Step | Hyp | Ref
| Expression |
1 | | gsumsplit1r.b |
. . 3
⊢ 𝐵 = (Base‘𝐺) |
2 | | gsumsplit1r.p |
. . 3
⊢ + =
(+g‘𝐺) |
3 | | gsumsplit1r.g |
. . 3
⊢ (𝜑 → 𝐺 ∈ 𝑉) |
4 | | gsumsplit1r.n |
. . . 4
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
5 | | peano2uz 9648 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝑁 + 1) ∈
(ℤ≥‘𝑀)) |
6 | 4, 5 | syl 14 |
. . 3
⊢ (𝜑 → (𝑁 + 1) ∈
(ℤ≥‘𝑀)) |
7 | | gsumsplit1r.f |
. . 3
⊢ (𝜑 → 𝐹:(𝑀...(𝑁 + 1))⟶𝐵) |
8 | 1, 2, 3, 6, 7 | gsumval2 12980 |
. 2
⊢ (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘(𝑁 + 1))) |
9 | | gsumsplit1r.m |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℤ) |
10 | | eluzelz 9601 |
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
11 | 4, 10 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ ℤ) |
12 | 11 | peano2zd 9442 |
. . . . . . 7
⊢ (𝜑 → (𝑁 + 1) ∈ ℤ) |
13 | 9, 12 | fzfigd 10502 |
. . . . . 6
⊢ (𝜑 → (𝑀...(𝑁 + 1)) ∈ Fin) |
14 | 7, 13 | fexd 5788 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ V) |
15 | | vex 2763 |
. . . . 5
⊢ 𝑥 ∈ V |
16 | | fvexg 5573 |
. . . . 5
⊢ ((𝐹 ∈ V ∧ 𝑥 ∈ V) → (𝐹‘𝑥) ∈ V) |
17 | 14, 15, 16 | sylancl 413 |
. . . 4
⊢ (𝜑 → (𝐹‘𝑥) ∈ V) |
18 | 17 | adantr 276 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ V) |
19 | | plusgslid 12730 |
. . . . . . . 8
⊢
(+g = Slot (+g‘ndx) ∧
(+g‘ndx) ∈ ℕ) |
20 | 19 | slotex 12645 |
. . . . . . 7
⊢ (𝐺 ∈ 𝑉 → (+g‘𝐺) ∈ V) |
21 | 3, 20 | syl 14 |
. . . . . 6
⊢ (𝜑 → (+g‘𝐺) ∈ V) |
22 | 2, 21 | eqeltrid 2280 |
. . . . 5
⊢ (𝜑 → + ∈ V) |
23 | | vex 2763 |
. . . . . 6
⊢ 𝑦 ∈ V |
24 | 23 | a1i 9 |
. . . . 5
⊢ (𝜑 → 𝑦 ∈ V) |
25 | | ovexg 5952 |
. . . . 5
⊢ ((𝑥 ∈ V ∧ + ∈ V
∧ 𝑦 ∈ V) →
(𝑥 + 𝑦) ∈ V) |
26 | 15, 22, 24, 25 | mp3an2i 1353 |
. . . 4
⊢ (𝜑 → (𝑥 + 𝑦) ∈ V) |
27 | 26 | adantr 276 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥 + 𝑦) ∈ V) |
28 | 4, 18, 27 | seq3p1 10536 |
. 2
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) |
29 | | fzssp1 10133 |
. . . . . . 7
⊢ (𝑀...𝑁) ⊆ (𝑀...(𝑁 + 1)) |
30 | 29 | a1i 9 |
. . . . . 6
⊢ (𝜑 → (𝑀...𝑁) ⊆ (𝑀...(𝑁 + 1))) |
31 | 7, 30 | fssresd 5430 |
. . . . 5
⊢ (𝜑 → (𝐹 ↾ (𝑀...𝑁)):(𝑀...𝑁)⟶𝐵) |
32 | 1, 2, 3, 4, 31 | gsumval2 12980 |
. . . 4
⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ (𝑀...𝑁))) = (seq𝑀( + , (𝐹 ↾ (𝑀...𝑁)))‘𝑁)) |
33 | 9 | uzidd 9607 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
34 | | resexg 4982 |
. . . . . . . . . 10
⊢ (𝐹 ∈ V → (𝐹 ↾ (𝑀...𝑁)) ∈ V) |
35 | 14, 34 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹 ↾ (𝑀...𝑁)) ∈ V) |
36 | | fvexg 5573 |
. . . . . . . . 9
⊢ (((𝐹 ↾ (𝑀...𝑁)) ∈ V ∧ 𝑥 ∈ V) → ((𝐹 ↾ (𝑀...𝑁))‘𝑥) ∈ V) |
37 | 35, 15, 36 | sylancl 413 |
. . . . . . . 8
⊢ (𝜑 → ((𝐹 ↾ (𝑀...𝑁))‘𝑥) ∈ V) |
38 | 37 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → ((𝐹 ↾ (𝑀...𝑁))‘𝑥) ∈ V) |
39 | 9, 38, 27 | seq3-1 10533 |
. . . . . 6
⊢ (𝜑 → (seq𝑀( + , (𝐹 ↾ (𝑀...𝑁)))‘𝑀) = ((𝐹 ↾ (𝑀...𝑁))‘𝑀)) |
40 | | eluzfz1 10097 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) |
41 | 4, 40 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ (𝑀...𝑁)) |
42 | 41 | fvresd 5579 |
. . . . . 6
⊢ (𝜑 → ((𝐹 ↾ (𝑀...𝑁))‘𝑀) = (𝐹‘𝑀)) |
43 | 39, 42 | eqtrd 2226 |
. . . . 5
⊢ (𝜑 → (seq𝑀( + , (𝐹 ↾ (𝑀...𝑁)))‘𝑀) = (𝐹‘𝑀)) |
44 | | fzp1ss 10139 |
. . . . . . . 8
⊢ (𝑀 ∈ ℤ → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁)) |
45 | 9, 44 | syl 14 |
. . . . . . 7
⊢ (𝜑 → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁)) |
46 | 45 | sselda 3179 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ (𝑀...𝑁)) |
47 | 46 | fvresd 5579 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → ((𝐹 ↾ (𝑀...𝑁))‘𝑘) = (𝐹‘𝑘)) |
48 | 33, 43, 38, 18, 27, 4, 47 | seq3fveq2 10546 |
. . . 4
⊢ (𝜑 → (seq𝑀( + , (𝐹 ↾ (𝑀...𝑁)))‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁)) |
49 | 32, 48 | eqtr2d 2227 |
. . 3
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐺 Σg (𝐹 ↾ (𝑀...𝑁)))) |
50 | 49 | oveq1d 5933 |
. 2
⊢ (𝜑 → ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))) = ((𝐺 Σg (𝐹 ↾ (𝑀...𝑁))) + (𝐹‘(𝑁 + 1)))) |
51 | 8, 28, 50 | 3eqtrd 2230 |
1
⊢ (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹 ↾ (𝑀...𝑁))) + (𝐹‘(𝑁 + 1)))) |