| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > lgseisen | Unicode version | ||
| Description: Eisenstein's lemma, an
expression for  | 
| Ref | Expression | 
|---|---|
| lgseisen.1 | 
 | 
| lgseisen.2 | 
 | 
| lgseisen.3 | 
 | 
| Ref | Expression | 
|---|---|
| lgseisen | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lgseisen.2 | 
. . . . 5
 | |
| 2 | 1 | eldifad 3168 | 
. . . 4
 | 
| 3 | prmz 12279 | 
. . . 4
 | |
| 4 | 2, 3 | syl 14 | 
. . 3
 | 
| 5 | lgseisen.1 | 
. . 3
 | |
| 6 | lgsval3 15259 | 
. . 3
 | |
| 7 | 4, 5, 6 | syl2anc 411 | 
. 2
 | 
| 8 | 1 | gausslemma2dlem0a 15290 | 
. . . . . . 7
 | 
| 9 | oddprm 12428 | 
. . . . . . . . 9
 | |
| 10 | 5, 9 | syl 14 | 
. . . . . . . 8
 | 
| 11 | 10 | nnnn0d 9302 | 
. . . . . . 7
 | 
| 12 | 8, 11 | nnexpcld 10787 | 
. . . . . 6
 | 
| 13 | nnq 9707 | 
. . . . . 6
 | |
| 14 | 12, 13 | syl 14 | 
. . . . 5
 | 
| 15 | 1zzd 9353 | 
. . . . . . . 8
 | |
| 16 | 15 | znegcld 9450 | 
. . . . . . 7
 | 
| 17 | zq 9700 | 
. . . . . . 7
 | |
| 18 | 16, 17 | syl 14 | 
. . . . . 6
 | 
| 19 | neg1ne0 9097 | 
. . . . . . 7
 | |
| 20 | 19 | a1i 9 | 
. . . . . 6
 | 
| 21 | 10 | nnzd 9447 | 
. . . . . . . 8
 | 
| 22 | 15, 21 | fzfigd 10523 | 
. . . . . . 7
 | 
| 23 | 5 | gausslemma2dlem0a 15290 | 
. . . . . . . . . 10
 | 
| 24 | znq 9698 | 
. . . . . . . . . 10
 | |
| 25 | 4, 23, 24 | syl2anc 411 | 
. . . . . . . . 9
 | 
| 26 | 2z 9354 | 
. . . . . . . . . . . 12
 | |
| 27 | 26 | a1i 9 | 
. . . . . . . . . . 11
 | 
| 28 | elfznn 10129 | 
. . . . . . . . . . . . 13
 | |
| 29 | 28 | adantl 277 | 
. . . . . . . . . . . 12
 | 
| 30 | 29 | nnzd 9447 | 
. . . . . . . . . . 11
 | 
| 31 | 27, 30 | zmulcld 9454 | 
. . . . . . . . . 10
 | 
| 32 | zq 9700 | 
. . . . . . . . . 10
 | |
| 33 | 31, 32 | syl 14 | 
. . . . . . . . 9
 | 
| 34 | qmulcl 9711 | 
. . . . . . . . 9
 | |
| 35 | 25, 33, 34 | syl2an2r 595 | 
. . . . . . . 8
 | 
| 36 | 35 | flqcld 10367 | 
. . . . . . 7
 | 
| 37 | 22, 36 | fsumzcl 11567 | 
. . . . . 6
 | 
| 38 | qexpclz 10652 | 
. . . . . 6
 | |
| 39 | 18, 20, 37, 38 | syl3anc 1249 | 
. . . . 5
 | 
| 40 | 1z 9352 | 
. . . . . 6
 | |
| 41 | zq 9700 | 
. . . . . 6
 | |
| 42 | 40, 41 | mp1i 10 | 
. . . . 5
 | 
| 43 | nnq 9707 | 
. . . . . 6
 | |
| 44 | 23, 43 | syl 14 | 
. . . . 5
 | 
| 45 | 23 | nngt0d 9034 | 
. . . . 5
 | 
| 46 | lgseisen.3 | 
. . . . . 6
 | |
| 47 | eqid 2196 | 
. . . . . 6
 | |
| 48 | eqid 2196 | 
. . . . . 6
 | |
| 49 | eqid 2196 | 
. . . . . 6
 | |
| 50 | eqid 2196 | 
. . . . . 6
 | |
| 51 | eqid 2196 | 
. . . . . 6
 | |
| 52 | eqid 2196 | 
. . . . . 6
 | |
| 53 | 5, 1, 46, 47, 48, 49, 50, 51, 52 | lgseisenlem4 15314 | 
. . . . 5
 | 
| 54 | 14, 39, 42, 44, 45, 53 | modqadd1 10453 | 
. . . 4
 | 
| 55 | qaddcl 9709 | 
. . . . . 6
 | |
| 56 | 39, 42, 55 | syl2anc 411 | 
. . . . 5
 | 
| 57 | df-neg 8200 | 
. . . . . . 7
 | |
| 58 | neg1cn 9095 | 
. . . . . . . . . . . 12
 | |
| 59 | neg1ap0 9099 | 
. . . . . . . . . . . 12
 | |
| 60 | absexpzap 11245 | 
. . . . . . . . . . . 12
 | |
| 61 | 58, 59, 37, 60 | mp3an12i 1352 | 
. . . . . . . . . . 11
 | 
| 62 | ax-1cn 7972 | 
. . . . . . . . . . . . . . 15
 | |
| 63 | 62 | absnegi 11312 | 
. . . . . . . . . . . . . 14
 | 
| 64 | abs1 11237 | 
. . . . . . . . . . . . . 14
 | |
| 65 | 63, 64 | eqtri 2217 | 
. . . . . . . . . . . . 13
 | 
| 66 | 65 | oveq1i 5932 | 
. . . . . . . . . . . 12
 | 
| 67 | 1exp 10660 | 
. . . . . . . . . . . . 13
 | |
| 68 | 37, 67 | syl 14 | 
. . . . . . . . . . . 12
 | 
| 69 | 66, 68 | eqtrid 2241 | 
. . . . . . . . . . 11
 | 
| 70 | 61, 69 | eqtrd 2229 | 
. . . . . . . . . 10
 | 
| 71 | 1le1 8599 | 
. . . . . . . . . 10
 | |
| 72 | 70, 71 | eqbrtrdi 4072 | 
. . . . . . . . 9
 | 
| 73 | neg1rr 9096 | 
. . . . . . . . . . . 12
 | |
| 74 | 73 | a1i 9 | 
. . . . . . . . . . 11
 | 
| 75 | 59 | a1i 9 | 
. . . . . . . . . . 11
 | 
| 76 | 74, 75, 37 | reexpclzapd 10790 | 
. . . . . . . . . 10
 | 
| 77 | 1re 8025 | 
. . . . . . . . . 10
 | |
| 78 | absle 11254 | 
. . . . . . . . . 10
 | |
| 79 | 76, 77, 78 | sylancl 413 | 
. . . . . . . . 9
 | 
| 80 | 72, 79 | mpbid 147 | 
. . . . . . . 8
 | 
| 81 | 80 | simpld 112 | 
. . . . . . 7
 | 
| 82 | 57, 81 | eqbrtrrid 4069 | 
. . . . . 6
 | 
| 83 | 0red 8027 | 
. . . . . . 7
 | |
| 84 | 1red 8041 | 
. . . . . . 7
 | |
| 85 | 83, 84, 76 | lesubaddd 8569 | 
. . . . . 6
 | 
| 86 | 82, 85 | mpbid 147 | 
. . . . 5
 | 
| 87 | 23 | nnred 9003 | 
. . . . . . . 8
 | 
| 88 | peano2rem 8293 | 
. . . . . . . 8
 | |
| 89 | 87, 88 | syl 14 | 
. . . . . . 7
 | 
| 90 | 80 | simprd 114 | 
. . . . . . 7
 | 
| 91 | df-2 9049 | 
. . . . . . . . 9
 | |
| 92 | eldifsni 3751 | 
. . . . . . . . . . . 12
 | |
| 93 | 5, 92 | syl 14 | 
. . . . . . . . . . 11
 | 
| 94 | 23 | nnzd 9447 | 
. . . . . . . . . . . 12
 | 
| 95 | zapne 9400 | 
. . . . . . . . . . . 12
 | |
| 96 | 94, 26, 95 | sylancl 413 | 
. . . . . . . . . . 11
 | 
| 97 | 93, 96 | mpbird 167 | 
. . . . . . . . . 10
 | 
| 98 | 2re 9060 | 
. . . . . . . . . . . 12
 | |
| 99 | 98 | a1i 9 | 
. . . . . . . . . . 11
 | 
| 100 | 5 | eldifad 3168 | 
. . . . . . . . . . . 12
 | 
| 101 | prmuz2 12299 | 
. . . . . . . . . . . 12
 | |
| 102 | eluzle 9613 | 
. . . . . . . . . . . 12
 | |
| 103 | 100, 101, 102 | 3syl 17 | 
. . . . . . . . . . 11
 | 
| 104 | 99, 87, 103 | leltapd 8666 | 
. . . . . . . . . 10
 | 
| 105 | 97, 104 | mpbird 167 | 
. . . . . . . . 9
 | 
| 106 | 91, 105 | eqbrtrrid 4069 | 
. . . . . . . 8
 | 
| 107 | 84, 84, 87 | ltaddsubd 8572 | 
. . . . . . . 8
 | 
| 108 | 106, 107 | mpbid 147 | 
. . . . . . 7
 | 
| 109 | 76, 84, 89, 90, 108 | lelttrd 8151 | 
. . . . . 6
 | 
| 110 | 76, 84, 87 | ltaddsubd 8572 | 
. . . . . 6
 | 
| 111 | 109, 110 | mpbird 167 | 
. . . . 5
 | 
| 112 | modqid 10441 | 
. . . . 5
 | |
| 113 | 56, 44, 86, 111, 112 | syl22anc 1250 | 
. . . 4
 | 
| 114 | 54, 113 | eqtrd 2229 | 
. . 3
 | 
| 115 | 114 | oveq1d 5937 | 
. 2
 | 
| 116 | 76 | recnd 8055 | 
. . 3
 | 
| 117 | pncan 8232 | 
. . 3
 | |
| 118 | 116, 62, 117 | sylancl 413 | 
. 2
 | 
| 119 | 7, 115, 118 | 3eqtrd 2233 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 ax-addf 8001 ax-mulf 8002 | 
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-xor 1387 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-tp 3630 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-of 6135 df-1st 6198 df-2nd 6199 df-tpos 6303 df-recs 6363 df-irdg 6428 df-frec 6449 df-1o 6474 df-2o 6475 df-oadd 6478 df-er 6592 df-ec 6594 df-qs 6598 df-map 6709 df-en 6800 df-dom 6801 df-fin 6802 df-sup 7050 df-inf 7051 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-8 9055 df-9 9056 df-n0 9250 df-z 9327 df-dec 9458 df-uz 9602 df-q 9694 df-rp 9729 df-fz 10084 df-fzo 10218 df-fl 10360 df-mod 10415 df-seqfrec 10540 df-exp 10631 df-ihash 10868 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-clim 11444 df-sumdc 11519 df-proddc 11716 df-dvds 11953 df-gcd 12121 df-prm 12276 df-phi 12379 df-pc 12454 df-struct 12680 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-iress 12686 df-plusg 12768 df-mulr 12769 df-starv 12770 df-sca 12771 df-vsca 12772 df-ip 12773 df-tset 12774 df-ple 12775 df-ds 12777 df-unif 12778 df-0g 12929 df-igsum 12930 df-topgen 12931 df-iimas 12945 df-qus 12946 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-mhm 13091 df-submnd 13092 df-grp 13135 df-minusg 13136 df-sbg 13137 df-mulg 13250 df-subg 13300 df-nsg 13301 df-eqg 13302 df-ghm 13371 df-cmn 13416 df-abl 13417 df-mgp 13477 df-rng 13489 df-ur 13516 df-srg 13520 df-ring 13554 df-cring 13555 df-oppr 13624 df-dvdsr 13645 df-unit 13646 df-invr 13677 df-dvr 13688 df-rhm 13708 df-nzr 13736 df-subrg 13775 df-domn 13815 df-idom 13816 df-lmod 13845 df-lssm 13909 df-lsp 13943 df-sra 13991 df-rgmod 13992 df-lidl 14025 df-rsp 14026 df-2idl 14056 df-bl 14102 df-mopn 14103 df-fg 14105 df-metu 14106 df-cnfld 14113 df-zring 14147 df-zrh 14170 df-zn 14172 df-lgs 15239 | 
| This theorem is referenced by: lgsquadlem2 15319 | 
| Copyright terms: Public domain | W3C validator |