ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumsplit1r GIF version

Theorem gsumsplit1r 13426
Description: Splitting off the rightmost summand of a group sum. This corresponds to the (inductive) definition of a (finite) product in [Lang] p. 4, first formula. (Contributed by AV, 26-Dec-2023.)
Hypotheses
Ref Expression
gsumsplit1r.b 𝐵 = (Base‘𝐺)
gsumsplit1r.p + = (+g𝐺)
gsumsplit1r.g (𝜑𝐺𝑉)
gsumsplit1r.m (𝜑𝑀 ∈ ℤ)
gsumsplit1r.n (𝜑𝑁 ∈ (ℤ𝑀))
gsumsplit1r.f (𝜑𝐹:(𝑀...(𝑁 + 1))⟶𝐵)
Assertion
Ref Expression
gsumsplit1r (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹 ↾ (𝑀...𝑁))) + (𝐹‘(𝑁 + 1))))

Proof of Theorem gsumsplit1r
Dummy variables 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumsplit1r.b . . 3 𝐵 = (Base‘𝐺)
2 gsumsplit1r.p . . 3 + = (+g𝐺)
3 gsumsplit1r.g . . 3 (𝜑𝐺𝑉)
4 gsumsplit1r.n . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
5 peano2uz 9774 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ𝑀))
64, 5syl 14 . . 3 (𝜑 → (𝑁 + 1) ∈ (ℤ𝑀))
7 gsumsplit1r.f . . 3 (𝜑𝐹:(𝑀...(𝑁 + 1))⟶𝐵)
81, 2, 3, 6, 7gsumval2 13425 . 2 (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘(𝑁 + 1)))
9 gsumsplit1r.m . . . . . . 7 (𝜑𝑀 ∈ ℤ)
10 eluzelz 9727 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
114, 10syl 14 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
1211peano2zd 9568 . . . . . . 7 (𝜑 → (𝑁 + 1) ∈ ℤ)
139, 12fzfigd 10648 . . . . . 6 (𝜑 → (𝑀...(𝑁 + 1)) ∈ Fin)
147, 13fexd 5868 . . . . 5 (𝜑𝐹 ∈ V)
15 vex 2802 . . . . 5 𝑥 ∈ V
16 fvexg 5645 . . . . 5 ((𝐹 ∈ V ∧ 𝑥 ∈ V) → (𝐹𝑥) ∈ V)
1714, 15, 16sylancl 413 . . . 4 (𝜑 → (𝐹𝑥) ∈ V)
1817adantr 276 . . 3 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ V)
19 plusgslid 13140 . . . . . . . 8 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
2019slotex 13054 . . . . . . 7 (𝐺𝑉 → (+g𝐺) ∈ V)
213, 20syl 14 . . . . . 6 (𝜑 → (+g𝐺) ∈ V)
222, 21eqeltrid 2316 . . . . 5 (𝜑+ ∈ V)
23 vex 2802 . . . . . 6 𝑦 ∈ V
2423a1i 9 . . . . 5 (𝜑𝑦 ∈ V)
25 ovexg 6034 . . . . 5 ((𝑥 ∈ V ∧ + ∈ V ∧ 𝑦 ∈ V) → (𝑥 + 𝑦) ∈ V)
2615, 22, 24, 25mp3an2i 1376 . . . 4 (𝜑 → (𝑥 + 𝑦) ∈ V)
2726adantr 276 . . 3 ((𝜑 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥 + 𝑦) ∈ V)
284, 18, 27seq3p1 10682 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))))
29 fzssp1 10259 . . . . . . 7 (𝑀...𝑁) ⊆ (𝑀...(𝑁 + 1))
3029a1i 9 . . . . . 6 (𝜑 → (𝑀...𝑁) ⊆ (𝑀...(𝑁 + 1)))
317, 30fssresd 5501 . . . . 5 (𝜑 → (𝐹 ↾ (𝑀...𝑁)):(𝑀...𝑁)⟶𝐵)
321, 2, 3, 4, 31gsumval2 13425 . . . 4 (𝜑 → (𝐺 Σg (𝐹 ↾ (𝑀...𝑁))) = (seq𝑀( + , (𝐹 ↾ (𝑀...𝑁)))‘𝑁))
339uzidd 9733 . . . . 5 (𝜑𝑀 ∈ (ℤ𝑀))
34 resexg 5044 . . . . . . . . . 10 (𝐹 ∈ V → (𝐹 ↾ (𝑀...𝑁)) ∈ V)
3514, 34syl 14 . . . . . . . . 9 (𝜑 → (𝐹 ↾ (𝑀...𝑁)) ∈ V)
36 fvexg 5645 . . . . . . . . 9 (((𝐹 ↾ (𝑀...𝑁)) ∈ V ∧ 𝑥 ∈ V) → ((𝐹 ↾ (𝑀...𝑁))‘𝑥) ∈ V)
3735, 15, 36sylancl 413 . . . . . . . 8 (𝜑 → ((𝐹 ↾ (𝑀...𝑁))‘𝑥) ∈ V)
3837adantr 276 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → ((𝐹 ↾ (𝑀...𝑁))‘𝑥) ∈ V)
399, 38, 27seq3-1 10679 . . . . . 6 (𝜑 → (seq𝑀( + , (𝐹 ↾ (𝑀...𝑁)))‘𝑀) = ((𝐹 ↾ (𝑀...𝑁))‘𝑀))
40 eluzfz1 10223 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
414, 40syl 14 . . . . . . 7 (𝜑𝑀 ∈ (𝑀...𝑁))
4241fvresd 5651 . . . . . 6 (𝜑 → ((𝐹 ↾ (𝑀...𝑁))‘𝑀) = (𝐹𝑀))
4339, 42eqtrd 2262 . . . . 5 (𝜑 → (seq𝑀( + , (𝐹 ↾ (𝑀...𝑁)))‘𝑀) = (𝐹𝑀))
44 fzp1ss 10265 . . . . . . . 8 (𝑀 ∈ ℤ → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
459, 44syl 14 . . . . . . 7 (𝜑 → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
4645sselda 3224 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ (𝑀...𝑁))
4746fvresd 5651 . . . . 5 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → ((𝐹 ↾ (𝑀...𝑁))‘𝑘) = (𝐹𝑘))
4833, 43, 38, 18, 27, 4, 47seq3fveq2 10692 . . . 4 (𝜑 → (seq𝑀( + , (𝐹 ↾ (𝑀...𝑁)))‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁))
4932, 48eqtr2d 2263 . . 3 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐺 Σg (𝐹 ↾ (𝑀...𝑁))))
5049oveq1d 6015 . 2 (𝜑 → ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))) = ((𝐺 Σg (𝐹 ↾ (𝑀...𝑁))) + (𝐹‘(𝑁 + 1))))
518, 28, 503eqtrd 2266 1 (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹 ↾ (𝑀...𝑁))) + (𝐹‘(𝑁 + 1))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  Vcvv 2799  wss 3197  cres 4720  wf 5313  cfv 5317  (class class class)co 6000  Fincfn 6885  1c1 7996   + caddc 7998  cz 9442  cuz 9718  ...cfz 10200  seqcseq 10664  Basecbs 13027  +gcplusg 13105   Σg cgsu 13285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-1o 6560  df-er 6678  df-en 6886  df-fin 6888  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-2 9165  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201  df-seqfrec 10665  df-ndx 13030  df-slot 13031  df-base 13033  df-plusg 13118  df-0g 13286  df-igsum 13287
This theorem is referenced by:  gsumfzconst  13873  gsumfzfsumlemm  14545
  Copyright terms: Public domain W3C validator