ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgghm2 GIF version

Theorem mulgghm2 14242
Description: The powers of a group element give a homomorphism from to a group. The name 1 should not be taken as a constraint as it may be any group element. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.)
Hypotheses
Ref Expression
mulgghm2.m · = (.g𝑅)
mulgghm2.f 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))
mulgghm2.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
mulgghm2 ((𝑅 ∈ Grp ∧ 1𝐵) → 𝐹 ∈ (ℤring GrpHom 𝑅))
Distinct variable groups:   𝐵,𝑛   𝑅,𝑛   · ,𝑛   1 ,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem mulgghm2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . 3 ((𝑅 ∈ Grp ∧ 1𝐵) → 𝑅 ∈ Grp)
2 zringgrp 14229 . . 3 ring ∈ Grp
31, 2jctil 312 . 2 ((𝑅 ∈ Grp ∧ 1𝐵) → (ℤring ∈ Grp ∧ 𝑅 ∈ Grp))
4 mulgghm2.b . . . . . . 7 𝐵 = (Base‘𝑅)
5 mulgghm2.m . . . . . . 7 · = (.g𝑅)
64, 5mulgcl 13347 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝑛 ∈ ℤ ∧ 1𝐵) → (𝑛 · 1 ) ∈ 𝐵)
763expa 1205 . . . . 5 (((𝑅 ∈ Grp ∧ 𝑛 ∈ ℤ) ∧ 1𝐵) → (𝑛 · 1 ) ∈ 𝐵)
87an32s 568 . . . 4 (((𝑅 ∈ Grp ∧ 1𝐵) ∧ 𝑛 ∈ ℤ) → (𝑛 · 1 ) ∈ 𝐵)
9 mulgghm2.f . . . 4 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))
108, 9fmptd 5719 . . 3 ((𝑅 ∈ Grp ∧ 1𝐵) → 𝐹:ℤ⟶𝐵)
11 eqid 2196 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
124, 5, 11mulgdir 13362 . . . . . . . 8 ((𝑅 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 1𝐵)) → ((𝑥 + 𝑦) · 1 ) = ((𝑥 · 1 )(+g𝑅)(𝑦 · 1 )))
13123exp2 1227 . . . . . . 7 (𝑅 ∈ Grp → (𝑥 ∈ ℤ → (𝑦 ∈ ℤ → ( 1𝐵 → ((𝑥 + 𝑦) · 1 ) = ((𝑥 · 1 )(+g𝑅)(𝑦 · 1 ))))))
1413imp42 354 . . . . . 6 (((𝑅 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 1𝐵) → ((𝑥 + 𝑦) · 1 ) = ((𝑥 · 1 )(+g𝑅)(𝑦 · 1 )))
1514an32s 568 . . . . 5 (((𝑅 ∈ Grp ∧ 1𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 + 𝑦) · 1 ) = ((𝑥 · 1 )(+g𝑅)(𝑦 · 1 )))
16 oveq1 5932 . . . . . 6 (𝑛 = (𝑥 + 𝑦) → (𝑛 · 1 ) = ((𝑥 + 𝑦) · 1 ))
17 zaddcl 9385 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 + 𝑦) ∈ ℤ)
1817adantl 277 . . . . . 6 (((𝑅 ∈ Grp ∧ 1𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 + 𝑦) ∈ ℤ)
19 simpll 527 . . . . . . 7 (((𝑅 ∈ Grp ∧ 1𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑅 ∈ Grp)
20 simplr 528 . . . . . . 7 (((𝑅 ∈ Grp ∧ 1𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 1𝐵)
214, 5, 19, 18, 20mulgcld 13352 . . . . . 6 (((𝑅 ∈ Grp ∧ 1𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 + 𝑦) · 1 ) ∈ 𝐵)
229, 16, 18, 21fvmptd3 5658 . . . . 5 (((𝑅 ∈ Grp ∧ 1𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐹‘(𝑥 + 𝑦)) = ((𝑥 + 𝑦) · 1 ))
23 oveq1 5932 . . . . . . 7 (𝑛 = 𝑥 → (𝑛 · 1 ) = (𝑥 · 1 ))
24 simprl 529 . . . . . . 7 (((𝑅 ∈ Grp ∧ 1𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ)
254, 5, 19, 24, 20mulgcld 13352 . . . . . . 7 (((𝑅 ∈ Grp ∧ 1𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · 1 ) ∈ 𝐵)
269, 23, 24, 25fvmptd3 5658 . . . . . 6 (((𝑅 ∈ Grp ∧ 1𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐹𝑥) = (𝑥 · 1 ))
27 oveq1 5932 . . . . . . 7 (𝑛 = 𝑦 → (𝑛 · 1 ) = (𝑦 · 1 ))
28 simprr 531 . . . . . . 7 (((𝑅 ∈ Grp ∧ 1𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ)
294, 5, 19, 28, 20mulgcld 13352 . . . . . . 7 (((𝑅 ∈ Grp ∧ 1𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑦 · 1 ) ∈ 𝐵)
309, 27, 28, 29fvmptd3 5658 . . . . . 6 (((𝑅 ∈ Grp ∧ 1𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐹𝑦) = (𝑦 · 1 ))
3126, 30oveq12d 5943 . . . . 5 (((𝑅 ∈ Grp ∧ 1𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝐹𝑥)(+g𝑅)(𝐹𝑦)) = ((𝑥 · 1 )(+g𝑅)(𝑦 · 1 )))
3215, 22, 313eqtr4d 2239 . . . 4 (((𝑅 ∈ Grp ∧ 1𝐵) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥)(+g𝑅)(𝐹𝑦)))
3332ralrimivva 2579 . . 3 ((𝑅 ∈ Grp ∧ 1𝐵) → ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥)(+g𝑅)(𝐹𝑦)))
3410, 33jca 306 . 2 ((𝑅 ∈ Grp ∧ 1𝐵) → (𝐹:ℤ⟶𝐵 ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥)(+g𝑅)(𝐹𝑦))))
35 zringbas 14230 . . 3 ℤ = (Base‘ℤring)
36 zringplusg 14231 . . 3 + = (+g‘ℤring)
3735, 4, 36, 11isghm 13451 . 2 (𝐹 ∈ (ℤring GrpHom 𝑅) ↔ ((ℤring ∈ Grp ∧ 𝑅 ∈ Grp) ∧ (𝐹:ℤ⟶𝐵 ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥)(+g𝑅)(𝐹𝑦)))))
383, 34, 37sylanbrc 417 1 ((𝑅 ∈ Grp ∧ 1𝐵) → 𝐹 ∈ (ℤring GrpHom 𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wral 2475  cmpt 4095  wf 5255  cfv 5259  (class class class)co 5925   + caddc 7901  cz 9345  Basecbs 12705  +gcplusg 12782  Grpcgrp 13204  .gcmg 13327   GrpHom cghm 13448  ringczring 14224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-addf 8020  ax-mulf 8021
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-5 9071  df-6 9072  df-7 9073  df-8 9074  df-9 9075  df-n0 9269  df-z 9346  df-dec 9477  df-uz 9621  df-rp 9748  df-fz 10103  df-seqfrec 10559  df-cj 11026  df-abs 11183  df-struct 12707  df-ndx 12708  df-slot 12709  df-base 12711  df-sets 12712  df-iress 12713  df-plusg 12795  df-mulr 12796  df-starv 12797  df-tset 12801  df-ple 12802  df-ds 12804  df-unif 12805  df-0g 12962  df-topgen 12964  df-mgm 13060  df-sgrp 13106  df-mnd 13121  df-grp 13207  df-minusg 13208  df-mulg 13328  df-subg 13378  df-ghm 13449  df-cmn 13494  df-mgp 13555  df-ur 13594  df-ring 13632  df-cring 13633  df-subrg 13853  df-bl 14180  df-mopn 14181  df-fg 14183  df-metu 14184  df-cnfld 14191  df-zring 14225
This theorem is referenced by:  mulgrhm  14243
  Copyright terms: Public domain W3C validator