ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumfzmhm GIF version

Theorem gsumfzmhm 13846
Description: Apply a monoid homomorphism to a group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by AV, 6-Jun-2019.) (Revised by Jim Kingdon, 8-Sep-2025.)
Hypotheses
Ref Expression
gsummhm.b 𝐵 = (Base‘𝐺)
gsummhm.z 0 = (0g𝐺)
gsummhm.g (𝜑𝐺 ∈ CMnd)
gsummhm.h (𝜑𝐻 ∈ Mnd)
gsummhm.m (𝜑𝑀 ∈ ℤ)
gsummhm.n (𝜑𝑁 ∈ ℤ)
gsummhm.k (𝜑𝐾 ∈ (𝐺 MndHom 𝐻))
gsummhm.f (𝜑𝐹:(𝑀...𝑁)⟶𝐵)
Assertion
Ref Expression
gsumfzmhm (𝜑 → (𝐻 Σg (𝐾𝐹)) = (𝐾‘(𝐺 Σg 𝐹)))

Proof of Theorem gsumfzmhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsummhm.k . . . . 5 (𝜑𝐾 ∈ (𝐺 MndHom 𝐻))
2 gsummhm.z . . . . . 6 0 = (0g𝐺)
3 eqid 2209 . . . . . 6 (0g𝐻) = (0g𝐻)
42, 3mhm0 13467 . . . . 5 (𝐾 ∈ (𝐺 MndHom 𝐻) → (𝐾0 ) = (0g𝐻))
51, 4syl 14 . . . 4 (𝜑 → (𝐾0 ) = (0g𝐻))
65adantr 276 . . 3 ((𝜑𝑁 < 𝑀) → (𝐾0 ) = (0g𝐻))
7 gsummhm.b . . . . . . 7 𝐵 = (Base‘𝐺)
8 eqid 2209 . . . . . . 7 (+g𝐺) = (+g𝐺)
9 gsummhm.g . . . . . . 7 (𝜑𝐺 ∈ CMnd)
10 gsummhm.m . . . . . . 7 (𝜑𝑀 ∈ ℤ)
11 gsummhm.n . . . . . . 7 (𝜑𝑁 ∈ ℤ)
12 gsummhm.f . . . . . . 7 (𝜑𝐹:(𝑀...𝑁)⟶𝐵)
137, 2, 8, 9, 10, 11, 12gsumfzval 13390 . . . . . 6 (𝜑 → (𝐺 Σg 𝐹) = if(𝑁 < 𝑀, 0 , (seq𝑀((+g𝐺), 𝐹)‘𝑁)))
1413adantr 276 . . . . 5 ((𝜑𝑁 < 𝑀) → (𝐺 Σg 𝐹) = if(𝑁 < 𝑀, 0 , (seq𝑀((+g𝐺), 𝐹)‘𝑁)))
15 simpr 110 . . . . . 6 ((𝜑𝑁 < 𝑀) → 𝑁 < 𝑀)
1615iftrued 3589 . . . . 5 ((𝜑𝑁 < 𝑀) → if(𝑁 < 𝑀, 0 , (seq𝑀((+g𝐺), 𝐹)‘𝑁)) = 0 )
1714, 16eqtrd 2242 . . . 4 ((𝜑𝑁 < 𝑀) → (𝐺 Σg 𝐹) = 0 )
1817fveq2d 5607 . . 3 ((𝜑𝑁 < 𝑀) → (𝐾‘(𝐺 Σg 𝐹)) = (𝐾0 ))
19 eqid 2209 . . . . . 6 (Base‘𝐻) = (Base‘𝐻)
20 eqid 2209 . . . . . 6 (+g𝐻) = (+g𝐻)
21 gsummhm.h . . . . . 6 (𝜑𝐻 ∈ Mnd)
227, 19mhmf 13464 . . . . . . . 8 (𝐾 ∈ (𝐺 MndHom 𝐻) → 𝐾:𝐵⟶(Base‘𝐻))
231, 22syl 14 . . . . . . 7 (𝜑𝐾:𝐵⟶(Base‘𝐻))
24 fco 5465 . . . . . . 7 ((𝐾:𝐵⟶(Base‘𝐻) ∧ 𝐹:(𝑀...𝑁)⟶𝐵) → (𝐾𝐹):(𝑀...𝑁)⟶(Base‘𝐻))
2523, 12, 24syl2anc 411 . . . . . 6 (𝜑 → (𝐾𝐹):(𝑀...𝑁)⟶(Base‘𝐻))
2619, 3, 20, 21, 10, 11, 25gsumfzval 13390 . . . . 5 (𝜑 → (𝐻 Σg (𝐾𝐹)) = if(𝑁 < 𝑀, (0g𝐻), (seq𝑀((+g𝐻), (𝐾𝐹))‘𝑁)))
2726adantr 276 . . . 4 ((𝜑𝑁 < 𝑀) → (𝐻 Σg (𝐾𝐹)) = if(𝑁 < 𝑀, (0g𝐻), (seq𝑀((+g𝐻), (𝐾𝐹))‘𝑁)))
2815iftrued 3589 . . . 4 ((𝜑𝑁 < 𝑀) → if(𝑁 < 𝑀, (0g𝐻), (seq𝑀((+g𝐻), (𝐾𝐹))‘𝑁)) = (0g𝐻))
2927, 28eqtrd 2242 . . 3 ((𝜑𝑁 < 𝑀) → (𝐻 Σg (𝐾𝐹)) = (0g𝐻))
306, 18, 293eqtr4rd 2253 . 2 ((𝜑𝑁 < 𝑀) → (𝐻 Σg (𝐾𝐹)) = (𝐾‘(𝐺 Σg 𝐹)))
319cmnmndd 13811 . . . . . . 7 (𝜑𝐺 ∈ Mnd)
3231adantr 276 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐺 ∈ Mnd)
33 simprl 529 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
34 simprr 531 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
357, 8mndcl 13422 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
3632, 33, 34, 35syl3anc 1252 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
3736adantlr 477 . . . 4 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
3812ffvelcdmda 5743 . . . . 5 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝐵)
3938adantlr 477 . . . 4 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝐵)
4010adantr 276 . . . . 5 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑀 ∈ ℤ)
4111adantr 276 . . . . 5 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑁 ∈ ℤ)
4240zred 9537 . . . . . 6 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑀 ∈ ℝ)
4341zred 9537 . . . . . 6 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑁 ∈ ℝ)
44 simpr 110 . . . . . 6 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → ¬ 𝑁 < 𝑀)
4542, 43, 44nltled 8235 . . . . 5 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑀𝑁)
46 eluz2 9696 . . . . 5 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
4740, 41, 45, 46syl3anbrc 1186 . . . 4 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑁 ∈ (ℤ𝑀))
481ad2antrr 488 . . . . 5 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥𝐵𝑦𝐵)) → 𝐾 ∈ (𝐺 MndHom 𝐻))
49 simprl 529 . . . . 5 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
50 simprr 531 . . . . 5 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
517, 8, 20mhmlin 13466 . . . . 5 ((𝐾 ∈ (𝐺 MndHom 𝐻) ∧ 𝑥𝐵𝑦𝐵) → (𝐾‘(𝑥(+g𝐺)𝑦)) = ((𝐾𝑥)(+g𝐻)(𝐾𝑦)))
5248, 49, 50, 51syl3anc 1252 . . . 4 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥𝐵𝑦𝐵)) → (𝐾‘(𝑥(+g𝐺)𝑦)) = ((𝐾𝑥)(+g𝐻)(𝐾𝑦)))
5312ad2antrr 488 . . . . . 6 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐹:(𝑀...𝑁)⟶𝐵)
54 simpr 110 . . . . . 6 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 ∈ (𝑀...𝑁))
55 fvco3 5678 . . . . . 6 ((𝐹:(𝑀...𝑁)⟶𝐵𝑥 ∈ (𝑀...𝑁)) → ((𝐾𝐹)‘𝑥) = (𝐾‘(𝐹𝑥)))
5653, 54, 55syl2anc 411 . . . . 5 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝐾𝐹)‘𝑥) = (𝐾‘(𝐹𝑥)))
5756eqcomd 2215 . . . 4 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐾‘(𝐹𝑥)) = ((𝐾𝐹)‘𝑥))
5810, 11fzfigd 10620 . . . . . 6 (𝜑 → (𝑀...𝑁) ∈ Fin)
5912, 58fexd 5842 . . . . 5 (𝜑𝐹 ∈ V)
6059adantr 276 . . . 4 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝐹 ∈ V)
61 coexg 5249 . . . . . 6 ((𝐾 ∈ (𝐺 MndHom 𝐻) ∧ 𝐹 ∈ V) → (𝐾𝐹) ∈ V)
621, 59, 61syl2anc 411 . . . . 5 (𝜑 → (𝐾𝐹) ∈ V)
6362adantr 276 . . . 4 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐾𝐹) ∈ V)
64 plusgslid 13111 . . . . . . 7 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
6564slotex 13025 . . . . . 6 (𝐺 ∈ CMnd → (+g𝐺) ∈ V)
669, 65syl 14 . . . . 5 (𝜑 → (+g𝐺) ∈ V)
6766adantr 276 . . . 4 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (+g𝐺) ∈ V)
6864slotex 13025 . . . . . 6 (𝐻 ∈ Mnd → (+g𝐻) ∈ V)
6921, 68syl 14 . . . . 5 (𝜑 → (+g𝐻) ∈ V)
7069adantr 276 . . . 4 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (+g𝐻) ∈ V)
7137, 39, 47, 52, 57, 60, 63, 67, 70seqhomog 10719 . . 3 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐾‘(seq𝑀((+g𝐺), 𝐹)‘𝑁)) = (seq𝑀((+g𝐻), (𝐾𝐹))‘𝑁))
7213adantr 276 . . . . 5 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐺 Σg 𝐹) = if(𝑁 < 𝑀, 0 , (seq𝑀((+g𝐺), 𝐹)‘𝑁)))
7344iffalsed 3592 . . . . 5 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → if(𝑁 < 𝑀, 0 , (seq𝑀((+g𝐺), 𝐹)‘𝑁)) = (seq𝑀((+g𝐺), 𝐹)‘𝑁))
7472, 73eqtrd 2242 . . . 4 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐺 Σg 𝐹) = (seq𝑀((+g𝐺), 𝐹)‘𝑁))
7574fveq2d 5607 . . 3 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐾‘(𝐺 Σg 𝐹)) = (𝐾‘(seq𝑀((+g𝐺), 𝐹)‘𝑁)))
7626adantr 276 . . . 4 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐻 Σg (𝐾𝐹)) = if(𝑁 < 𝑀, (0g𝐻), (seq𝑀((+g𝐻), (𝐾𝐹))‘𝑁)))
7744iffalsed 3592 . . . 4 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → if(𝑁 < 𝑀, (0g𝐻), (seq𝑀((+g𝐻), (𝐾𝐹))‘𝑁)) = (seq𝑀((+g𝐻), (𝐾𝐹))‘𝑁))
7876, 77eqtrd 2242 . . 3 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐻 Σg (𝐾𝐹)) = (seq𝑀((+g𝐻), (𝐾𝐹))‘𝑁))
7971, 75, 783eqtr4rd 2253 . 2 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐻 Σg (𝐾𝐹)) = (𝐾‘(𝐺 Σg 𝐹)))
80 zdclt 9492 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → DECID 𝑁 < 𝑀)
8111, 10, 80syl2anc 411 . . 3 (𝜑DECID 𝑁 < 𝑀)
82 exmiddc 840 . . 3 (DECID 𝑁 < 𝑀 → (𝑁 < 𝑀 ∨ ¬ 𝑁 < 𝑀))
8381, 82syl 14 . 2 (𝜑 → (𝑁 < 𝑀 ∨ ¬ 𝑁 < 𝑀))
8430, 79, 83mpjaodan 802 1 (𝜑 → (𝐻 Σg (𝐾𝐹)) = (𝐾‘(𝐺 Σg 𝐹)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 712  DECID wdc 838   = wceq 1375  wcel 2180  Vcvv 2779  ifcif 3582   class class class wbr 4062  ccom 4700  wf 5290  cfv 5294  (class class class)co 5974  Fincfn 6857   < clt 8149  cle 8150  cz 9414  cuz 9690  ...cfz 10172  seqcseq 10636  Basecbs 12998  +gcplusg 13076  0gc0g 13255   Σg cgsu 13256  Mndcmnd 13415   MndHom cmhm 13456  CMndccmn 13787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-1o 6532  df-er 6650  df-map 6767  df-en 6858  df-fin 6860  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-inn 9079  df-2 9137  df-n0 9338  df-z 9415  df-uz 9691  df-fz 10173  df-fzo 10307  df-seqfrec 10637  df-ndx 13001  df-slot 13002  df-base 13004  df-plusg 13089  df-0g 13257  df-igsum 13258  df-mgm 13355  df-sgrp 13401  df-mnd 13416  df-mhm 13458  df-cmn 13789
This theorem is referenced by:  gsumfzmhm2  13847
  Copyright terms: Public domain W3C validator