ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgseisen Unicode version

Theorem lgseisen 15738
Description: Eisenstein's lemma, an expression for  ( P  /L Q ) when  P ,  Q are distinct odd primes. (Contributed by Mario Carneiro, 18-Jun-2015.)
Hypotheses
Ref Expression
lgseisen.1  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
lgseisen.2  |-  ( ph  ->  Q  e.  ( Prime  \  { 2 } ) )
lgseisen.3  |-  ( ph  ->  P  =/=  Q )
Assertion
Ref Expression
lgseisen  |-  ( ph  ->  ( Q  /L
P )  =  (
-u 1 ^ sum_ x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) ) ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) )
Distinct variable groups:    x, P    ph, x    x, Q

Proof of Theorem lgseisen
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 lgseisen.2 . . . . 5  |-  ( ph  ->  Q  e.  ( Prime  \  { 2 } ) )
21eldifad 3208 . . . 4  |-  ( ph  ->  Q  e.  Prime )
3 prmz 12619 . . . 4  |-  ( Q  e.  Prime  ->  Q  e.  ZZ )
42, 3syl 14 . . 3  |-  ( ph  ->  Q  e.  ZZ )
5 lgseisen.1 . . 3  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
6 lgsval3 15682 . . 3  |-  ( ( Q  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( Q  /L P )  =  ( ( ( ( Q ^ ( ( P  -  1 )  /  2 ) )  +  1 )  mod 
P )  -  1 ) )
74, 5, 6syl2anc 411 . 2  |-  ( ph  ->  ( Q  /L
P )  =  ( ( ( ( Q ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 ) )
81gausslemma2dlem0a 15713 . . . . . . 7  |-  ( ph  ->  Q  e.  NN )
9 oddprm 12768 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  - 
1 )  /  2
)  e.  NN )
105, 9syl 14 . . . . . . . 8  |-  ( ph  ->  ( ( P  - 
1 )  /  2
)  e.  NN )
1110nnnn0d 9410 . . . . . . 7  |-  ( ph  ->  ( ( P  - 
1 )  /  2
)  e.  NN0 )
128, 11nnexpcld 10904 . . . . . 6  |-  ( ph  ->  ( Q ^ (
( P  -  1 )  /  2 ) )  e.  NN )
13 nnq 9816 . . . . . 6  |-  ( ( Q ^ ( ( P  -  1 )  /  2 ) )  e.  NN  ->  ( Q ^ ( ( P  -  1 )  / 
2 ) )  e.  QQ )
1412, 13syl 14 . . . . 5  |-  ( ph  ->  ( Q ^ (
( P  -  1 )  /  2 ) )  e.  QQ )
15 1zzd 9461 . . . . . . . 8  |-  ( ph  ->  1  e.  ZZ )
1615znegcld 9559 . . . . . . 7  |-  ( ph  -> 
-u 1  e.  ZZ )
17 zq 9809 . . . . . . 7  |-  ( -u
1  e.  ZZ  ->  -u
1  e.  QQ )
1816, 17syl 14 . . . . . 6  |-  ( ph  -> 
-u 1  e.  QQ )
19 neg1ne0 9205 . . . . . . 7  |-  -u 1  =/=  0
2019a1i 9 . . . . . 6  |-  ( ph  -> 
-u 1  =/=  0
)
2110nnzd 9556 . . . . . . . 8  |-  ( ph  ->  ( ( P  - 
1 )  /  2
)  e.  ZZ )
2215, 21fzfigd 10640 . . . . . . 7  |-  ( ph  ->  ( 1 ... (
( P  -  1 )  /  2 ) )  e.  Fin )
235gausslemma2dlem0a 15713 . . . . . . . . . 10  |-  ( ph  ->  P  e.  NN )
24 znq 9807 . . . . . . . . . 10  |-  ( ( Q  e.  ZZ  /\  P  e.  NN )  ->  ( Q  /  P
)  e.  QQ )
254, 23, 24syl2anc 411 . . . . . . . . 9  |-  ( ph  ->  ( Q  /  P
)  e.  QQ )
26 2z 9462 . . . . . . . . . . . 12  |-  2  e.  ZZ
2726a1i 9 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  2  e.  ZZ )
28 elfznn 10238 . . . . . . . . . . . . 13  |-  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  ->  x  e.  NN )
2928adantl 277 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  x  e.  NN )
3029nnzd 9556 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  x  e.  ZZ )
3127, 30zmulcld 9563 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
2  x.  x )  e.  ZZ )
32 zq 9809 . . . . . . . . . 10  |-  ( ( 2  x.  x )  e.  ZZ  ->  (
2  x.  x )  e.  QQ )
3331, 32syl 14 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
2  x.  x )  e.  QQ )
34 qmulcl 9820 . . . . . . . . 9  |-  ( ( ( Q  /  P
)  e.  QQ  /\  ( 2  x.  x
)  e.  QQ )  ->  ( ( Q  /  P )  x.  ( 2  x.  x
) )  e.  QQ )
3525, 33, 34syl2an2r 597 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( Q  /  P
)  x.  ( 2  x.  x ) )  e.  QQ )
3635flqcld 10484 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x
) ) )  e.  ZZ )
3722, 36fsumzcl 11899 . . . . . 6  |-  ( ph  -> 
sum_ x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) )  e.  ZZ )
38 qexpclz 10769 . . . . . 6  |-  ( (
-u 1  e.  QQ  /\  -u 1  =/=  0  /\  sum_ x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) ( |_ `  (
( Q  /  P
)  x.  ( 2  x.  x ) ) )  e.  ZZ )  ->  ( -u 1 ^ sum_ x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) ( |_ `  (
( Q  /  P
)  x.  ( 2  x.  x ) ) ) )  e.  QQ )
3918, 20, 37, 38syl3anc 1271 . . . . 5  |-  ( ph  ->  ( -u 1 ^
sum_ x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) )  e.  QQ )
40 1z 9460 . . . . . 6  |-  1  e.  ZZ
41 zq 9809 . . . . . 6  |-  ( 1  e.  ZZ  ->  1  e.  QQ )
4240, 41mp1i 10 . . . . 5  |-  ( ph  ->  1  e.  QQ )
43 nnq 9816 . . . . . 6  |-  ( P  e.  NN  ->  P  e.  QQ )
4423, 43syl 14 . . . . 5  |-  ( ph  ->  P  e.  QQ )
4523nngt0d 9142 . . . . 5  |-  ( ph  ->  0  <  P )
46 lgseisen.3 . . . . . 6  |-  ( ph  ->  P  =/=  Q )
47 eqid 2229 . . . . . 6  |-  ( ( Q  x.  ( 2  x.  x ) )  mod  P )  =  ( ( Q  x.  ( 2  x.  x
) )  mod  P
)
48 eqid 2229 . . . . . 6  |-  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( ( ( ( -u 1 ^ ( ( Q  x.  ( 2  x.  x ) )  mod 
P ) )  x.  ( ( Q  x.  ( 2  x.  x
) )  mod  P
) )  mod  P
)  /  2 ) )  =  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( ( ( ( -u 1 ^ ( ( Q  x.  ( 2  x.  x ) )  mod 
P ) )  x.  ( ( Q  x.  ( 2  x.  x
) )  mod  P
) )  mod  P
)  /  2 ) )
49 eqid 2229 . . . . . 6  |-  ( ( Q  x.  ( 2  x.  y ) )  mod  P )  =  ( ( Q  x.  ( 2  x.  y
) )  mod  P
)
50 eqid 2229 . . . . . 6  |-  (ℤ/n `  P
)  =  (ℤ/n `  P
)
51 eqid 2229 . . . . . 6  |-  (mulGrp `  (ℤ/n `  P ) )  =  (mulGrp `  (ℤ/n `  P ) )
52 eqid 2229 . . . . . 6  |-  ( ZRHom `  (ℤ/n `  P ) )  =  ( ZRHom `  (ℤ/n `  P
) )
535, 1, 46, 47, 48, 49, 50, 51, 52lgseisenlem4 15737 . . . . 5  |-  ( ph  ->  ( ( Q ^
( ( P  - 
1 )  /  2
) )  mod  P
)  =  ( (
-u 1 ^ sum_ x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) ) ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  mod  P ) )
5414, 39, 42, 44, 45, 53modqadd1 10570 . . . 4  |-  ( ph  ->  ( ( ( Q ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  =  ( ( ( -u 1 ^
sum_ x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) )  +  1 )  mod  P ) )
55 qaddcl 9818 . . . . . 6  |-  ( ( ( -u 1 ^
sum_ x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) )  e.  QQ  /\  1  e.  QQ )  ->  ( ( -u 1 ^ sum_ x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) ( |_ `  (
( Q  /  P
)  x.  ( 2  x.  x ) ) ) )  +  1 )  e.  QQ )
5639, 42, 55syl2anc 411 . . . . 5  |-  ( ph  ->  ( ( -u 1 ^ sum_ x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) ( |_ `  (
( Q  /  P
)  x.  ( 2  x.  x ) ) ) )  +  1 )  e.  QQ )
57 df-neg 8308 . . . . . . 7  |-  -u 1  =  ( 0  -  1 )
58 neg1cn 9203 . . . . . . . . . . . 12  |-  -u 1  e.  CC
59 neg1ap0 9207 . . . . . . . . . . . 12  |-  -u 1 #  0
60 absexpzap 11577 . . . . . . . . . . . 12  |-  ( (
-u 1  e.  CC  /\  -u 1 #  0  /\  sum_
x  e.  ( 1 ... ( ( P  -  1 )  / 
2 ) ) ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) )  e.  ZZ )  -> 
( abs `  ( -u 1 ^ sum_ x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) )  =  ( ( abs `  -u 1 ) ^ sum_ x  e.  ( 1 ... ( ( P  -  1 )  / 
2 ) ) ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) ) )
6158, 59, 37, 60mp3an12i 1375 . . . . . . . . . . 11  |-  ( ph  ->  ( abs `  ( -u 1 ^ sum_ x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) )  =  ( ( abs `  -u 1 ) ^ sum_ x  e.  ( 1 ... ( ( P  -  1 )  / 
2 ) ) ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) ) )
62 ax-1cn 8080 . . . . . . . . . . . . . . 15  |-  1  e.  CC
6362absnegi 11644 . . . . . . . . . . . . . 14  |-  ( abs `  -u 1 )  =  ( abs `  1
)
64 abs1 11569 . . . . . . . . . . . . . 14  |-  ( abs `  1 )  =  1
6563, 64eqtri 2250 . . . . . . . . . . . . 13  |-  ( abs `  -u 1 )  =  1
6665oveq1i 6004 . . . . . . . . . . . 12  |-  ( ( abs `  -u 1
) ^ sum_ x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) )  =  ( 1 ^ sum_ x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) ) ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )
67 1exp 10777 . . . . . . . . . . . . 13  |-  ( sum_ x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) ) ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) )  e.  ZZ  ->  ( 1 ^ sum_ x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) ( |_ `  (
( Q  /  P
)  x.  ( 2  x.  x ) ) ) )  =  1 )
6837, 67syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1 ^ sum_ x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) ) ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  =  1 )
6966, 68eqtrid 2274 . . . . . . . . . . 11  |-  ( ph  ->  ( ( abs `  -u 1
) ^ sum_ x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) )  =  1 )
7061, 69eqtrd 2262 . . . . . . . . . 10  |-  ( ph  ->  ( abs `  ( -u 1 ^ sum_ x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) )  =  1 )
71 1le1 8707 . . . . . . . . . 10  |-  1  <_  1
7270, 71eqbrtrdi 4121 . . . . . . . . 9  |-  ( ph  ->  ( abs `  ( -u 1 ^ sum_ x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) )  <_  1 )
73 neg1rr 9204 . . . . . . . . . . . 12  |-  -u 1  e.  RR
7473a1i 9 . . . . . . . . . . 11  |-  ( ph  -> 
-u 1  e.  RR )
7559a1i 9 . . . . . . . . . . 11  |-  ( ph  -> 
-u 1 #  0 )
7674, 75, 37reexpclzapd 10907 . . . . . . . . . 10  |-  ( ph  ->  ( -u 1 ^
sum_ x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) )  e.  RR )
77 1re 8133 . . . . . . . . . 10  |-  1  e.  RR
78 absle 11586 . . . . . . . . . 10  |-  ( ( ( -u 1 ^
sum_ x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) )  e.  RR  /\  1  e.  RR )  ->  ( ( abs `  ( -u 1 ^ sum_ x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) )  <_  1  <->  ( -u 1  <_  ( -u 1 ^
sum_ x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) )  /\  ( -u
1 ^ sum_ x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) )  <_ 
1 ) ) )
7976, 77, 78sylancl 413 . . . . . . . . 9  |-  ( ph  ->  ( ( abs `  ( -u 1 ^ sum_ x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) )  <_  1  <->  ( -u 1  <_  ( -u 1 ^
sum_ x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) )  /\  ( -u
1 ^ sum_ x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) )  <_ 
1 ) ) )
8072, 79mpbid 147 . . . . . . . 8  |-  ( ph  ->  ( -u 1  <_ 
( -u 1 ^ sum_ x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) ) ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  /\  ( -u 1 ^ sum_ x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) ( |_ `  (
( Q  /  P
)  x.  ( 2  x.  x ) ) ) )  <_  1
) )
8180simpld 112 . . . . . . 7  |-  ( ph  -> 
-u 1  <_  ( -u 1 ^ sum_ x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) )
8257, 81eqbrtrrid 4118 . . . . . 6  |-  ( ph  ->  ( 0  -  1 )  <_  ( -u 1 ^ sum_ x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) ( |_ `  (
( Q  /  P
)  x.  ( 2  x.  x ) ) ) ) )
83 0red 8135 . . . . . . 7  |-  ( ph  ->  0  e.  RR )
84 1red 8149 . . . . . . 7  |-  ( ph  ->  1  e.  RR )
8583, 84, 76lesubaddd 8677 . . . . . 6  |-  ( ph  ->  ( ( 0  -  1 )  <_  ( -u 1 ^ sum_ x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) )  <->  0  <_  ( ( -u 1 ^
sum_ x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) )  +  1 ) ) )
8682, 85mpbid 147 . . . . 5  |-  ( ph  ->  0  <_  ( ( -u 1 ^ sum_ x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) )  +  1 ) )
8723nnred 9111 . . . . . . . 8  |-  ( ph  ->  P  e.  RR )
88 peano2rem 8401 . . . . . . . 8  |-  ( P  e.  RR  ->  ( P  -  1 )  e.  RR )
8987, 88syl 14 . . . . . . 7  |-  ( ph  ->  ( P  -  1 )  e.  RR )
9080simprd 114 . . . . . . 7  |-  ( ph  ->  ( -u 1 ^
sum_ x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) )  <_  1 )
91 df-2 9157 . . . . . . . . 9  |-  2  =  ( 1  +  1 )
92 eldifsni 3796 . . . . . . . . . . . 12  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  =/=  2 )
935, 92syl 14 . . . . . . . . . . 11  |-  ( ph  ->  P  =/=  2 )
9423nnzd 9556 . . . . . . . . . . . 12  |-  ( ph  ->  P  e.  ZZ )
95 zapne 9509 . . . . . . . . . . . 12  |-  ( ( P  e.  ZZ  /\  2  e.  ZZ )  ->  ( P #  2  <->  P  =/=  2 ) )
9694, 26, 95sylancl 413 . . . . . . . . . . 11  |-  ( ph  ->  ( P #  2  <->  P  =/=  2 ) )
9793, 96mpbird 167 . . . . . . . . . 10  |-  ( ph  ->  P #  2 )
98 2re 9168 . . . . . . . . . . . 12  |-  2  e.  RR
9998a1i 9 . . . . . . . . . . 11  |-  ( ph  ->  2  e.  RR )
1005eldifad 3208 . . . . . . . . . . . 12  |-  ( ph  ->  P  e.  Prime )
101 prmuz2 12639 . . . . . . . . . . . 12  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
102 eluzle 9722 . . . . . . . . . . . 12  |-  ( P  e.  ( ZZ>= `  2
)  ->  2  <_  P )
103100, 101, 1023syl 17 . . . . . . . . . . 11  |-  ( ph  ->  2  <_  P )
10499, 87, 103leltapd 8774 . . . . . . . . . 10  |-  ( ph  ->  ( 2  <  P  <->  P #  2 ) )
10597, 104mpbird 167 . . . . . . . . 9  |-  ( ph  ->  2  <  P )
10691, 105eqbrtrrid 4118 . . . . . . . 8  |-  ( ph  ->  ( 1  +  1 )  <  P )
10784, 84, 87ltaddsubd 8680 . . . . . . . 8  |-  ( ph  ->  ( ( 1  +  1 )  <  P  <->  1  <  ( P  - 
1 ) ) )
108106, 107mpbid 147 . . . . . . 7  |-  ( ph  ->  1  <  ( P  -  1 ) )
10976, 84, 89, 90, 108lelttrd 8259 . . . . . 6  |-  ( ph  ->  ( -u 1 ^
sum_ x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) )  <  ( P  -  1 ) )
11076, 84, 87ltaddsubd 8680 . . . . . 6  |-  ( ph  ->  ( ( ( -u
1 ^ sum_ x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) )  +  1 )  <  P  <->  (
-u 1 ^ sum_ x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) ) ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  <  ( P  - 
1 ) ) )
111109, 110mpbird 167 . . . . 5  |-  ( ph  ->  ( ( -u 1 ^ sum_ x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) ( |_ `  (
( Q  /  P
)  x.  ( 2  x.  x ) ) ) )  +  1 )  <  P )
112 modqid 10558 . . . . 5  |-  ( ( ( ( ( -u
1 ^ sum_ x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) )  +  1 )  e.  QQ  /\  P  e.  QQ )  /\  ( 0  <_ 
( ( -u 1 ^ sum_ x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) ( |_ `  (
( Q  /  P
)  x.  ( 2  x.  x ) ) ) )  +  1 )  /\  ( (
-u 1 ^ sum_ x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) ) ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  +  1 )  < 
P ) )  -> 
( ( ( -u
1 ^ sum_ x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) )  +  1 )  mod  P
)  =  ( (
-u 1 ^ sum_ x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) ) ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  +  1 ) )
11356, 44, 86, 111, 112syl22anc 1272 . . . 4  |-  ( ph  ->  ( ( ( -u
1 ^ sum_ x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) )  +  1 )  mod  P
)  =  ( (
-u 1 ^ sum_ x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) ) ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  +  1 ) )
11454, 113eqtrd 2262 . . 3  |-  ( ph  ->  ( ( ( Q ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  =  ( (
-u 1 ^ sum_ x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) ) ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  +  1 ) )
115114oveq1d 6009 . 2  |-  ( ph  ->  ( ( ( ( Q ^ ( ( P  -  1 )  /  2 ) )  +  1 )  mod 
P )  -  1 )  =  ( ( ( -u 1 ^
sum_ x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) )  +  1 )  -  1 ) )
11676recnd 8163 . . 3  |-  ( ph  ->  ( -u 1 ^
sum_ x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) )  e.  CC )
117 pncan 8340 . . 3  |-  ( ( ( -u 1 ^
sum_ x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) )  e.  CC  /\  1  e.  CC )  ->  ( ( ( -u
1 ^ sum_ x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) )  +  1 )  -  1 )  =  ( -u
1 ^ sum_ x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) )
118116, 62, 117sylancl 413 . 2  |-  ( ph  ->  ( ( ( -u
1 ^ sum_ x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) )  +  1 )  -  1 )  =  ( -u
1 ^ sum_ x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) )
1197, 115, 1183eqtrd 2266 1  |-  ( ph  ->  ( Q  /L
P )  =  (
-u 1 ^ sum_ x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) ) ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200    =/= wne 2400    \ cdif 3194   {csn 3666   class class class wbr 4082    |-> cmpt 4144   ` cfv 5314  (class class class)co 5994   CCcc 7985   RRcr 7986   0cc0 7987   1c1 7988    + caddc 7990    x. cmul 7992    < clt 8169    <_ cle 8170    - cmin 8305   -ucneg 8306   # cap 8716    / cdiv 8807   NNcn 9098   2c2 9149   ZZcz 9434   ZZ>=cuz 9710   QQcq 9802   ...cfz 10192   |_cfl 10475    mod cmo 10531   ^cexp 10747   abscabs 11494   sum_csu 11850   Primecprime 12615  mulGrpcmgp 13869   ZRHomczrh 14560  ℤ/nczn 14562    /Lclgs 15661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106  ax-caucvg 8107  ax-addf 8109  ax-mulf 8110
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-xor 1418  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-isom 5323  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-of 6208  df-1st 6276  df-2nd 6277  df-tpos 6381  df-recs 6441  df-irdg 6506  df-frec 6527  df-1o 6552  df-2o 6553  df-oadd 6556  df-er 6670  df-ec 6672  df-qs 6676  df-map 6787  df-en 6878  df-dom 6879  df-fin 6880  df-sup 7139  df-inf 7140  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-5 9160  df-6 9161  df-7 9162  df-8 9163  df-9 9164  df-n0 9358  df-z 9435  df-dec 9567  df-uz 9711  df-q 9803  df-rp 9838  df-fz 10193  df-fzo 10327  df-fl 10477  df-mod 10532  df-seqfrec 10657  df-exp 10748  df-ihash 10985  df-cj 11339  df-re 11340  df-im 11341  df-rsqrt 11495  df-abs 11496  df-clim 11776  df-sumdc 11851  df-proddc 12048  df-dvds 12285  df-gcd 12461  df-prm 12616  df-phi 12719  df-pc 12794  df-struct 13020  df-ndx 13021  df-slot 13022  df-base 13024  df-sets 13025  df-iress 13026  df-plusg 13109  df-mulr 13110  df-starv 13111  df-sca 13112  df-vsca 13113  df-ip 13114  df-tset 13115  df-ple 13116  df-ds 13118  df-unif 13119  df-0g 13277  df-igsum 13278  df-topgen 13279  df-iimas 13321  df-qus 13322  df-mgm 13375  df-sgrp 13421  df-mnd 13436  df-mhm 13478  df-submnd 13479  df-grp 13522  df-minusg 13523  df-sbg 13524  df-mulg 13643  df-subg 13693  df-nsg 13694  df-eqg 13695  df-ghm 13764  df-cmn 13809  df-abl 13810  df-mgp 13870  df-rng 13882  df-ur 13909  df-srg 13913  df-ring 13947  df-cring 13948  df-oppr 14017  df-dvdsr 14038  df-unit 14039  df-invr 14070  df-dvr 14081  df-rhm 14101  df-nzr 14129  df-subrg 14168  df-domn 14208  df-idom 14209  df-lmod 14238  df-lssm 14302  df-lsp 14336  df-sra 14384  df-rgmod 14385  df-lidl 14418  df-rsp 14419  df-2idl 14449  df-bl 14495  df-mopn 14496  df-fg 14498  df-metu 14499  df-cnfld 14506  df-zring 14540  df-zrh 14563  df-zn 14565  df-lgs 15662
This theorem is referenced by:  lgsquadlem2  15742
  Copyright terms: Public domain W3C validator