| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > wilthlem1 | Unicode version | ||
| Description: The only elements that
are equal to their own inverses in the
multiplicative group of nonzero elements in |
| Ref | Expression |
|---|---|
| wilthlem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzelz 10217 |
. . . . . . . . . 10
| |
| 2 | 1 | adantl 277 |
. . . . . . . . 9
|
| 3 | peano2zm 9480 |
. . . . . . . . 9
| |
| 4 | 2, 3 | syl 14 |
. . . . . . . 8
|
| 5 | 4 | zcnd 9566 |
. . . . . . 7
|
| 6 | 2 | peano2zd 9568 |
. . . . . . . 8
|
| 7 | 6 | zcnd 9566 |
. . . . . . 7
|
| 8 | 5, 7 | mulcomd 8164 |
. . . . . 6
|
| 9 | 2 | zcnd 9566 |
. . . . . . 7
|
| 10 | ax-1cn 8088 |
. . . . . . 7
| |
| 11 | subsq 10863 |
. . . . . . 7
| |
| 12 | 9, 10, 11 | sylancl 413 |
. . . . . 6
|
| 13 | 9 | sqvald 10887 |
. . . . . . 7
|
| 14 | sq1 10850 |
. . . . . . . 8
| |
| 15 | 14 | a1i 9 |
. . . . . . 7
|
| 16 | 13, 15 | oveq12d 6018 |
. . . . . 6
|
| 17 | 8, 12, 16 | 3eqtr2d 2268 |
. . . . 5
|
| 18 | 17 | breq2d 4094 |
. . . 4
|
| 19 | fz1ssfz0 10309 |
. . . . . 6
| |
| 20 | simpr 110 |
. . . . . 6
| |
| 21 | 19, 20 | sselid 3222 |
. . . . 5
|
| 22 | 21 | biantrurd 305 |
. . . 4
|
| 23 | 18, 22 | bitrd 188 |
. . 3
|
| 24 | simpl 109 |
. . . 4
| |
| 25 | euclemma 12663 |
. . . 4
| |
| 26 | 24, 4, 6, 25 | syl3anc 1271 |
. . 3
|
| 27 | prmnn 12627 |
. . . . 5
| |
| 28 | fzm1ndvds 12362 |
. . . . 5
| |
| 29 | 27, 28 | sylan 283 |
. . . 4
|
| 30 | eqid 2229 |
. . . . 5
| |
| 31 | 30 | prmdiveq 12753 |
. . . 4
|
| 32 | 24, 2, 29, 31 | syl3anc 1271 |
. . 3
|
| 33 | 23, 26, 32 | 3bitr3rd 219 |
. 2
|
| 34 | 27 | adantr 276 |
. . . . 5
|
| 35 | 1zzd 9469 |
. . . . 5
| |
| 36 | moddvds 12305 |
. . . . 5
| |
| 37 | 34, 2, 35, 36 | syl3anc 1271 |
. . . 4
|
| 38 | zq 9817 |
. . . . . . . 8
| |
| 39 | 1, 38 | syl 14 |
. . . . . . 7
|
| 40 | 39 | adantl 277 |
. . . . . 6
|
| 41 | prmz 12628 |
. . . . . . . 8
| |
| 42 | zq 9817 |
. . . . . . . 8
| |
| 43 | 41, 42 | syl 14 |
. . . . . . 7
|
| 44 | 43 | adantr 276 |
. . . . . 6
|
| 45 | elfznn 10246 |
. . . . . . . . 9
| |
| 46 | 45 | adantl 277 |
. . . . . . . 8
|
| 47 | 46 | nnnn0d 9418 |
. . . . . . 7
|
| 48 | 47 | nn0ge0d 9421 |
. . . . . 6
|
| 49 | elfzle2 10220 |
. . . . . . . 8
| |
| 50 | 49 | adantl 277 |
. . . . . . 7
|
| 51 | zltlem1 9500 |
. . . . . . . 8
| |
| 52 | 1, 41, 51 | syl2anr 290 |
. . . . . . 7
|
| 53 | 50, 52 | mpbird 167 |
. . . . . 6
|
| 54 | modqid 10566 |
. . . . . 6
| |
| 55 | 40, 44, 48, 53, 54 | syl22anc 1272 |
. . . . 5
|
| 56 | prmuz2 12648 |
. . . . . . . 8
| |
| 57 | 56 | adantr 276 |
. . . . . . 7
|
| 58 | eluz2gt1 9793 |
. . . . . . 7
| |
| 59 | 57, 58 | syl 14 |
. . . . . 6
|
| 60 | q1mod 10573 |
. . . . . 6
| |
| 61 | 44, 59, 60 | syl2anc 411 |
. . . . 5
|
| 62 | 55, 61 | eqeq12d 2244 |
. . . 4
|
| 63 | 37, 62 | bitr3d 190 |
. . 3
|
| 64 | 35 | znegcld 9567 |
. . . . 5
|
| 65 | moddvds 12305 |
. . . . 5
| |
| 66 | 34, 2, 64, 65 | syl3anc 1271 |
. . . 4
|
| 67 | 34 | nncnd 9120 |
. . . . . . . . . 10
|
| 68 | 67 | mullidd 8160 |
. . . . . . . . 9
|
| 69 | 68 | oveq2d 6016 |
. . . . . . . 8
|
| 70 | neg1cn 9211 |
. . . . . . . . 9
| |
| 71 | addcom 8279 |
. . . . . . . . 9
| |
| 72 | 70, 67, 71 | sylancr 414 |
. . . . . . . 8
|
| 73 | negsub 8390 |
. . . . . . . . 9
| |
| 74 | 67, 10, 73 | sylancl 413 |
. . . . . . . 8
|
| 75 | 69, 72, 74 | 3eqtrd 2266 |
. . . . . . 7
|
| 76 | 75 | oveq1d 6015 |
. . . . . 6
|
| 77 | neg1z 9474 |
. . . . . . . 8
| |
| 78 | zq 9817 |
. . . . . . . 8
| |
| 79 | 77, 78 | mp1i 10 |
. . . . . . 7
|
| 80 | 34 | nngt0d 9150 |
. . . . . . 7
|
| 81 | modqcyc 10576 |
. . . . . . 7
| |
| 82 | 79, 35, 44, 80, 81 | syl22anc 1272 |
. . . . . 6
|
| 83 | nnm1nn0 9406 |
. . . . . . . . . 10
| |
| 84 | 34, 83 | syl 14 |
. . . . . . . . 9
|
| 85 | 84 | nn0zd 9563 |
. . . . . . . 8
|
| 86 | zq 9817 |
. . . . . . . 8
| |
| 87 | 85, 86 | syl 14 |
. . . . . . 7
|
| 88 | 84 | nn0ge0d 9421 |
. . . . . . 7
|
| 89 | 34 | nnred 9119 |
. . . . . . . 8
|
| 90 | 89 | ltm1d 9075 |
. . . . . . 7
|
| 91 | modqid 10566 |
. . . . . . 7
| |
| 92 | 87, 44, 88, 90, 91 | syl22anc 1272 |
. . . . . 6
|
| 93 | 76, 82, 92 | 3eqtr3d 2270 |
. . . . 5
|
| 94 | 55, 93 | eqeq12d 2244 |
. . . 4
|
| 95 | subneg 8391 |
. . . . . 6
| |
| 96 | 9, 10, 95 | sylancl 413 |
. . . . 5
|
| 97 | 96 | breq2d 4094 |
. . . 4
|
| 98 | 66, 94, 97 | 3bitr3rd 219 |
. . 3
|
| 99 | 63, 98 | orbi12d 798 |
. 2
|
| 100 | 33, 99 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 ax-arch 8114 ax-caucvg 8115 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-isom 5326 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-irdg 6514 df-frec 6535 df-1o 6560 df-2o 6561 df-oadd 6564 df-er 6678 df-en 6886 df-dom 6887 df-fin 6888 df-sup 7147 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-n0 9366 df-z 9443 df-uz 9719 df-q 9811 df-rp 9846 df-fz 10201 df-fzo 10335 df-fl 10485 df-mod 10540 df-seqfrec 10665 df-exp 10756 df-ihash 10993 df-cj 11348 df-re 11349 df-im 11350 df-rsqrt 11504 df-abs 11505 df-clim 11785 df-proddc 12057 df-dvds 12294 df-gcd 12470 df-prm 12625 df-phi 12728 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |