ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumsplit1r GIF version

Theorem gsumsplit1r 13172
Description: Splitting off the rightmost summand of a group sum. This corresponds to the (inductive) definition of a (finite) product in [Lang] p. 4, first formula. (Contributed by AV, 26-Dec-2023.)
Hypotheses
Ref Expression
gsumsplit1r.b 𝐵 = (Base‘𝐺)
gsumsplit1r.p + = (+g𝐺)
gsumsplit1r.g (𝜑𝐺𝑉)
gsumsplit1r.m (𝜑𝑀 ∈ ℤ)
gsumsplit1r.n (𝜑𝑁 ∈ (ℤ𝑀))
gsumsplit1r.f (𝜑𝐹:(𝑀...(𝑁 + 1))⟶𝐵)
Assertion
Ref Expression
gsumsplit1r (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹 ↾ (𝑀...𝑁))) + (𝐹‘(𝑁 + 1))))

Proof of Theorem gsumsplit1r
Dummy variables 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumsplit1r.b . . 3 𝐵 = (Base‘𝐺)
2 gsumsplit1r.p . . 3 + = (+g𝐺)
3 gsumsplit1r.g . . 3 (𝜑𝐺𝑉)
4 gsumsplit1r.n . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
5 peano2uz 9703 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ𝑀))
64, 5syl 14 . . 3 (𝜑 → (𝑁 + 1) ∈ (ℤ𝑀))
7 gsumsplit1r.f . . 3 (𝜑𝐹:(𝑀...(𝑁 + 1))⟶𝐵)
81, 2, 3, 6, 7gsumval2 13171 . 2 (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘(𝑁 + 1)))
9 gsumsplit1r.m . . . . . . 7 (𝜑𝑀 ∈ ℤ)
10 eluzelz 9656 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
114, 10syl 14 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
1211peano2zd 9497 . . . . . . 7 (𝜑 → (𝑁 + 1) ∈ ℤ)
139, 12fzfigd 10574 . . . . . 6 (𝜑 → (𝑀...(𝑁 + 1)) ∈ Fin)
147, 13fexd 5813 . . . . 5 (𝜑𝐹 ∈ V)
15 vex 2774 . . . . 5 𝑥 ∈ V
16 fvexg 5594 . . . . 5 ((𝐹 ∈ V ∧ 𝑥 ∈ V) → (𝐹𝑥) ∈ V)
1714, 15, 16sylancl 413 . . . 4 (𝜑 → (𝐹𝑥) ∈ V)
1817adantr 276 . . 3 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ V)
19 plusgslid 12886 . . . . . . . 8 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
2019slotex 12801 . . . . . . 7 (𝐺𝑉 → (+g𝐺) ∈ V)
213, 20syl 14 . . . . . 6 (𝜑 → (+g𝐺) ∈ V)
222, 21eqeltrid 2291 . . . . 5 (𝜑+ ∈ V)
23 vex 2774 . . . . . 6 𝑦 ∈ V
2423a1i 9 . . . . 5 (𝜑𝑦 ∈ V)
25 ovexg 5977 . . . . 5 ((𝑥 ∈ V ∧ + ∈ V ∧ 𝑦 ∈ V) → (𝑥 + 𝑦) ∈ V)
2615, 22, 24, 25mp3an2i 1354 . . . 4 (𝜑 → (𝑥 + 𝑦) ∈ V)
2726adantr 276 . . 3 ((𝜑 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥 + 𝑦) ∈ V)
284, 18, 27seq3p1 10608 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))))
29 fzssp1 10188 . . . . . . 7 (𝑀...𝑁) ⊆ (𝑀...(𝑁 + 1))
3029a1i 9 . . . . . 6 (𝜑 → (𝑀...𝑁) ⊆ (𝑀...(𝑁 + 1)))
317, 30fssresd 5451 . . . . 5 (𝜑 → (𝐹 ↾ (𝑀...𝑁)):(𝑀...𝑁)⟶𝐵)
321, 2, 3, 4, 31gsumval2 13171 . . . 4 (𝜑 → (𝐺 Σg (𝐹 ↾ (𝑀...𝑁))) = (seq𝑀( + , (𝐹 ↾ (𝑀...𝑁)))‘𝑁))
339uzidd 9662 . . . . 5 (𝜑𝑀 ∈ (ℤ𝑀))
34 resexg 4998 . . . . . . . . . 10 (𝐹 ∈ V → (𝐹 ↾ (𝑀...𝑁)) ∈ V)
3514, 34syl 14 . . . . . . . . 9 (𝜑 → (𝐹 ↾ (𝑀...𝑁)) ∈ V)
36 fvexg 5594 . . . . . . . . 9 (((𝐹 ↾ (𝑀...𝑁)) ∈ V ∧ 𝑥 ∈ V) → ((𝐹 ↾ (𝑀...𝑁))‘𝑥) ∈ V)
3735, 15, 36sylancl 413 . . . . . . . 8 (𝜑 → ((𝐹 ↾ (𝑀...𝑁))‘𝑥) ∈ V)
3837adantr 276 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → ((𝐹 ↾ (𝑀...𝑁))‘𝑥) ∈ V)
399, 38, 27seq3-1 10605 . . . . . 6 (𝜑 → (seq𝑀( + , (𝐹 ↾ (𝑀...𝑁)))‘𝑀) = ((𝐹 ↾ (𝑀...𝑁))‘𝑀))
40 eluzfz1 10152 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
414, 40syl 14 . . . . . . 7 (𝜑𝑀 ∈ (𝑀...𝑁))
4241fvresd 5600 . . . . . 6 (𝜑 → ((𝐹 ↾ (𝑀...𝑁))‘𝑀) = (𝐹𝑀))
4339, 42eqtrd 2237 . . . . 5 (𝜑 → (seq𝑀( + , (𝐹 ↾ (𝑀...𝑁)))‘𝑀) = (𝐹𝑀))
44 fzp1ss 10194 . . . . . . . 8 (𝑀 ∈ ℤ → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
459, 44syl 14 . . . . . . 7 (𝜑 → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
4645sselda 3192 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ (𝑀...𝑁))
4746fvresd 5600 . . . . 5 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → ((𝐹 ↾ (𝑀...𝑁))‘𝑘) = (𝐹𝑘))
4833, 43, 38, 18, 27, 4, 47seq3fveq2 10618 . . . 4 (𝜑 → (seq𝑀( + , (𝐹 ↾ (𝑀...𝑁)))‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁))
4932, 48eqtr2d 2238 . . 3 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐺 Σg (𝐹 ↾ (𝑀...𝑁))))
5049oveq1d 5958 . 2 (𝜑 → ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))) = ((𝐺 Σg (𝐹 ↾ (𝑀...𝑁))) + (𝐹‘(𝑁 + 1))))
518, 28, 503eqtrd 2241 1 (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹 ↾ (𝑀...𝑁))) + (𝐹‘(𝑁 + 1))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wcel 2175  Vcvv 2771  wss 3165  cres 4676  wf 5266  cfv 5270  (class class class)co 5943  Fincfn 6826  1c1 7925   + caddc 7927  cz 9371  cuz 9647  ...cfz 10129  seqcseq 10590  Basecbs 12774  +gcplusg 12851   Σg cgsu 13031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-frec 6476  df-1o 6501  df-er 6619  df-en 6827  df-fin 6829  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-inn 9036  df-2 9094  df-n0 9295  df-z 9372  df-uz 9648  df-fz 10130  df-seqfrec 10591  df-ndx 12777  df-slot 12778  df-base 12780  df-plusg 12864  df-0g 13032  df-igsum 13033
This theorem is referenced by:  gsumfzconst  13619  gsumfzfsumlemm  14291
  Copyright terms: Public domain W3C validator