| Step | Hyp | Ref
| Expression |
| 1 | | gsumsplit1r.b |
. . 3
⊢ 𝐵 = (Base‘𝐺) |
| 2 | | gsumsplit1r.p |
. . 3
⊢ + =
(+g‘𝐺) |
| 3 | | gsumsplit1r.g |
. . 3
⊢ (𝜑 → 𝐺 ∈ 𝑉) |
| 4 | | gsumsplit1r.n |
. . . 4
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 5 | | peano2uz 9657 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝑁 + 1) ∈
(ℤ≥‘𝑀)) |
| 6 | 4, 5 | syl 14 |
. . 3
⊢ (𝜑 → (𝑁 + 1) ∈
(ℤ≥‘𝑀)) |
| 7 | | gsumsplit1r.f |
. . 3
⊢ (𝜑 → 𝐹:(𝑀...(𝑁 + 1))⟶𝐵) |
| 8 | 1, 2, 3, 6, 7 | gsumval2 13040 |
. 2
⊢ (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘(𝑁 + 1))) |
| 9 | | gsumsplit1r.m |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 10 | | eluzelz 9610 |
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
| 11 | 4, 10 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 12 | 11 | peano2zd 9451 |
. . . . . . 7
⊢ (𝜑 → (𝑁 + 1) ∈ ℤ) |
| 13 | 9, 12 | fzfigd 10523 |
. . . . . 6
⊢ (𝜑 → (𝑀...(𝑁 + 1)) ∈ Fin) |
| 14 | 7, 13 | fexd 5792 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ V) |
| 15 | | vex 2766 |
. . . . 5
⊢ 𝑥 ∈ V |
| 16 | | fvexg 5577 |
. . . . 5
⊢ ((𝐹 ∈ V ∧ 𝑥 ∈ V) → (𝐹‘𝑥) ∈ V) |
| 17 | 14, 15, 16 | sylancl 413 |
. . . 4
⊢ (𝜑 → (𝐹‘𝑥) ∈ V) |
| 18 | 17 | adantr 276 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ V) |
| 19 | | plusgslid 12790 |
. . . . . . . 8
⊢
(+g = Slot (+g‘ndx) ∧
(+g‘ndx) ∈ ℕ) |
| 20 | 19 | slotex 12705 |
. . . . . . 7
⊢ (𝐺 ∈ 𝑉 → (+g‘𝐺) ∈ V) |
| 21 | 3, 20 | syl 14 |
. . . . . 6
⊢ (𝜑 → (+g‘𝐺) ∈ V) |
| 22 | 2, 21 | eqeltrid 2283 |
. . . . 5
⊢ (𝜑 → + ∈ V) |
| 23 | | vex 2766 |
. . . . . 6
⊢ 𝑦 ∈ V |
| 24 | 23 | a1i 9 |
. . . . 5
⊢ (𝜑 → 𝑦 ∈ V) |
| 25 | | ovexg 5956 |
. . . . 5
⊢ ((𝑥 ∈ V ∧ + ∈ V
∧ 𝑦 ∈ V) →
(𝑥 + 𝑦) ∈ V) |
| 26 | 15, 22, 24, 25 | mp3an2i 1353 |
. . . 4
⊢ (𝜑 → (𝑥 + 𝑦) ∈ V) |
| 27 | 26 | adantr 276 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥 + 𝑦) ∈ V) |
| 28 | 4, 18, 27 | seq3p1 10557 |
. 2
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) |
| 29 | | fzssp1 10142 |
. . . . . . 7
⊢ (𝑀...𝑁) ⊆ (𝑀...(𝑁 + 1)) |
| 30 | 29 | a1i 9 |
. . . . . 6
⊢ (𝜑 → (𝑀...𝑁) ⊆ (𝑀...(𝑁 + 1))) |
| 31 | 7, 30 | fssresd 5434 |
. . . . 5
⊢ (𝜑 → (𝐹 ↾ (𝑀...𝑁)):(𝑀...𝑁)⟶𝐵) |
| 32 | 1, 2, 3, 4, 31 | gsumval2 13040 |
. . . 4
⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ (𝑀...𝑁))) = (seq𝑀( + , (𝐹 ↾ (𝑀...𝑁)))‘𝑁)) |
| 33 | 9 | uzidd 9616 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
| 34 | | resexg 4986 |
. . . . . . . . . 10
⊢ (𝐹 ∈ V → (𝐹 ↾ (𝑀...𝑁)) ∈ V) |
| 35 | 14, 34 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹 ↾ (𝑀...𝑁)) ∈ V) |
| 36 | | fvexg 5577 |
. . . . . . . . 9
⊢ (((𝐹 ↾ (𝑀...𝑁)) ∈ V ∧ 𝑥 ∈ V) → ((𝐹 ↾ (𝑀...𝑁))‘𝑥) ∈ V) |
| 37 | 35, 15, 36 | sylancl 413 |
. . . . . . . 8
⊢ (𝜑 → ((𝐹 ↾ (𝑀...𝑁))‘𝑥) ∈ V) |
| 38 | 37 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → ((𝐹 ↾ (𝑀...𝑁))‘𝑥) ∈ V) |
| 39 | 9, 38, 27 | seq3-1 10554 |
. . . . . 6
⊢ (𝜑 → (seq𝑀( + , (𝐹 ↾ (𝑀...𝑁)))‘𝑀) = ((𝐹 ↾ (𝑀...𝑁))‘𝑀)) |
| 40 | | eluzfz1 10106 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) |
| 41 | 4, 40 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ (𝑀...𝑁)) |
| 42 | 41 | fvresd 5583 |
. . . . . 6
⊢ (𝜑 → ((𝐹 ↾ (𝑀...𝑁))‘𝑀) = (𝐹‘𝑀)) |
| 43 | 39, 42 | eqtrd 2229 |
. . . . 5
⊢ (𝜑 → (seq𝑀( + , (𝐹 ↾ (𝑀...𝑁)))‘𝑀) = (𝐹‘𝑀)) |
| 44 | | fzp1ss 10148 |
. . . . . . . 8
⊢ (𝑀 ∈ ℤ → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁)) |
| 45 | 9, 44 | syl 14 |
. . . . . . 7
⊢ (𝜑 → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁)) |
| 46 | 45 | sselda 3183 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ (𝑀...𝑁)) |
| 47 | 46 | fvresd 5583 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → ((𝐹 ↾ (𝑀...𝑁))‘𝑘) = (𝐹‘𝑘)) |
| 48 | 33, 43, 38, 18, 27, 4, 47 | seq3fveq2 10567 |
. . . 4
⊢ (𝜑 → (seq𝑀( + , (𝐹 ↾ (𝑀...𝑁)))‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁)) |
| 49 | 32, 48 | eqtr2d 2230 |
. . 3
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐺 Σg (𝐹 ↾ (𝑀...𝑁)))) |
| 50 | 49 | oveq1d 5937 |
. 2
⊢ (𝜑 → ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))) = ((𝐺 Σg (𝐹 ↾ (𝑀...𝑁))) + (𝐹‘(𝑁 + 1)))) |
| 51 | 8, 28, 50 | 3eqtrd 2233 |
1
⊢ (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹 ↾ (𝑀...𝑁))) + (𝐹‘(𝑁 + 1)))) |