 5314  cfv 5318  (class class class)co 6007  Fincfn 6895   < clt 8189  cle 8190  cz 9454  cuz 9730  ...cfz 10212  seqcseq 10677  Basecbs 13040  +gcplusg 13118  0gc0g 13297   Σg cgsu 13298  Mndcmnd 13457   MndHom cmhm 13498  CMndccmn 13829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-1o 6568  df-er 6688  df-map 6805  df-en 6896  df-fin 6898  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-inn 9119  df-2 9177  df-n0 9378  df-z 9455  df-uz 9731  df-fz 10213  df-fzo 10347  df-seqfrec 10678  df-ndx 13043  df-slot 13044  df-base 13046  df-plusg 13131  df-0g 13299  df-igsum 13300  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-mhm 13500  df-cmn 13831
This theorem is referenced by:  gsumfzmhm2  13889
  Copyright terms: Public domain W3C validator