ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgseisen Unicode version

Theorem lgseisen 15399
Description: Eisenstein's lemma, an expression for  ( P  /L Q ) when  P ,  Q are distinct odd primes. (Contributed by Mario Carneiro, 18-Jun-2015.)
Hypotheses
Ref Expression
lgseisen.1  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
lgseisen.2  |-  ( ph  ->  Q  e.  ( Prime  \  { 2 } ) )
lgseisen.3  |-  ( ph  ->  P  =/=  Q )
Assertion
Ref Expression
lgseisen  |-  ( ph  ->  ( Q  /L
P )  =  (
-u 1 ^ sum_ x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) ) ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) )
Distinct variable groups:    x, P    ph, x    x, Q

Proof of Theorem lgseisen
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 lgseisen.2 . . . . 5  |-  ( ph  ->  Q  e.  ( Prime  \  { 2 } ) )
21eldifad 3168 . . . 4  |-  ( ph  ->  Q  e.  Prime )
3 prmz 12304 . . . 4  |-  ( Q  e.  Prime  ->  Q  e.  ZZ )
42, 3syl 14 . . 3  |-  ( ph  ->  Q  e.  ZZ )
5 lgseisen.1 . . 3  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
6 lgsval3 15343 . . 3  |-  ( ( Q  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( Q  /L P )  =  ( ( ( ( Q ^ ( ( P  -  1 )  /  2 ) )  +  1 )  mod 
P )  -  1 ) )
74, 5, 6syl2anc 411 . 2  |-  ( ph  ->  ( Q  /L
P )  =  ( ( ( ( Q ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 ) )
81gausslemma2dlem0a 15374 . . . . . . 7  |-  ( ph  ->  Q  e.  NN )
9 oddprm 12453 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  - 
1 )  /  2
)  e.  NN )
105, 9syl 14 . . . . . . . 8  |-  ( ph  ->  ( ( P  - 
1 )  /  2
)  e.  NN )
1110nnnn0d 9319 . . . . . . 7  |-  ( ph  ->  ( ( P  - 
1 )  /  2
)  e.  NN0 )
128, 11nnexpcld 10804 . . . . . 6  |-  ( ph  ->  ( Q ^ (
( P  -  1 )  /  2 ) )  e.  NN )
13 nnq 9724 . . . . . 6  |-  ( ( Q ^ ( ( P  -  1 )  /  2 ) )  e.  NN  ->  ( Q ^ ( ( P  -  1 )  / 
2 ) )  e.  QQ )
1412, 13syl 14 . . . . 5  |-  ( ph  ->  ( Q ^ (
( P  -  1 )  /  2 ) )  e.  QQ )
15 1zzd 9370 . . . . . . . 8  |-  ( ph  ->  1  e.  ZZ )
1615znegcld 9467 . . . . . . 7  |-  ( ph  -> 
-u 1  e.  ZZ )
17 zq 9717 . . . . . . 7  |-  ( -u
1  e.  ZZ  ->  -u
1  e.  QQ )
1816, 17syl 14 . . . . . 6  |-  ( ph  -> 
-u 1  e.  QQ )
19 neg1ne0 9114 . . . . . . 7  |-  -u 1  =/=  0
2019a1i 9 . . . . . 6  |-  ( ph  -> 
-u 1  =/=  0
)
2110nnzd 9464 . . . . . . . 8  |-  ( ph  ->  ( ( P  - 
1 )  /  2
)  e.  ZZ )
2215, 21fzfigd 10540 . . . . . . 7  |-  ( ph  ->  ( 1 ... (
( P  -  1 )  /  2 ) )  e.  Fin )
235gausslemma2dlem0a 15374 . . . . . . . . . 10  |-  ( ph  ->  P  e.  NN )
24 znq 9715 . . . . . . . . . 10  |-  ( ( Q  e.  ZZ  /\  P  e.  NN )  ->  ( Q  /  P
)  e.  QQ )
254, 23, 24syl2anc 411 . . . . . . . . 9  |-  ( ph  ->  ( Q  /  P
)  e.  QQ )
26 2z 9371 . . . . . . . . . . . 12  |-  2  e.  ZZ
2726a1i 9 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  2  e.  ZZ )
28 elfznn 10146 . . . . . . . . . . . . 13  |-  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  ->  x  e.  NN )
2928adantl 277 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  x  e.  NN )
3029nnzd 9464 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  x  e.  ZZ )
3127, 30zmulcld 9471 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
2  x.  x )  e.  ZZ )
32 zq 9717 . . . . . . . . . 10  |-  ( ( 2  x.  x )  e.  ZZ  ->  (
2  x.  x )  e.  QQ )
3331, 32syl 14 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
2  x.  x )  e.  QQ )
34 qmulcl 9728 . . . . . . . . 9  |-  ( ( ( Q  /  P
)  e.  QQ  /\  ( 2  x.  x
)  e.  QQ )  ->  ( ( Q  /  P )  x.  ( 2  x.  x
) )  e.  QQ )
3525, 33, 34syl2an2r 595 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( Q  /  P
)  x.  ( 2  x.  x ) )  e.  QQ )
3635flqcld 10384 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x
) ) )  e.  ZZ )
3722, 36fsumzcl 11584 . . . . . 6  |-  ( ph  -> 
sum_ x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) )  e.  ZZ )
38 qexpclz 10669 . . . . . 6  |-  ( (
-u 1  e.  QQ  /\  -u 1  =/=  0  /\  sum_ x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) ( |_ `  (
( Q  /  P
)  x.  ( 2  x.  x ) ) )  e.  ZZ )  ->  ( -u 1 ^ sum_ x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) ( |_ `  (
( Q  /  P
)  x.  ( 2  x.  x ) ) ) )  e.  QQ )
3918, 20, 37, 38syl3anc 1249 . . . . 5  |-  ( ph  ->  ( -u 1 ^
sum_ x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) )  e.  QQ )
40 1z 9369 . . . . . 6  |-  1  e.  ZZ
41 zq 9717 . . . . . 6  |-  ( 1  e.  ZZ  ->  1  e.  QQ )
4240, 41mp1i 10 . . . . 5  |-  ( ph  ->  1  e.  QQ )
43 nnq 9724 . . . . . 6  |-  ( P  e.  NN  ->  P  e.  QQ )
4423, 43syl 14 . . . . 5  |-  ( ph  ->  P  e.  QQ )
4523nngt0d 9051 . . . . 5  |-  ( ph  ->  0  <  P )
46 lgseisen.3 . . . . . 6  |-  ( ph  ->  P  =/=  Q )
47 eqid 2196 . . . . . 6  |-  ( ( Q  x.  ( 2  x.  x ) )  mod  P )  =  ( ( Q  x.  ( 2  x.  x
) )  mod  P
)
48 eqid 2196 . . . . . 6  |-  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( ( ( ( -u 1 ^ ( ( Q  x.  ( 2  x.  x ) )  mod 
P ) )  x.  ( ( Q  x.  ( 2  x.  x
) )  mod  P
) )  mod  P
)  /  2 ) )  =  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( ( ( ( -u 1 ^ ( ( Q  x.  ( 2  x.  x ) )  mod 
P ) )  x.  ( ( Q  x.  ( 2  x.  x
) )  mod  P
) )  mod  P
)  /  2 ) )
49 eqid 2196 . . . . . 6  |-  ( ( Q  x.  ( 2  x.  y ) )  mod  P )  =  ( ( Q  x.  ( 2  x.  y
) )  mod  P
)
50 eqid 2196 . . . . . 6  |-  (ℤ/n `  P
)  =  (ℤ/n `  P
)
51 eqid 2196 . . . . . 6  |-  (mulGrp `  (ℤ/n `  P ) )  =  (mulGrp `  (ℤ/n `  P ) )
52 eqid 2196 . . . . . 6  |-  ( ZRHom `  (ℤ/n `  P ) )  =  ( ZRHom `  (ℤ/n `  P
) )
535, 1, 46, 47, 48, 49, 50, 51, 52lgseisenlem4 15398 . . . . 5  |-  ( ph  ->  ( ( Q ^
( ( P  - 
1 )  /  2
) )  mod  P
)  =  ( (
-u 1 ^ sum_ x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) ) ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  mod  P ) )
5414, 39, 42, 44, 45, 53modqadd1 10470 . . . 4  |-  ( ph  ->  ( ( ( Q ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  =  ( ( ( -u 1 ^
sum_ x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) )  +  1 )  mod  P ) )
55 qaddcl 9726 . . . . . 6  |-  ( ( ( -u 1 ^
sum_ x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) )  e.  QQ  /\  1  e.  QQ )  ->  ( ( -u 1 ^ sum_ x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) ( |_ `  (
( Q  /  P
)  x.  ( 2  x.  x ) ) ) )  +  1 )  e.  QQ )
5639, 42, 55syl2anc 411 . . . . 5  |-  ( ph  ->  ( ( -u 1 ^ sum_ x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) ( |_ `  (
( Q  /  P
)  x.  ( 2  x.  x ) ) ) )  +  1 )  e.  QQ )
57 df-neg 8217 . . . . . . 7  |-  -u 1  =  ( 0  -  1 )
58 neg1cn 9112 . . . . . . . . . . . 12  |-  -u 1  e.  CC
59 neg1ap0 9116 . . . . . . . . . . . 12  |-  -u 1 #  0
60 absexpzap 11262 . . . . . . . . . . . 12  |-  ( (
-u 1  e.  CC  /\  -u 1 #  0  /\  sum_
x  e.  ( 1 ... ( ( P  -  1 )  / 
2 ) ) ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) )  e.  ZZ )  -> 
( abs `  ( -u 1 ^ sum_ x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) )  =  ( ( abs `  -u 1 ) ^ sum_ x  e.  ( 1 ... ( ( P  -  1 )  / 
2 ) ) ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) ) )
6158, 59, 37, 60mp3an12i 1352 . . . . . . . . . . 11  |-  ( ph  ->  ( abs `  ( -u 1 ^ sum_ x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) )  =  ( ( abs `  -u 1 ) ^ sum_ x  e.  ( 1 ... ( ( P  -  1 )  / 
2 ) ) ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) ) )
62 ax-1cn 7989 . . . . . . . . . . . . . . 15  |-  1  e.  CC
6362absnegi 11329 . . . . . . . . . . . . . 14  |-  ( abs `  -u 1 )  =  ( abs `  1
)
64 abs1 11254 . . . . . . . . . . . . . 14  |-  ( abs `  1 )  =  1
6563, 64eqtri 2217 . . . . . . . . . . . . 13  |-  ( abs `  -u 1 )  =  1
6665oveq1i 5935 . . . . . . . . . . . 12  |-  ( ( abs `  -u 1
) ^ sum_ x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) )  =  ( 1 ^ sum_ x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) ) ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )
67 1exp 10677 . . . . . . . . . . . . 13  |-  ( sum_ x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) ) ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) )  e.  ZZ  ->  ( 1 ^ sum_ x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) ( |_ `  (
( Q  /  P
)  x.  ( 2  x.  x ) ) ) )  =  1 )
6837, 67syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1 ^ sum_ x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) ) ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  =  1 )
6966, 68eqtrid 2241 . . . . . . . . . . 11  |-  ( ph  ->  ( ( abs `  -u 1
) ^ sum_ x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) )  =  1 )
7061, 69eqtrd 2229 . . . . . . . . . 10  |-  ( ph  ->  ( abs `  ( -u 1 ^ sum_ x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) )  =  1 )
71 1le1 8616 . . . . . . . . . 10  |-  1  <_  1
7270, 71eqbrtrdi 4073 . . . . . . . . 9  |-  ( ph  ->  ( abs `  ( -u 1 ^ sum_ x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) )  <_  1 )
73 neg1rr 9113 . . . . . . . . . . . 12  |-  -u 1  e.  RR
7473a1i 9 . . . . . . . . . . 11  |-  ( ph  -> 
-u 1  e.  RR )
7559a1i 9 . . . . . . . . . . 11  |-  ( ph  -> 
-u 1 #  0 )
7674, 75, 37reexpclzapd 10807 . . . . . . . . . 10  |-  ( ph  ->  ( -u 1 ^
sum_ x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) )  e.  RR )
77 1re 8042 . . . . . . . . . 10  |-  1  e.  RR
78 absle 11271 . . . . . . . . . 10  |-  ( ( ( -u 1 ^
sum_ x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) )  e.  RR  /\  1  e.  RR )  ->  ( ( abs `  ( -u 1 ^ sum_ x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) )  <_  1  <->  ( -u 1  <_  ( -u 1 ^
sum_ x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) )  /\  ( -u
1 ^ sum_ x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) )  <_ 
1 ) ) )
7976, 77, 78sylancl 413 . . . . . . . . 9  |-  ( ph  ->  ( ( abs `  ( -u 1 ^ sum_ x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) )  <_  1  <->  ( -u 1  <_  ( -u 1 ^
sum_ x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) )  /\  ( -u
1 ^ sum_ x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) )  <_ 
1 ) ) )
8072, 79mpbid 147 . . . . . . . 8  |-  ( ph  ->  ( -u 1  <_ 
( -u 1 ^ sum_ x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) ) ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  /\  ( -u 1 ^ sum_ x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) ( |_ `  (
( Q  /  P
)  x.  ( 2  x.  x ) ) ) )  <_  1
) )
8180simpld 112 . . . . . . 7  |-  ( ph  -> 
-u 1  <_  ( -u 1 ^ sum_ x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) )
8257, 81eqbrtrrid 4070 . . . . . 6  |-  ( ph  ->  ( 0  -  1 )  <_  ( -u 1 ^ sum_ x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) ( |_ `  (
( Q  /  P
)  x.  ( 2  x.  x ) ) ) ) )
83 0red 8044 . . . . . . 7  |-  ( ph  ->  0  e.  RR )
84 1red 8058 . . . . . . 7  |-  ( ph  ->  1  e.  RR )
8583, 84, 76lesubaddd 8586 . . . . . 6  |-  ( ph  ->  ( ( 0  -  1 )  <_  ( -u 1 ^ sum_ x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) )  <->  0  <_  ( ( -u 1 ^
sum_ x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) )  +  1 ) ) )
8682, 85mpbid 147 . . . . 5  |-  ( ph  ->  0  <_  ( ( -u 1 ^ sum_ x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) )  +  1 ) )
8723nnred 9020 . . . . . . . 8  |-  ( ph  ->  P  e.  RR )
88 peano2rem 8310 . . . . . . . 8  |-  ( P  e.  RR  ->  ( P  -  1 )  e.  RR )
8987, 88syl 14 . . . . . . 7  |-  ( ph  ->  ( P  -  1 )  e.  RR )
9080simprd 114 . . . . . . 7  |-  ( ph  ->  ( -u 1 ^
sum_ x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) )  <_  1 )
91 df-2 9066 . . . . . . . . 9  |-  2  =  ( 1  +  1 )
92 eldifsni 3752 . . . . . . . . . . . 12  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  =/=  2 )
935, 92syl 14 . . . . . . . . . . 11  |-  ( ph  ->  P  =/=  2 )
9423nnzd 9464 . . . . . . . . . . . 12  |-  ( ph  ->  P  e.  ZZ )
95 zapne 9417 . . . . . . . . . . . 12  |-  ( ( P  e.  ZZ  /\  2  e.  ZZ )  ->  ( P #  2  <->  P  =/=  2 ) )
9694, 26, 95sylancl 413 . . . . . . . . . . 11  |-  ( ph  ->  ( P #  2  <->  P  =/=  2 ) )
9793, 96mpbird 167 . . . . . . . . . 10  |-  ( ph  ->  P #  2 )
98 2re 9077 . . . . . . . . . . . 12  |-  2  e.  RR
9998a1i 9 . . . . . . . . . . 11  |-  ( ph  ->  2  e.  RR )
1005eldifad 3168 . . . . . . . . . . . 12  |-  ( ph  ->  P  e.  Prime )
101 prmuz2 12324 . . . . . . . . . . . 12  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
102 eluzle 9630 . . . . . . . . . . . 12  |-  ( P  e.  ( ZZ>= `  2
)  ->  2  <_  P )
103100, 101, 1023syl 17 . . . . . . . . . . 11  |-  ( ph  ->  2  <_  P )
10499, 87, 103leltapd 8683 . . . . . . . . . 10  |-  ( ph  ->  ( 2  <  P  <->  P #  2 ) )
10597, 104mpbird 167 . . . . . . . . 9  |-  ( ph  ->  2  <  P )
10691, 105eqbrtrrid 4070 . . . . . . . 8  |-  ( ph  ->  ( 1  +  1 )  <  P )
10784, 84, 87ltaddsubd 8589 . . . . . . . 8  |-  ( ph  ->  ( ( 1  +  1 )  <  P  <->  1  <  ( P  - 
1 ) ) )
108106, 107mpbid 147 . . . . . . 7  |-  ( ph  ->  1  <  ( P  -  1 ) )
10976, 84, 89, 90, 108lelttrd 8168 . . . . . 6  |-  ( ph  ->  ( -u 1 ^
sum_ x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) )  <  ( P  -  1 ) )
11076, 84, 87ltaddsubd 8589 . . . . . 6  |-  ( ph  ->  ( ( ( -u
1 ^ sum_ x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) )  +  1 )  <  P  <->  (
-u 1 ^ sum_ x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) ) ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  <  ( P  - 
1 ) ) )
111109, 110mpbird 167 . . . . 5  |-  ( ph  ->  ( ( -u 1 ^ sum_ x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) ( |_ `  (
( Q  /  P
)  x.  ( 2  x.  x ) ) ) )  +  1 )  <  P )
112 modqid 10458 . . . . 5  |-  ( ( ( ( ( -u
1 ^ sum_ x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) )  +  1 )  e.  QQ  /\  P  e.  QQ )  /\  ( 0  <_ 
( ( -u 1 ^ sum_ x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) ( |_ `  (
( Q  /  P
)  x.  ( 2  x.  x ) ) ) )  +  1 )  /\  ( (
-u 1 ^ sum_ x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) ) ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  +  1 )  < 
P ) )  -> 
( ( ( -u
1 ^ sum_ x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) )  +  1 )  mod  P
)  =  ( (
-u 1 ^ sum_ x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) ) ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  +  1 ) )
11356, 44, 86, 111, 112syl22anc 1250 . . . 4  |-  ( ph  ->  ( ( ( -u
1 ^ sum_ x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) )  +  1 )  mod  P
)  =  ( (
-u 1 ^ sum_ x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) ) ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  +  1 ) )
11454, 113eqtrd 2229 . . 3  |-  ( ph  ->  ( ( ( Q ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  =  ( (
-u 1 ^ sum_ x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) ) ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  +  1 ) )
115114oveq1d 5940 . 2  |-  ( ph  ->  ( ( ( ( Q ^ ( ( P  -  1 )  /  2 ) )  +  1 )  mod 
P )  -  1 )  =  ( ( ( -u 1 ^
sum_ x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) )  +  1 )  -  1 ) )
11676recnd 8072 . . 3  |-  ( ph  ->  ( -u 1 ^
sum_ x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) )  e.  CC )
117 pncan 8249 . . 3  |-  ( ( ( -u 1 ^
sum_ x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) )  e.  CC  /\  1  e.  CC )  ->  ( ( ( -u
1 ^ sum_ x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) )  +  1 )  -  1 )  =  ( -u
1 ^ sum_ x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) )
118116, 62, 117sylancl 413 . 2  |-  ( ph  ->  ( ( ( -u
1 ^ sum_ x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) )  +  1 )  -  1 )  =  ( -u
1 ^ sum_ x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) )
1197, 115, 1183eqtrd 2233 1  |-  ( ph  ->  ( Q  /L
P )  =  (
-u 1 ^ sum_ x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) ) ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167    =/= wne 2367    \ cdif 3154   {csn 3623   class class class wbr 4034    |-> cmpt 4095   ` cfv 5259  (class class class)co 5925   CCcc 7894   RRcr 7895   0cc0 7896   1c1 7897    + caddc 7899    x. cmul 7901    < clt 8078    <_ cle 8079    - cmin 8214   -ucneg 8215   # cap 8625    / cdiv 8716   NNcn 9007   2c2 9058   ZZcz 9343   ZZ>=cuz 9618   QQcq 9710   ...cfz 10100   |_cfl 10375    mod cmo 10431   ^cexp 10647   abscabs 11179   sum_csu 11535   Primecprime 12300  mulGrpcmgp 13552   ZRHomczrh 14243  ℤ/nczn 14245    /Lclgs 15322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016  ax-addf 8018  ax-mulf 8019
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-of 6139  df-1st 6207  df-2nd 6208  df-tpos 6312  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-2o 6484  df-oadd 6487  df-er 6601  df-ec 6603  df-qs 6607  df-map 6718  df-en 6809  df-dom 6810  df-fin 6811  df-sup 7059  df-inf 7060  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-9 9073  df-n0 9267  df-z 9344  df-dec 9475  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-fl 10377  df-mod 10432  df-seqfrec 10557  df-exp 10648  df-ihash 10885  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-sumdc 11536  df-proddc 11733  df-dvds 11970  df-gcd 12146  df-prm 12301  df-phi 12404  df-pc 12479  df-struct 12705  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-plusg 12793  df-mulr 12794  df-starv 12795  df-sca 12796  df-vsca 12797  df-ip 12798  df-tset 12799  df-ple 12800  df-ds 12802  df-unif 12803  df-0g 12960  df-igsum 12961  df-topgen 12962  df-iimas 13004  df-qus 13005  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-mhm 13161  df-submnd 13162  df-grp 13205  df-minusg 13206  df-sbg 13207  df-mulg 13326  df-subg 13376  df-nsg 13377  df-eqg 13378  df-ghm 13447  df-cmn 13492  df-abl 13493  df-mgp 13553  df-rng 13565  df-ur 13592  df-srg 13596  df-ring 13630  df-cring 13631  df-oppr 13700  df-dvdsr 13721  df-unit 13722  df-invr 13753  df-dvr 13764  df-rhm 13784  df-nzr 13812  df-subrg 13851  df-domn 13891  df-idom 13892  df-lmod 13921  df-lssm 13985  df-lsp 14019  df-sra 14067  df-rgmod 14068  df-lidl 14101  df-rsp 14102  df-2idl 14132  df-bl 14178  df-mopn 14179  df-fg 14181  df-metu 14182  df-cnfld 14189  df-zring 14223  df-zrh 14246  df-zn 14248  df-lgs 15323
This theorem is referenced by:  lgsquadlem2  15403
  Copyright terms: Public domain W3C validator