![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulgghm2 | GIF version |
Description: The powers of a group element give a homomorphism from ℤ to a group. The name 1 should not be taken as a constraint as it may be any group element. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.) |
Ref | Expression |
---|---|
mulgghm2.m | ⊢ · = (.g‘𝑅) |
mulgghm2.f | ⊢ 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )) |
mulgghm2.b | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
mulgghm2 | ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → 𝐹 ∈ (ℤring GrpHom 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 109 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → 𝑅 ∈ Grp) | |
2 | zringgrp 13919 | . . 3 ⊢ ℤring ∈ Grp | |
3 | 1, 2 | jctil 312 | . 2 ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → (ℤring ∈ Grp ∧ 𝑅 ∈ Grp)) |
4 | mulgghm2.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
5 | mulgghm2.m | . . . . . . 7 ⊢ · = (.g‘𝑅) | |
6 | 4, 5 | mulgcl 13104 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ 𝑛 ∈ ℤ ∧ 1 ∈ 𝐵) → (𝑛 · 1 ) ∈ 𝐵) |
7 | 6 | 3expa 1205 | . . . . 5 ⊢ (((𝑅 ∈ Grp ∧ 𝑛 ∈ ℤ) ∧ 1 ∈ 𝐵) → (𝑛 · 1 ) ∈ 𝐵) |
8 | 7 | an32s 568 | . . . 4 ⊢ (((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) ∧ 𝑛 ∈ ℤ) → (𝑛 · 1 ) ∈ 𝐵) |
9 | mulgghm2.f | . . . 4 ⊢ 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )) | |
10 | 8, 9 | fmptd 5694 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → 𝐹:ℤ⟶𝐵) |
11 | eqid 2189 | . . . . . . . . 9 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
12 | 4, 5, 11 | mulgdir 13119 | . . . . . . . 8 ⊢ ((𝑅 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 1 ∈ 𝐵)) → ((𝑥 + 𝑦) · 1 ) = ((𝑥 · 1 )(+g‘𝑅)(𝑦 · 1 ))) |
13 | 12 | 3exp2 1227 | . . . . . . 7 ⊢ (𝑅 ∈ Grp → (𝑥 ∈ ℤ → (𝑦 ∈ ℤ → ( 1 ∈ 𝐵 → ((𝑥 + 𝑦) · 1 ) = ((𝑥 · 1 )(+g‘𝑅)(𝑦 · 1 )))))) |
14 | 13 | imp42 354 | . . . . . 6 ⊢ (((𝑅 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 1 ∈ 𝐵) → ((𝑥 + 𝑦) · 1 ) = ((𝑥 · 1 )(+g‘𝑅)(𝑦 · 1 ))) |
15 | 14 | an32s 568 | . . . . 5 ⊢ (((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 + 𝑦) · 1 ) = ((𝑥 · 1 )(+g‘𝑅)(𝑦 · 1 ))) |
16 | oveq1 5907 | . . . . . 6 ⊢ (𝑛 = (𝑥 + 𝑦) → (𝑛 · 1 ) = ((𝑥 + 𝑦) · 1 )) | |
17 | zaddcl 9328 | . . . . . . 7 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 + 𝑦) ∈ ℤ) | |
18 | 17 | adantl 277 | . . . . . 6 ⊢ (((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 + 𝑦) ∈ ℤ) |
19 | simpll 527 | . . . . . . 7 ⊢ (((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑅 ∈ Grp) | |
20 | simplr 528 | . . . . . . 7 ⊢ (((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 1 ∈ 𝐵) | |
21 | 4, 5, 19, 18, 20 | mulgcld 13109 | . . . . . 6 ⊢ (((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 + 𝑦) · 1 ) ∈ 𝐵) |
22 | 9, 16, 18, 21 | fvmptd3 5633 | . . . . 5 ⊢ (((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐹‘(𝑥 + 𝑦)) = ((𝑥 + 𝑦) · 1 )) |
23 | oveq1 5907 | . . . . . . 7 ⊢ (𝑛 = 𝑥 → (𝑛 · 1 ) = (𝑥 · 1 )) | |
24 | simprl 529 | . . . . . . 7 ⊢ (((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ) | |
25 | 4, 5, 19, 24, 20 | mulgcld 13109 | . . . . . . 7 ⊢ (((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · 1 ) ∈ 𝐵) |
26 | 9, 23, 24, 25 | fvmptd3 5633 | . . . . . 6 ⊢ (((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐹‘𝑥) = (𝑥 · 1 )) |
27 | oveq1 5907 | . . . . . . 7 ⊢ (𝑛 = 𝑦 → (𝑛 · 1 ) = (𝑦 · 1 )) | |
28 | simprr 531 | . . . . . . 7 ⊢ (((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ) | |
29 | 4, 5, 19, 28, 20 | mulgcld 13109 | . . . . . . 7 ⊢ (((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑦 · 1 ) ∈ 𝐵) |
30 | 9, 27, 28, 29 | fvmptd3 5633 | . . . . . 6 ⊢ (((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐹‘𝑦) = (𝑦 · 1 )) |
31 | 26, 30 | oveq12d 5918 | . . . . 5 ⊢ (((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝐹‘𝑥)(+g‘𝑅)(𝐹‘𝑦)) = ((𝑥 · 1 )(+g‘𝑅)(𝑦 · 1 ))) |
32 | 15, 22, 31 | 3eqtr4d 2232 | . . . 4 ⊢ (((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥)(+g‘𝑅)(𝐹‘𝑦))) |
33 | 32 | ralrimivva 2572 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥)(+g‘𝑅)(𝐹‘𝑦))) |
34 | 10, 33 | jca 306 | . 2 ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → (𝐹:ℤ⟶𝐵 ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥)(+g‘𝑅)(𝐹‘𝑦)))) |
35 | zringbas 13920 | . . 3 ⊢ ℤ = (Base‘ℤring) | |
36 | zringplusg 13921 | . . 3 ⊢ + = (+g‘ℤring) | |
37 | 35, 4, 36, 11 | isghm 13207 | . 2 ⊢ (𝐹 ∈ (ℤring GrpHom 𝑅) ↔ ((ℤring ∈ Grp ∧ 𝑅 ∈ Grp) ∧ (𝐹:ℤ⟶𝐵 ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥)(+g‘𝑅)(𝐹‘𝑦))))) |
38 | 3, 34, 37 | sylanbrc 417 | 1 ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → 𝐹 ∈ (ℤring GrpHom 𝑅)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2160 ∀wral 2468 ↦ cmpt 4082 ⟶wf 5234 ‘cfv 5238 (class class class)co 5900 + caddc 7849 ℤcz 9288 Basecbs 12523 +gcplusg 12600 Grpcgrp 12968 .gcmg 13084 GrpHom cghm 13204 ℤringczring 13914 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4136 ax-sep 4139 ax-nul 4147 ax-pow 4195 ax-pr 4230 ax-un 4454 ax-setind 4557 ax-iinf 4608 ax-cnex 7937 ax-resscn 7938 ax-1cn 7939 ax-1re 7940 ax-icn 7941 ax-addcl 7942 ax-addrcl 7943 ax-mulcl 7944 ax-mulrcl 7945 ax-addcom 7946 ax-mulcom 7947 ax-addass 7948 ax-mulass 7949 ax-distr 7950 ax-i2m1 7951 ax-0lt1 7952 ax-1rid 7953 ax-0id 7954 ax-rnegex 7955 ax-precex 7956 ax-cnre 7957 ax-pre-ltirr 7958 ax-pre-ltwlin 7959 ax-pre-lttrn 7960 ax-pre-apti 7961 ax-pre-ltadd 7962 ax-pre-mulgt0 7963 ax-addf 7968 ax-mulf 7969 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3595 df-sn 3616 df-pr 3617 df-tp 3618 df-op 3619 df-uni 3828 df-int 3863 df-iun 3906 df-br 4022 df-opab 4083 df-mpt 4084 df-tr 4120 df-id 4314 df-iord 4387 df-on 4389 df-ilim 4390 df-suc 4392 df-iom 4611 df-xp 4653 df-rel 4654 df-cnv 4655 df-co 4656 df-dm 4657 df-rn 4658 df-res 4659 df-ima 4660 df-iota 5199 df-fun 5240 df-fn 5241 df-f 5242 df-f1 5243 df-fo 5244 df-f1o 5245 df-fv 5246 df-riota 5855 df-ov 5903 df-oprab 5904 df-mpo 5905 df-1st 6169 df-2nd 6170 df-recs 6334 df-frec 6420 df-pnf 8029 df-mnf 8030 df-xr 8031 df-ltxr 8032 df-le 8033 df-sub 8165 df-neg 8166 df-reap 8567 df-inn 8955 df-2 9013 df-3 9014 df-4 9015 df-5 9016 df-6 9017 df-7 9018 df-8 9019 df-9 9020 df-n0 9212 df-z 9289 df-dec 9420 df-uz 9564 df-fz 10045 df-seqfrec 10485 df-cj 10892 df-struct 12525 df-ndx 12526 df-slot 12527 df-base 12529 df-sets 12530 df-iress 12531 df-plusg 12613 df-mulr 12614 df-starv 12615 df-0g 12774 df-mgm 12843 df-sgrp 12888 df-mnd 12901 df-grp 12971 df-minusg 12972 df-mulg 13085 df-subg 13134 df-ghm 13205 df-cmn 13250 df-mgp 13300 df-ur 13339 df-ring 13377 df-cring 13378 df-subrg 13591 df-icnfld 13890 df-zring 13915 |
This theorem is referenced by: mulgrhm 13932 |
Copyright terms: Public domain | W3C validator |