| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lgseisen | Unicode version | ||
| Description: Eisenstein's lemma, an
expression for |
| Ref | Expression |
|---|---|
| lgseisen.1 |
|
| lgseisen.2 |
|
| lgseisen.3 |
|
| Ref | Expression |
|---|---|
| lgseisen |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lgseisen.2 |
. . . . 5
| |
| 2 | 1 | eldifad 3178 |
. . . 4
|
| 3 | prmz 12477 |
. . . 4
| |
| 4 | 2, 3 | syl 14 |
. . 3
|
| 5 | lgseisen.1 |
. . 3
| |
| 6 | lgsval3 15539 |
. . 3
| |
| 7 | 4, 5, 6 | syl2anc 411 |
. 2
|
| 8 | 1 | gausslemma2dlem0a 15570 |
. . . . . . 7
|
| 9 | oddprm 12626 |
. . . . . . . . 9
| |
| 10 | 5, 9 | syl 14 |
. . . . . . . 8
|
| 11 | 10 | nnnn0d 9355 |
. . . . . . 7
|
| 12 | 8, 11 | nnexpcld 10847 |
. . . . . 6
|
| 13 | nnq 9761 |
. . . . . 6
| |
| 14 | 12, 13 | syl 14 |
. . . . 5
|
| 15 | 1zzd 9406 |
. . . . . . . 8
| |
| 16 | 15 | znegcld 9504 |
. . . . . . 7
|
| 17 | zq 9754 |
. . . . . . 7
| |
| 18 | 16, 17 | syl 14 |
. . . . . 6
|
| 19 | neg1ne0 9150 |
. . . . . . 7
| |
| 20 | 19 | a1i 9 |
. . . . . 6
|
| 21 | 10 | nnzd 9501 |
. . . . . . . 8
|
| 22 | 15, 21 | fzfigd 10583 |
. . . . . . 7
|
| 23 | 5 | gausslemma2dlem0a 15570 |
. . . . . . . . . 10
|
| 24 | znq 9752 |
. . . . . . . . . 10
| |
| 25 | 4, 23, 24 | syl2anc 411 |
. . . . . . . . 9
|
| 26 | 2z 9407 |
. . . . . . . . . . . 12
| |
| 27 | 26 | a1i 9 |
. . . . . . . . . . 11
|
| 28 | elfznn 10183 |
. . . . . . . . . . . . 13
| |
| 29 | 28 | adantl 277 |
. . . . . . . . . . . 12
|
| 30 | 29 | nnzd 9501 |
. . . . . . . . . . 11
|
| 31 | 27, 30 | zmulcld 9508 |
. . . . . . . . . 10
|
| 32 | zq 9754 |
. . . . . . . . . 10
| |
| 33 | 31, 32 | syl 14 |
. . . . . . . . 9
|
| 34 | qmulcl 9765 |
. . . . . . . . 9
| |
| 35 | 25, 33, 34 | syl2an2r 595 |
. . . . . . . 8
|
| 36 | 35 | flqcld 10427 |
. . . . . . 7
|
| 37 | 22, 36 | fsumzcl 11757 |
. . . . . 6
|
| 38 | qexpclz 10712 |
. . . . . 6
| |
| 39 | 18, 20, 37, 38 | syl3anc 1250 |
. . . . 5
|
| 40 | 1z 9405 |
. . . . . 6
| |
| 41 | zq 9754 |
. . . . . 6
| |
| 42 | 40, 41 | mp1i 10 |
. . . . 5
|
| 43 | nnq 9761 |
. . . . . 6
| |
| 44 | 23, 43 | syl 14 |
. . . . 5
|
| 45 | 23 | nngt0d 9087 |
. . . . 5
|
| 46 | lgseisen.3 |
. . . . . 6
| |
| 47 | eqid 2206 |
. . . . . 6
| |
| 48 | eqid 2206 |
. . . . . 6
| |
| 49 | eqid 2206 |
. . . . . 6
| |
| 50 | eqid 2206 |
. . . . . 6
| |
| 51 | eqid 2206 |
. . . . . 6
| |
| 52 | eqid 2206 |
. . . . . 6
| |
| 53 | 5, 1, 46, 47, 48, 49, 50, 51, 52 | lgseisenlem4 15594 |
. . . . 5
|
| 54 | 14, 39, 42, 44, 45, 53 | modqadd1 10513 |
. . . 4
|
| 55 | qaddcl 9763 |
. . . . . 6
| |
| 56 | 39, 42, 55 | syl2anc 411 |
. . . . 5
|
| 57 | df-neg 8253 |
. . . . . . 7
| |
| 58 | neg1cn 9148 |
. . . . . . . . . . . 12
| |
| 59 | neg1ap0 9152 |
. . . . . . . . . . . 12
| |
| 60 | absexpzap 11435 |
. . . . . . . . . . . 12
| |
| 61 | 58, 59, 37, 60 | mp3an12i 1354 |
. . . . . . . . . . 11
|
| 62 | ax-1cn 8025 |
. . . . . . . . . . . . . . 15
| |
| 63 | 62 | absnegi 11502 |
. . . . . . . . . . . . . 14
|
| 64 | abs1 11427 |
. . . . . . . . . . . . . 14
| |
| 65 | 63, 64 | eqtri 2227 |
. . . . . . . . . . . . 13
|
| 66 | 65 | oveq1i 5961 |
. . . . . . . . . . . 12
|
| 67 | 1exp 10720 |
. . . . . . . . . . . . 13
| |
| 68 | 37, 67 | syl 14 |
. . . . . . . . . . . 12
|
| 69 | 66, 68 | eqtrid 2251 |
. . . . . . . . . . 11
|
| 70 | 61, 69 | eqtrd 2239 |
. . . . . . . . . 10
|
| 71 | 1le1 8652 |
. . . . . . . . . 10
| |
| 72 | 70, 71 | eqbrtrdi 4086 |
. . . . . . . . 9
|
| 73 | neg1rr 9149 |
. . . . . . . . . . . 12
| |
| 74 | 73 | a1i 9 |
. . . . . . . . . . 11
|
| 75 | 59 | a1i 9 |
. . . . . . . . . . 11
|
| 76 | 74, 75, 37 | reexpclzapd 10850 |
. . . . . . . . . 10
|
| 77 | 1re 8078 |
. . . . . . . . . 10
| |
| 78 | absle 11444 |
. . . . . . . . . 10
| |
| 79 | 76, 77, 78 | sylancl 413 |
. . . . . . . . 9
|
| 80 | 72, 79 | mpbid 147 |
. . . . . . . 8
|
| 81 | 80 | simpld 112 |
. . . . . . 7
|
| 82 | 57, 81 | eqbrtrrid 4083 |
. . . . . 6
|
| 83 | 0red 8080 |
. . . . . . 7
| |
| 84 | 1red 8094 |
. . . . . . 7
| |
| 85 | 83, 84, 76 | lesubaddd 8622 |
. . . . . 6
|
| 86 | 82, 85 | mpbid 147 |
. . . . 5
|
| 87 | 23 | nnred 9056 |
. . . . . . . 8
|
| 88 | peano2rem 8346 |
. . . . . . . 8
| |
| 89 | 87, 88 | syl 14 |
. . . . . . 7
|
| 90 | 80 | simprd 114 |
. . . . . . 7
|
| 91 | df-2 9102 |
. . . . . . . . 9
| |
| 92 | eldifsni 3764 |
. . . . . . . . . . . 12
| |
| 93 | 5, 92 | syl 14 |
. . . . . . . . . . 11
|
| 94 | 23 | nnzd 9501 |
. . . . . . . . . . . 12
|
| 95 | zapne 9454 |
. . . . . . . . . . . 12
| |
| 96 | 94, 26, 95 | sylancl 413 |
. . . . . . . . . . 11
|
| 97 | 93, 96 | mpbird 167 |
. . . . . . . . . 10
|
| 98 | 2re 9113 |
. . . . . . . . . . . 12
| |
| 99 | 98 | a1i 9 |
. . . . . . . . . . 11
|
| 100 | 5 | eldifad 3178 |
. . . . . . . . . . . 12
|
| 101 | prmuz2 12497 |
. . . . . . . . . . . 12
| |
| 102 | eluzle 9667 |
. . . . . . . . . . . 12
| |
| 103 | 100, 101, 102 | 3syl 17 |
. . . . . . . . . . 11
|
| 104 | 99, 87, 103 | leltapd 8719 |
. . . . . . . . . 10
|
| 105 | 97, 104 | mpbird 167 |
. . . . . . . . 9
|
| 106 | 91, 105 | eqbrtrrid 4083 |
. . . . . . . 8
|
| 107 | 84, 84, 87 | ltaddsubd 8625 |
. . . . . . . 8
|
| 108 | 106, 107 | mpbid 147 |
. . . . . . 7
|
| 109 | 76, 84, 89, 90, 108 | lelttrd 8204 |
. . . . . 6
|
| 110 | 76, 84, 87 | ltaddsubd 8625 |
. . . . . 6
|
| 111 | 109, 110 | mpbird 167 |
. . . . 5
|
| 112 | modqid 10501 |
. . . . 5
| |
| 113 | 56, 44, 86, 111, 112 | syl22anc 1251 |
. . . 4
|
| 114 | 54, 113 | eqtrd 2239 |
. . 3
|
| 115 | 114 | oveq1d 5966 |
. 2
|
| 116 | 76 | recnd 8108 |
. . 3
|
| 117 | pncan 8285 |
. . 3
| |
| 118 | 116, 62, 117 | sylancl 413 |
. 2
|
| 119 | 7, 115, 118 | 3eqtrd 2243 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 ax-arch 8051 ax-caucvg 8052 ax-addf 8054 ax-mulf 8055 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-xor 1396 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-tp 3642 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-isom 5285 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-of 6165 df-1st 6233 df-2nd 6234 df-tpos 6338 df-recs 6398 df-irdg 6463 df-frec 6484 df-1o 6509 df-2o 6510 df-oadd 6513 df-er 6627 df-ec 6629 df-qs 6633 df-map 6744 df-en 6835 df-dom 6836 df-fin 6837 df-sup 7093 df-inf 7094 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-5 9105 df-6 9106 df-7 9107 df-8 9108 df-9 9109 df-n0 9303 df-z 9380 df-dec 9512 df-uz 9656 df-q 9748 df-rp 9783 df-fz 10138 df-fzo 10272 df-fl 10420 df-mod 10475 df-seqfrec 10600 df-exp 10691 df-ihash 10928 df-cj 11197 df-re 11198 df-im 11199 df-rsqrt 11353 df-abs 11354 df-clim 11634 df-sumdc 11709 df-proddc 11906 df-dvds 12143 df-gcd 12319 df-prm 12474 df-phi 12577 df-pc 12652 df-struct 12878 df-ndx 12879 df-slot 12880 df-base 12882 df-sets 12883 df-iress 12884 df-plusg 12966 df-mulr 12967 df-starv 12968 df-sca 12969 df-vsca 12970 df-ip 12971 df-tset 12972 df-ple 12973 df-ds 12975 df-unif 12976 df-0g 13134 df-igsum 13135 df-topgen 13136 df-iimas 13178 df-qus 13179 df-mgm 13232 df-sgrp 13278 df-mnd 13293 df-mhm 13335 df-submnd 13336 df-grp 13379 df-minusg 13380 df-sbg 13381 df-mulg 13500 df-subg 13550 df-nsg 13551 df-eqg 13552 df-ghm 13621 df-cmn 13666 df-abl 13667 df-mgp 13727 df-rng 13739 df-ur 13766 df-srg 13770 df-ring 13804 df-cring 13805 df-oppr 13874 df-dvdsr 13895 df-unit 13896 df-invr 13927 df-dvr 13938 df-rhm 13958 df-nzr 13986 df-subrg 14025 df-domn 14065 df-idom 14066 df-lmod 14095 df-lssm 14159 df-lsp 14193 df-sra 14241 df-rgmod 14242 df-lidl 14275 df-rsp 14276 df-2idl 14306 df-bl 14352 df-mopn 14353 df-fg 14355 df-metu 14356 df-cnfld 14363 df-zring 14397 df-zrh 14420 df-zn 14422 df-lgs 15519 |
| This theorem is referenced by: lgsquadlem2 15599 |
| Copyright terms: Public domain | W3C validator |