Step | Hyp | Ref
| Expression |
1 | | gsummhm.k |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ (𝐺 MndHom 𝐻)) |
2 | | gsummhm.z |
. . . . . 6
⊢ 0 =
(0g‘𝐺) |
3 | | eqid 2193 |
. . . . . 6
⊢
(0g‘𝐻) = (0g‘𝐻) |
4 | 2, 3 | mhm0 13040 |
. . . . 5
⊢ (𝐾 ∈ (𝐺 MndHom 𝐻) → (𝐾‘ 0 ) =
(0g‘𝐻)) |
5 | 1, 4 | syl 14 |
. . . 4
⊢ (𝜑 → (𝐾‘ 0 ) =
(0g‘𝐻)) |
6 | 5 | adantr 276 |
. . 3
⊢ ((𝜑 ∧ 𝑁 < 𝑀) → (𝐾‘ 0 ) =
(0g‘𝐻)) |
7 | | gsummhm.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐺) |
8 | | eqid 2193 |
. . . . . . 7
⊢
(+g‘𝐺) = (+g‘𝐺) |
9 | | gsummhm.g |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ CMnd) |
10 | | gsummhm.m |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℤ) |
11 | | gsummhm.n |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℤ) |
12 | | gsummhm.f |
. . . . . . 7
⊢ (𝜑 → 𝐹:(𝑀...𝑁)⟶𝐵) |
13 | 7, 2, 8, 9, 10, 11, 12 | gsumfzval 12974 |
. . . . . 6
⊢ (𝜑 → (𝐺 Σg 𝐹) = if(𝑁 < 𝑀, 0 , (seq𝑀((+g‘𝐺), 𝐹)‘𝑁))) |
14 | 13 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 < 𝑀) → (𝐺 Σg 𝐹) = if(𝑁 < 𝑀, 0 , (seq𝑀((+g‘𝐺), 𝐹)‘𝑁))) |
15 | | simpr 110 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 < 𝑀) → 𝑁 < 𝑀) |
16 | 15 | iftrued 3564 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 < 𝑀) → if(𝑁 < 𝑀, 0 , (seq𝑀((+g‘𝐺), 𝐹)‘𝑁)) = 0 ) |
17 | 14, 16 | eqtrd 2226 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 < 𝑀) → (𝐺 Σg 𝐹) = 0 ) |
18 | 17 | fveq2d 5558 |
. . 3
⊢ ((𝜑 ∧ 𝑁 < 𝑀) → (𝐾‘(𝐺 Σg 𝐹)) = (𝐾‘ 0 )) |
19 | | eqid 2193 |
. . . . . 6
⊢
(Base‘𝐻) =
(Base‘𝐻) |
20 | | eqid 2193 |
. . . . . 6
⊢
(+g‘𝐻) = (+g‘𝐻) |
21 | | gsummhm.h |
. . . . . 6
⊢ (𝜑 → 𝐻 ∈ Mnd) |
22 | 7, 19 | mhmf 13037 |
. . . . . . . 8
⊢ (𝐾 ∈ (𝐺 MndHom 𝐻) → 𝐾:𝐵⟶(Base‘𝐻)) |
23 | 1, 22 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝐾:𝐵⟶(Base‘𝐻)) |
24 | | fco 5419 |
. . . . . . 7
⊢ ((𝐾:𝐵⟶(Base‘𝐻) ∧ 𝐹:(𝑀...𝑁)⟶𝐵) → (𝐾 ∘ 𝐹):(𝑀...𝑁)⟶(Base‘𝐻)) |
25 | 23, 12, 24 | syl2anc 411 |
. . . . . 6
⊢ (𝜑 → (𝐾 ∘ 𝐹):(𝑀...𝑁)⟶(Base‘𝐻)) |
26 | 19, 3, 20, 21, 10, 11, 25 | gsumfzval 12974 |
. . . . 5
⊢ (𝜑 → (𝐻 Σg (𝐾 ∘ 𝐹)) = if(𝑁 < 𝑀, (0g‘𝐻), (seq𝑀((+g‘𝐻), (𝐾 ∘ 𝐹))‘𝑁))) |
27 | 26 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 < 𝑀) → (𝐻 Σg (𝐾 ∘ 𝐹)) = if(𝑁 < 𝑀, (0g‘𝐻), (seq𝑀((+g‘𝐻), (𝐾 ∘ 𝐹))‘𝑁))) |
28 | 15 | iftrued 3564 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 < 𝑀) → if(𝑁 < 𝑀, (0g‘𝐻), (seq𝑀((+g‘𝐻), (𝐾 ∘ 𝐹))‘𝑁)) = (0g‘𝐻)) |
29 | 27, 28 | eqtrd 2226 |
. . 3
⊢ ((𝜑 ∧ 𝑁 < 𝑀) → (𝐻 Σg (𝐾 ∘ 𝐹)) = (0g‘𝐻)) |
30 | 6, 18, 29 | 3eqtr4rd 2237 |
. 2
⊢ ((𝜑 ∧ 𝑁 < 𝑀) → (𝐻 Σg (𝐾 ∘ 𝐹)) = (𝐾‘(𝐺 Σg 𝐹))) |
31 | 9 | cmnmndd 13378 |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ Mnd) |
32 | 31 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐺 ∈ Mnd) |
33 | | simprl 529 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
34 | | simprr 531 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
35 | 7, 8 | mndcl 13004 |
. . . . . 6
⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
36 | 32, 33, 34, 35 | syl3anc 1249 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
37 | 36 | adantlr 477 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
38 | 12 | ffvelcdmda 5693 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) ∈ 𝐵) |
39 | 38 | adantlr 477 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) ∈ 𝐵) |
40 | 10 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑀 ∈ ℤ) |
41 | 11 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑁 ∈ ℤ) |
42 | 40 | zred 9439 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑀 ∈ ℝ) |
43 | 41 | zred 9439 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑁 ∈ ℝ) |
44 | | simpr 110 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → ¬ 𝑁 < 𝑀) |
45 | 42, 43, 44 | nltled 8140 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑀 ≤ 𝑁) |
46 | | eluz2 9598 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
47 | 40, 41, 45, 46 | syl3anbrc 1183 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑁 ∈ (ℤ≥‘𝑀)) |
48 | 1 | ad2antrr 488 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐾 ∈ (𝐺 MndHom 𝐻)) |
49 | | simprl 529 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
50 | | simprr 531 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
51 | 7, 8, 20 | mhmlin 13039 |
. . . . 5
⊢ ((𝐾 ∈ (𝐺 MndHom 𝐻) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝐾‘(𝑥(+g‘𝐺)𝑦)) = ((𝐾‘𝑥)(+g‘𝐻)(𝐾‘𝑦))) |
52 | 48, 49, 50, 51 | syl3anc 1249 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐾‘(𝑥(+g‘𝐺)𝑦)) = ((𝐾‘𝑥)(+g‘𝐻)(𝐾‘𝑦))) |
53 | 12 | ad2antrr 488 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐹:(𝑀...𝑁)⟶𝐵) |
54 | | simpr 110 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 ∈ (𝑀...𝑁)) |
55 | | fvco3 5628 |
. . . . . 6
⊢ ((𝐹:(𝑀...𝑁)⟶𝐵 ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝐾 ∘ 𝐹)‘𝑥) = (𝐾‘(𝐹‘𝑥))) |
56 | 53, 54, 55 | syl2anc 411 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝐾 ∘ 𝐹)‘𝑥) = (𝐾‘(𝐹‘𝑥))) |
57 | 56 | eqcomd 2199 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐾‘(𝐹‘𝑥)) = ((𝐾 ∘ 𝐹)‘𝑥)) |
58 | 10, 11 | fzfigd 10502 |
. . . . . 6
⊢ (𝜑 → (𝑀...𝑁) ∈ Fin) |
59 | 12, 58 | fexd 5788 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ V) |
60 | 59 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝐹 ∈ V) |
61 | | coexg 5210 |
. . . . . 6
⊢ ((𝐾 ∈ (𝐺 MndHom 𝐻) ∧ 𝐹 ∈ V) → (𝐾 ∘ 𝐹) ∈ V) |
62 | 1, 59, 61 | syl2anc 411 |
. . . . 5
⊢ (𝜑 → (𝐾 ∘ 𝐹) ∈ V) |
63 | 62 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐾 ∘ 𝐹) ∈ V) |
64 | | plusgslid 12730 |
. . . . . . 7
⊢
(+g = Slot (+g‘ndx) ∧
(+g‘ndx) ∈ ℕ) |
65 | 64 | slotex 12645 |
. . . . . 6
⊢ (𝐺 ∈ CMnd →
(+g‘𝐺)
∈ V) |
66 | 9, 65 | syl 14 |
. . . . 5
⊢ (𝜑 → (+g‘𝐺) ∈ V) |
67 | 66 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (+g‘𝐺) ∈ V) |
68 | 64 | slotex 12645 |
. . . . . 6
⊢ (𝐻 ∈ Mnd →
(+g‘𝐻)
∈ V) |
69 | 21, 68 | syl 14 |
. . . . 5
⊢ (𝜑 → (+g‘𝐻) ∈ V) |
70 | 69 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (+g‘𝐻) ∈ V) |
71 | 37, 39, 47, 52, 57, 60, 63, 67, 70 | seqhomog 10601 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐾‘(seq𝑀((+g‘𝐺), 𝐹)‘𝑁)) = (seq𝑀((+g‘𝐻), (𝐾 ∘ 𝐹))‘𝑁)) |
72 | 13 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐺 Σg 𝐹) = if(𝑁 < 𝑀, 0 , (seq𝑀((+g‘𝐺), 𝐹)‘𝑁))) |
73 | 44 | iffalsed 3567 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → if(𝑁 < 𝑀, 0 , (seq𝑀((+g‘𝐺), 𝐹)‘𝑁)) = (seq𝑀((+g‘𝐺), 𝐹)‘𝑁)) |
74 | 72, 73 | eqtrd 2226 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐺 Σg 𝐹) = (seq𝑀((+g‘𝐺), 𝐹)‘𝑁)) |
75 | 74 | fveq2d 5558 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐾‘(𝐺 Σg 𝐹)) = (𝐾‘(seq𝑀((+g‘𝐺), 𝐹)‘𝑁))) |
76 | 26 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐻 Σg (𝐾 ∘ 𝐹)) = if(𝑁 < 𝑀, (0g‘𝐻), (seq𝑀((+g‘𝐻), (𝐾 ∘ 𝐹))‘𝑁))) |
77 | 44 | iffalsed 3567 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → if(𝑁 < 𝑀, (0g‘𝐻), (seq𝑀((+g‘𝐻), (𝐾 ∘ 𝐹))‘𝑁)) = (seq𝑀((+g‘𝐻), (𝐾 ∘ 𝐹))‘𝑁)) |
78 | 76, 77 | eqtrd 2226 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐻 Σg (𝐾 ∘ 𝐹)) = (seq𝑀((+g‘𝐻), (𝐾 ∘ 𝐹))‘𝑁)) |
79 | 71, 75, 78 | 3eqtr4rd 2237 |
. 2
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐻 Σg (𝐾 ∘ 𝐹)) = (𝐾‘(𝐺 Σg 𝐹))) |
80 | | zdclt 9394 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) →
DECID 𝑁 <
𝑀) |
81 | 11, 10, 80 | syl2anc 411 |
. . 3
⊢ (𝜑 → DECID 𝑁 < 𝑀) |
82 | | exmiddc 837 |
. . 3
⊢
(DECID 𝑁 < 𝑀 → (𝑁 < 𝑀 ∨ ¬ 𝑁 < 𝑀)) |
83 | 81, 82 | syl 14 |
. 2
⊢ (𝜑 → (𝑁 < 𝑀 ∨ ¬ 𝑁 < 𝑀)) |
84 | 30, 79, 83 | mpjaodan 799 |
1
⊢ (𝜑 → (𝐻 Σg (𝐾 ∘ 𝐹)) = (𝐾‘(𝐺 Σg 𝐹))) |