| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > wilthlem1 | Unicode version | ||
| Description: The only elements that
are equal to their own inverses in the
multiplicative group of nonzero elements in |
| Ref | Expression |
|---|---|
| wilthlem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzelz 10146 |
. . . . . . . . . 10
| |
| 2 | 1 | adantl 277 |
. . . . . . . . 9
|
| 3 | peano2zm 9409 |
. . . . . . . . 9
| |
| 4 | 2, 3 | syl 14 |
. . . . . . . 8
|
| 5 | 4 | zcnd 9495 |
. . . . . . 7
|
| 6 | 2 | peano2zd 9497 |
. . . . . . . 8
|
| 7 | 6 | zcnd 9495 |
. . . . . . 7
|
| 8 | 5, 7 | mulcomd 8093 |
. . . . . 6
|
| 9 | 2 | zcnd 9495 |
. . . . . . 7
|
| 10 | ax-1cn 8017 |
. . . . . . 7
| |
| 11 | subsq 10789 |
. . . . . . 7
| |
| 12 | 9, 10, 11 | sylancl 413 |
. . . . . 6
|
| 13 | 9 | sqvald 10813 |
. . . . . . 7
|
| 14 | sq1 10776 |
. . . . . . . 8
| |
| 15 | 14 | a1i 9 |
. . . . . . 7
|
| 16 | 13, 15 | oveq12d 5961 |
. . . . . 6
|
| 17 | 8, 12, 16 | 3eqtr2d 2243 |
. . . . 5
|
| 18 | 17 | breq2d 4055 |
. . . 4
|
| 19 | fz1ssfz0 10238 |
. . . . . 6
| |
| 20 | simpr 110 |
. . . . . 6
| |
| 21 | 19, 20 | sselid 3190 |
. . . . 5
|
| 22 | 21 | biantrurd 305 |
. . . 4
|
| 23 | 18, 22 | bitrd 188 |
. . 3
|
| 24 | simpl 109 |
. . . 4
| |
| 25 | euclemma 12439 |
. . . 4
| |
| 26 | 24, 4, 6, 25 | syl3anc 1249 |
. . 3
|
| 27 | prmnn 12403 |
. . . . 5
| |
| 28 | fzm1ndvds 12138 |
. . . . 5
| |
| 29 | 27, 28 | sylan 283 |
. . . 4
|
| 30 | eqid 2204 |
. . . . 5
| |
| 31 | 30 | prmdiveq 12529 |
. . . 4
|
| 32 | 24, 2, 29, 31 | syl3anc 1249 |
. . 3
|
| 33 | 23, 26, 32 | 3bitr3rd 219 |
. 2
|
| 34 | 27 | adantr 276 |
. . . . 5
|
| 35 | 1zzd 9398 |
. . . . 5
| |
| 36 | moddvds 12081 |
. . . . 5
| |
| 37 | 34, 2, 35, 36 | syl3anc 1249 |
. . . 4
|
| 38 | zq 9746 |
. . . . . . . 8
| |
| 39 | 1, 38 | syl 14 |
. . . . . . 7
|
| 40 | 39 | adantl 277 |
. . . . . 6
|
| 41 | prmz 12404 |
. . . . . . . 8
| |
| 42 | zq 9746 |
. . . . . . . 8
| |
| 43 | 41, 42 | syl 14 |
. . . . . . 7
|
| 44 | 43 | adantr 276 |
. . . . . 6
|
| 45 | elfznn 10175 |
. . . . . . . . 9
| |
| 46 | 45 | adantl 277 |
. . . . . . . 8
|
| 47 | 46 | nnnn0d 9347 |
. . . . . . 7
|
| 48 | 47 | nn0ge0d 9350 |
. . . . . 6
|
| 49 | elfzle2 10149 |
. . . . . . . 8
| |
| 50 | 49 | adantl 277 |
. . . . . . 7
|
| 51 | zltlem1 9429 |
. . . . . . . 8
| |
| 52 | 1, 41, 51 | syl2anr 290 |
. . . . . . 7
|
| 53 | 50, 52 | mpbird 167 |
. . . . . 6
|
| 54 | modqid 10492 |
. . . . . 6
| |
| 55 | 40, 44, 48, 53, 54 | syl22anc 1250 |
. . . . 5
|
| 56 | prmuz2 12424 |
. . . . . . . 8
| |
| 57 | 56 | adantr 276 |
. . . . . . 7
|
| 58 | eluz2gt1 9722 |
. . . . . . 7
| |
| 59 | 57, 58 | syl 14 |
. . . . . 6
|
| 60 | q1mod 10499 |
. . . . . 6
| |
| 61 | 44, 59, 60 | syl2anc 411 |
. . . . 5
|
| 62 | 55, 61 | eqeq12d 2219 |
. . . 4
|
| 63 | 37, 62 | bitr3d 190 |
. . 3
|
| 64 | 35 | znegcld 9496 |
. . . . 5
|
| 65 | moddvds 12081 |
. . . . 5
| |
| 66 | 34, 2, 64, 65 | syl3anc 1249 |
. . . 4
|
| 67 | 34 | nncnd 9049 |
. . . . . . . . . 10
|
| 68 | 67 | mullidd 8089 |
. . . . . . . . 9
|
| 69 | 68 | oveq2d 5959 |
. . . . . . . 8
|
| 70 | neg1cn 9140 |
. . . . . . . . 9
| |
| 71 | addcom 8208 |
. . . . . . . . 9
| |
| 72 | 70, 67, 71 | sylancr 414 |
. . . . . . . 8
|
| 73 | negsub 8319 |
. . . . . . . . 9
| |
| 74 | 67, 10, 73 | sylancl 413 |
. . . . . . . 8
|
| 75 | 69, 72, 74 | 3eqtrd 2241 |
. . . . . . 7
|
| 76 | 75 | oveq1d 5958 |
. . . . . 6
|
| 77 | neg1z 9403 |
. . . . . . . 8
| |
| 78 | zq 9746 |
. . . . . . . 8
| |
| 79 | 77, 78 | mp1i 10 |
. . . . . . 7
|
| 80 | 34 | nngt0d 9079 |
. . . . . . 7
|
| 81 | modqcyc 10502 |
. . . . . . 7
| |
| 82 | 79, 35, 44, 80, 81 | syl22anc 1250 |
. . . . . 6
|
| 83 | nnm1nn0 9335 |
. . . . . . . . . 10
| |
| 84 | 34, 83 | syl 14 |
. . . . . . . . 9
|
| 85 | 84 | nn0zd 9492 |
. . . . . . . 8
|
| 86 | zq 9746 |
. . . . . . . 8
| |
| 87 | 85, 86 | syl 14 |
. . . . . . 7
|
| 88 | 84 | nn0ge0d 9350 |
. . . . . . 7
|
| 89 | 34 | nnred 9048 |
. . . . . . . 8
|
| 90 | 89 | ltm1d 9004 |
. . . . . . 7
|
| 91 | modqid 10492 |
. . . . . . 7
| |
| 92 | 87, 44, 88, 90, 91 | syl22anc 1250 |
. . . . . 6
|
| 93 | 76, 82, 92 | 3eqtr3d 2245 |
. . . . 5
|
| 94 | 55, 93 | eqeq12d 2219 |
. . . 4
|
| 95 | subneg 8320 |
. . . . . 6
| |
| 96 | 9, 10, 95 | sylancl 413 |
. . . . 5
|
| 97 | 96 | breq2d 4055 |
. . . 4
|
| 98 | 66, 94, 97 | 3bitr3rd 219 |
. . 3
|
| 99 | 63, 98 | orbi12d 794 |
. 2
|
| 100 | 33, 99 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 ax-arch 8043 ax-caucvg 8044 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-isom 5279 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-irdg 6455 df-frec 6476 df-1o 6501 df-2o 6502 df-oadd 6505 df-er 6619 df-en 6827 df-dom 6828 df-fin 6829 df-sup 7085 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-n0 9295 df-z 9372 df-uz 9648 df-q 9740 df-rp 9775 df-fz 10130 df-fzo 10264 df-fl 10411 df-mod 10466 df-seqfrec 10591 df-exp 10682 df-ihash 10919 df-cj 11124 df-re 11125 df-im 11126 df-rsqrt 11280 df-abs 11281 df-clim 11561 df-proddc 11833 df-dvds 12070 df-gcd 12246 df-prm 12401 df-phi 12504 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |