| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > wilthlem1 | Unicode version | ||
| Description: The only elements that
are equal to their own inverses in the
multiplicative group of nonzero elements in |
| Ref | Expression |
|---|---|
| wilthlem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzelz 10147 |
. . . . . . . . . 10
| |
| 2 | 1 | adantl 277 |
. . . . . . . . 9
|
| 3 | peano2zm 9410 |
. . . . . . . . 9
| |
| 4 | 2, 3 | syl 14 |
. . . . . . . 8
|
| 5 | 4 | zcnd 9496 |
. . . . . . 7
|
| 6 | 2 | peano2zd 9498 |
. . . . . . . 8
|
| 7 | 6 | zcnd 9496 |
. . . . . . 7
|
| 8 | 5, 7 | mulcomd 8094 |
. . . . . 6
|
| 9 | 2 | zcnd 9496 |
. . . . . . 7
|
| 10 | ax-1cn 8018 |
. . . . . . 7
| |
| 11 | subsq 10791 |
. . . . . . 7
| |
| 12 | 9, 10, 11 | sylancl 413 |
. . . . . 6
|
| 13 | 9 | sqvald 10815 |
. . . . . . 7
|
| 14 | sq1 10778 |
. . . . . . . 8
| |
| 15 | 14 | a1i 9 |
. . . . . . 7
|
| 16 | 13, 15 | oveq12d 5962 |
. . . . . 6
|
| 17 | 8, 12, 16 | 3eqtr2d 2244 |
. . . . 5
|
| 18 | 17 | breq2d 4056 |
. . . 4
|
| 19 | fz1ssfz0 10239 |
. . . . . 6
| |
| 20 | simpr 110 |
. . . . . 6
| |
| 21 | 19, 20 | sselid 3191 |
. . . . 5
|
| 22 | 21 | biantrurd 305 |
. . . 4
|
| 23 | 18, 22 | bitrd 188 |
. . 3
|
| 24 | simpl 109 |
. . . 4
| |
| 25 | euclemma 12468 |
. . . 4
| |
| 26 | 24, 4, 6, 25 | syl3anc 1250 |
. . 3
|
| 27 | prmnn 12432 |
. . . . 5
| |
| 28 | fzm1ndvds 12167 |
. . . . 5
| |
| 29 | 27, 28 | sylan 283 |
. . . 4
|
| 30 | eqid 2205 |
. . . . 5
| |
| 31 | 30 | prmdiveq 12558 |
. . . 4
|
| 32 | 24, 2, 29, 31 | syl3anc 1250 |
. . 3
|
| 33 | 23, 26, 32 | 3bitr3rd 219 |
. 2
|
| 34 | 27 | adantr 276 |
. . . . 5
|
| 35 | 1zzd 9399 |
. . . . 5
| |
| 36 | moddvds 12110 |
. . . . 5
| |
| 37 | 34, 2, 35, 36 | syl3anc 1250 |
. . . 4
|
| 38 | zq 9747 |
. . . . . . . 8
| |
| 39 | 1, 38 | syl 14 |
. . . . . . 7
|
| 40 | 39 | adantl 277 |
. . . . . 6
|
| 41 | prmz 12433 |
. . . . . . . 8
| |
| 42 | zq 9747 |
. . . . . . . 8
| |
| 43 | 41, 42 | syl 14 |
. . . . . . 7
|
| 44 | 43 | adantr 276 |
. . . . . 6
|
| 45 | elfznn 10176 |
. . . . . . . . 9
| |
| 46 | 45 | adantl 277 |
. . . . . . . 8
|
| 47 | 46 | nnnn0d 9348 |
. . . . . . 7
|
| 48 | 47 | nn0ge0d 9351 |
. . . . . 6
|
| 49 | elfzle2 10150 |
. . . . . . . 8
| |
| 50 | 49 | adantl 277 |
. . . . . . 7
|
| 51 | zltlem1 9430 |
. . . . . . . 8
| |
| 52 | 1, 41, 51 | syl2anr 290 |
. . . . . . 7
|
| 53 | 50, 52 | mpbird 167 |
. . . . . 6
|
| 54 | modqid 10494 |
. . . . . 6
| |
| 55 | 40, 44, 48, 53, 54 | syl22anc 1251 |
. . . . 5
|
| 56 | prmuz2 12453 |
. . . . . . . 8
| |
| 57 | 56 | adantr 276 |
. . . . . . 7
|
| 58 | eluz2gt1 9723 |
. . . . . . 7
| |
| 59 | 57, 58 | syl 14 |
. . . . . 6
|
| 60 | q1mod 10501 |
. . . . . 6
| |
| 61 | 44, 59, 60 | syl2anc 411 |
. . . . 5
|
| 62 | 55, 61 | eqeq12d 2220 |
. . . 4
|
| 63 | 37, 62 | bitr3d 190 |
. . 3
|
| 64 | 35 | znegcld 9497 |
. . . . 5
|
| 65 | moddvds 12110 |
. . . . 5
| |
| 66 | 34, 2, 64, 65 | syl3anc 1250 |
. . . 4
|
| 67 | 34 | nncnd 9050 |
. . . . . . . . . 10
|
| 68 | 67 | mullidd 8090 |
. . . . . . . . 9
|
| 69 | 68 | oveq2d 5960 |
. . . . . . . 8
|
| 70 | neg1cn 9141 |
. . . . . . . . 9
| |
| 71 | addcom 8209 |
. . . . . . . . 9
| |
| 72 | 70, 67, 71 | sylancr 414 |
. . . . . . . 8
|
| 73 | negsub 8320 |
. . . . . . . . 9
| |
| 74 | 67, 10, 73 | sylancl 413 |
. . . . . . . 8
|
| 75 | 69, 72, 74 | 3eqtrd 2242 |
. . . . . . 7
|
| 76 | 75 | oveq1d 5959 |
. . . . . 6
|
| 77 | neg1z 9404 |
. . . . . . . 8
| |
| 78 | zq 9747 |
. . . . . . . 8
| |
| 79 | 77, 78 | mp1i 10 |
. . . . . . 7
|
| 80 | 34 | nngt0d 9080 |
. . . . . . 7
|
| 81 | modqcyc 10504 |
. . . . . . 7
| |
| 82 | 79, 35, 44, 80, 81 | syl22anc 1251 |
. . . . . 6
|
| 83 | nnm1nn0 9336 |
. . . . . . . . . 10
| |
| 84 | 34, 83 | syl 14 |
. . . . . . . . 9
|
| 85 | 84 | nn0zd 9493 |
. . . . . . . 8
|
| 86 | zq 9747 |
. . . . . . . 8
| |
| 87 | 85, 86 | syl 14 |
. . . . . . 7
|
| 88 | 84 | nn0ge0d 9351 |
. . . . . . 7
|
| 89 | 34 | nnred 9049 |
. . . . . . . 8
|
| 90 | 89 | ltm1d 9005 |
. . . . . . 7
|
| 91 | modqid 10494 |
. . . . . . 7
| |
| 92 | 87, 44, 88, 90, 91 | syl22anc 1251 |
. . . . . 6
|
| 93 | 76, 82, 92 | 3eqtr3d 2246 |
. . . . 5
|
| 94 | 55, 93 | eqeq12d 2220 |
. . . 4
|
| 95 | subneg 8321 |
. . . . . 6
| |
| 96 | 9, 10, 95 | sylancl 413 |
. . . . 5
|
| 97 | 96 | breq2d 4056 |
. . . 4
|
| 98 | 66, 94, 97 | 3bitr3rd 219 |
. . 3
|
| 99 | 63, 98 | orbi12d 795 |
. 2
|
| 100 | 33, 99 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 ax-pre-mulext 8043 ax-arch 8044 ax-caucvg 8045 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-po 4343 df-iso 4344 df-iord 4413 df-on 4415 df-ilim 4416 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-isom 5280 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-irdg 6456 df-frec 6477 df-1o 6502 df-2o 6503 df-oadd 6506 df-er 6620 df-en 6828 df-dom 6829 df-fin 6830 df-sup 7086 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-ap 8655 df-div 8746 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-n0 9296 df-z 9373 df-uz 9649 df-q 9741 df-rp 9776 df-fz 10131 df-fzo 10265 df-fl 10413 df-mod 10468 df-seqfrec 10593 df-exp 10684 df-ihash 10921 df-cj 11153 df-re 11154 df-im 11155 df-rsqrt 11309 df-abs 11310 df-clim 11590 df-proddc 11862 df-dvds 12099 df-gcd 12275 df-prm 12430 df-phi 12533 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |