| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > wilthlem1 | Unicode version | ||
| Description: The only elements that
are equal to their own inverses in the
multiplicative group of nonzero elements in |
| Ref | Expression |
|---|---|
| wilthlem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzelz 10177 |
. . . . . . . . . 10
| |
| 2 | 1 | adantl 277 |
. . . . . . . . 9
|
| 3 | peano2zm 9440 |
. . . . . . . . 9
| |
| 4 | 2, 3 | syl 14 |
. . . . . . . 8
|
| 5 | 4 | zcnd 9526 |
. . . . . . 7
|
| 6 | 2 | peano2zd 9528 |
. . . . . . . 8
|
| 7 | 6 | zcnd 9526 |
. . . . . . 7
|
| 8 | 5, 7 | mulcomd 8124 |
. . . . . 6
|
| 9 | 2 | zcnd 9526 |
. . . . . . 7
|
| 10 | ax-1cn 8048 |
. . . . . . 7
| |
| 11 | subsq 10823 |
. . . . . . 7
| |
| 12 | 9, 10, 11 | sylancl 413 |
. . . . . 6
|
| 13 | 9 | sqvald 10847 |
. . . . . . 7
|
| 14 | sq1 10810 |
. . . . . . . 8
| |
| 15 | 14 | a1i 9 |
. . . . . . 7
|
| 16 | 13, 15 | oveq12d 5980 |
. . . . . 6
|
| 17 | 8, 12, 16 | 3eqtr2d 2245 |
. . . . 5
|
| 18 | 17 | breq2d 4066 |
. . . 4
|
| 19 | fz1ssfz0 10269 |
. . . . . 6
| |
| 20 | simpr 110 |
. . . . . 6
| |
| 21 | 19, 20 | sselid 3195 |
. . . . 5
|
| 22 | 21 | biantrurd 305 |
. . . 4
|
| 23 | 18, 22 | bitrd 188 |
. . 3
|
| 24 | simpl 109 |
. . . 4
| |
| 25 | euclemma 12553 |
. . . 4
| |
| 26 | 24, 4, 6, 25 | syl3anc 1250 |
. . 3
|
| 27 | prmnn 12517 |
. . . . 5
| |
| 28 | fzm1ndvds 12252 |
. . . . 5
| |
| 29 | 27, 28 | sylan 283 |
. . . 4
|
| 30 | eqid 2206 |
. . . . 5
| |
| 31 | 30 | prmdiveq 12643 |
. . . 4
|
| 32 | 24, 2, 29, 31 | syl3anc 1250 |
. . 3
|
| 33 | 23, 26, 32 | 3bitr3rd 219 |
. 2
|
| 34 | 27 | adantr 276 |
. . . . 5
|
| 35 | 1zzd 9429 |
. . . . 5
| |
| 36 | moddvds 12195 |
. . . . 5
| |
| 37 | 34, 2, 35, 36 | syl3anc 1250 |
. . . 4
|
| 38 | zq 9777 |
. . . . . . . 8
| |
| 39 | 1, 38 | syl 14 |
. . . . . . 7
|
| 40 | 39 | adantl 277 |
. . . . . 6
|
| 41 | prmz 12518 |
. . . . . . . 8
| |
| 42 | zq 9777 |
. . . . . . . 8
| |
| 43 | 41, 42 | syl 14 |
. . . . . . 7
|
| 44 | 43 | adantr 276 |
. . . . . 6
|
| 45 | elfznn 10206 |
. . . . . . . . 9
| |
| 46 | 45 | adantl 277 |
. . . . . . . 8
|
| 47 | 46 | nnnn0d 9378 |
. . . . . . 7
|
| 48 | 47 | nn0ge0d 9381 |
. . . . . 6
|
| 49 | elfzle2 10180 |
. . . . . . . 8
| |
| 50 | 49 | adantl 277 |
. . . . . . 7
|
| 51 | zltlem1 9460 |
. . . . . . . 8
| |
| 52 | 1, 41, 51 | syl2anr 290 |
. . . . . . 7
|
| 53 | 50, 52 | mpbird 167 |
. . . . . 6
|
| 54 | modqid 10526 |
. . . . . 6
| |
| 55 | 40, 44, 48, 53, 54 | syl22anc 1251 |
. . . . 5
|
| 56 | prmuz2 12538 |
. . . . . . . 8
| |
| 57 | 56 | adantr 276 |
. . . . . . 7
|
| 58 | eluz2gt1 9753 |
. . . . . . 7
| |
| 59 | 57, 58 | syl 14 |
. . . . . 6
|
| 60 | q1mod 10533 |
. . . . . 6
| |
| 61 | 44, 59, 60 | syl2anc 411 |
. . . . 5
|
| 62 | 55, 61 | eqeq12d 2221 |
. . . 4
|
| 63 | 37, 62 | bitr3d 190 |
. . 3
|
| 64 | 35 | znegcld 9527 |
. . . . 5
|
| 65 | moddvds 12195 |
. . . . 5
| |
| 66 | 34, 2, 64, 65 | syl3anc 1250 |
. . . 4
|
| 67 | 34 | nncnd 9080 |
. . . . . . . . . 10
|
| 68 | 67 | mullidd 8120 |
. . . . . . . . 9
|
| 69 | 68 | oveq2d 5978 |
. . . . . . . 8
|
| 70 | neg1cn 9171 |
. . . . . . . . 9
| |
| 71 | addcom 8239 |
. . . . . . . . 9
| |
| 72 | 70, 67, 71 | sylancr 414 |
. . . . . . . 8
|
| 73 | negsub 8350 |
. . . . . . . . 9
| |
| 74 | 67, 10, 73 | sylancl 413 |
. . . . . . . 8
|
| 75 | 69, 72, 74 | 3eqtrd 2243 |
. . . . . . 7
|
| 76 | 75 | oveq1d 5977 |
. . . . . 6
|
| 77 | neg1z 9434 |
. . . . . . . 8
| |
| 78 | zq 9777 |
. . . . . . . 8
| |
| 79 | 77, 78 | mp1i 10 |
. . . . . . 7
|
| 80 | 34 | nngt0d 9110 |
. . . . . . 7
|
| 81 | modqcyc 10536 |
. . . . . . 7
| |
| 82 | 79, 35, 44, 80, 81 | syl22anc 1251 |
. . . . . 6
|
| 83 | nnm1nn0 9366 |
. . . . . . . . . 10
| |
| 84 | 34, 83 | syl 14 |
. . . . . . . . 9
|
| 85 | 84 | nn0zd 9523 |
. . . . . . . 8
|
| 86 | zq 9777 |
. . . . . . . 8
| |
| 87 | 85, 86 | syl 14 |
. . . . . . 7
|
| 88 | 84 | nn0ge0d 9381 |
. . . . . . 7
|
| 89 | 34 | nnred 9079 |
. . . . . . . 8
|
| 90 | 89 | ltm1d 9035 |
. . . . . . 7
|
| 91 | modqid 10526 |
. . . . . . 7
| |
| 92 | 87, 44, 88, 90, 91 | syl22anc 1251 |
. . . . . 6
|
| 93 | 76, 82, 92 | 3eqtr3d 2247 |
. . . . 5
|
| 94 | 55, 93 | eqeq12d 2221 |
. . . 4
|
| 95 | subneg 8351 |
. . . . . 6
| |
| 96 | 9, 10, 95 | sylancl 413 |
. . . . 5
|
| 97 | 96 | breq2d 4066 |
. . . 4
|
| 98 | 66, 94, 97 | 3bitr3rd 219 |
. . 3
|
| 99 | 63, 98 | orbi12d 795 |
. 2
|
| 100 | 33, 99 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-mulrcl 8054 ax-addcom 8055 ax-mulcom 8056 ax-addass 8057 ax-mulass 8058 ax-distr 8059 ax-i2m1 8060 ax-0lt1 8061 ax-1rid 8062 ax-0id 8063 ax-rnegex 8064 ax-precex 8065 ax-cnre 8066 ax-pre-ltirr 8067 ax-pre-ltwlin 8068 ax-pre-lttrn 8069 ax-pre-apti 8070 ax-pre-ltadd 8071 ax-pre-mulgt0 8072 ax-pre-mulext 8073 ax-arch 8074 ax-caucvg 8075 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-tr 4154 df-id 4353 df-po 4356 df-iso 4357 df-iord 4426 df-on 4428 df-ilim 4429 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-isom 5294 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-recs 6409 df-irdg 6474 df-frec 6495 df-1o 6520 df-2o 6521 df-oadd 6524 df-er 6638 df-en 6846 df-dom 6847 df-fin 6848 df-sup 7107 df-pnf 8139 df-mnf 8140 df-xr 8141 df-ltxr 8142 df-le 8143 df-sub 8275 df-neg 8276 df-reap 8678 df-ap 8685 df-div 8776 df-inn 9067 df-2 9125 df-3 9126 df-4 9127 df-n0 9326 df-z 9403 df-uz 9679 df-q 9771 df-rp 9806 df-fz 10161 df-fzo 10295 df-fl 10445 df-mod 10500 df-seqfrec 10625 df-exp 10716 df-ihash 10953 df-cj 11238 df-re 11239 df-im 11240 df-rsqrt 11394 df-abs 11395 df-clim 11675 df-proddc 11947 df-dvds 12184 df-gcd 12360 df-prm 12515 df-phi 12618 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |