ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bitscmp Unicode version

Theorem bitscmp 12477
Description: The bit complement of  N is  -u N  -  1. (Thus, by bitsfi 12476, all negative numbers have cofinite bits representations.) (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bitscmp  |-  ( N  e.  ZZ  ->  ( NN0  \  (bits `  N
) )  =  (bits `  ( -u N  - 
1 ) ) )

Proof of Theorem bitscmp
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 bitsval2 12463 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( m  e.  (bits `  N )  <->  -.  2  ||  ( |_ `  ( N  /  ( 2 ^ m ) ) ) ) )
2 2z 9482 . . . . . . . . . 10  |-  2  e.  ZZ
32a1i 9 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
2  e.  ZZ )
4 simpl 109 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  ->  N  e.  ZZ )
5 2nn 9280 . . . . . . . . . . . . 13  |-  2  e.  NN
65a1i 9 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
2  e.  NN )
7 simpr 110 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  ->  m  e.  NN0 )
86, 7nnexpcld 10925 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( 2 ^ m
)  e.  NN )
9 znq 9827 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  ( 2 ^ m
)  e.  NN )  ->  ( N  / 
( 2 ^ m
) )  e.  QQ )
104, 8, 9syl2anc 411 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( N  /  (
2 ^ m ) )  e.  QQ )
1110flqcld 10505 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( |_ `  ( N  /  ( 2 ^ m ) ) )  e.  ZZ )
12 dvdsnegb 12327 . . . . . . . . 9  |-  ( ( 2  e.  ZZ  /\  ( |_ `  ( N  /  ( 2 ^ m ) ) )  e.  ZZ )  -> 
( 2  ||  ( |_ `  ( N  / 
( 2 ^ m
) ) )  <->  2  ||  -u ( |_ `  ( N  /  ( 2 ^ m ) ) ) ) )
133, 11, 12syl2anc 411 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( 2  ||  ( |_ `  ( N  / 
( 2 ^ m
) ) )  <->  2  ||  -u ( |_ `  ( N  /  ( 2 ^ m ) ) ) ) )
1413notbid 671 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( -.  2  ||  ( |_ `  ( N  /  ( 2 ^ m ) ) )  <->  -.  2  ||  -u ( |_ `  ( N  / 
( 2 ^ m
) ) ) ) )
1511znegcld 9579 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  ->  -u ( |_ `  ( N  /  ( 2 ^ m ) ) )  e.  ZZ )
16 oddm1even 12394 . . . . . . . . 9  |-  ( -u ( |_ `  ( N  /  ( 2 ^ m ) ) )  e.  ZZ  ->  ( -.  2  ||  -u ( |_ `  ( N  / 
( 2 ^ m
) ) )  <->  2  ||  ( -u ( |_ `  ( N  /  (
2 ^ m ) ) )  -  1 ) ) )
1715, 16syl 14 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( -.  2  ||  -u ( |_ `  ( N  /  ( 2 ^ m ) ) )  <->  2  ||  ( -u ( |_ `  ( N  /  ( 2 ^ m ) ) )  -  1 ) ) )
18 flqltp1 10507 . . . . . . . . . . . . . . . 16  |-  ( ( N  /  ( 2 ^ m ) )  e.  QQ  ->  ( N  /  ( 2 ^ m ) )  < 
( ( |_ `  ( N  /  (
2 ^ m ) ) )  +  1 ) )
1910, 18syl 14 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( N  /  (
2 ^ m ) )  <  ( ( |_ `  ( N  /  ( 2 ^ m ) ) )  +  1 ) )
204zred 9577 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  ->  N  e.  RR )
2120, 8nndivred 9168 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( N  /  (
2 ^ m ) )  e.  RR )
2211zred 9577 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( |_ `  ( N  /  ( 2 ^ m ) ) )  e.  RR )
23 1red 8169 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
1  e.  RR )
2422, 23readdcld 8184 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( ( |_ `  ( N  /  (
2 ^ m ) ) )  +  1 )  e.  RR )
2521, 24ltnegd 8678 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( ( N  / 
( 2 ^ m
) )  <  (
( |_ `  ( N  /  ( 2 ^ m ) ) )  +  1 )  <->  -u ( ( |_ `  ( N  /  ( 2 ^ m ) ) )  +  1 )  <  -u ( N  /  (
2 ^ m ) ) ) )
2619, 25mpbid 147 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  ->  -u ( ( |_ `  ( N  /  (
2 ^ m ) ) )  +  1 )  <  -u ( N  /  ( 2 ^ m ) ) )
2722recnd 8183 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( |_ `  ( N  /  ( 2 ^ m ) ) )  e.  CC )
2823recnd 8183 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
1  e.  CC )
2927, 28negdi2d 8479 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  ->  -u ( ( |_ `  ( N  /  (
2 ^ m ) ) )  +  1 )  =  ( -u ( |_ `  ( N  /  ( 2 ^ m ) ) )  -  1 ) )
3020recnd 8183 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  ->  N  e.  CC )
318nncnd 9132 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( 2 ^ m
)  e.  CC )
328nnap0d 9164 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( 2 ^ m
) #  0 )
3330, 31, 32divnegapd 8958 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  ->  -u ( N  /  (
2 ^ m ) )  =  ( -u N  /  ( 2 ^ m ) ) )
3426, 29, 333brtr3d 4114 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( -u ( |_ `  ( N  /  (
2 ^ m ) ) )  -  1 )  <  ( -u N  /  ( 2 ^ m ) ) )
35 1zzd 9481 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
1  e.  ZZ )
3615, 35zsubcld 9582 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( -u ( |_ `  ( N  /  (
2 ^ m ) ) )  -  1 )  e.  ZZ )
3736zred 9577 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( -u ( |_ `  ( N  /  (
2 ^ m ) ) )  -  1 )  e.  RR )
3820renegcld 8534 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  ->  -u N  e.  RR )
398nnrpd 9898 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( 2 ^ m
)  e.  RR+ )
4037, 38, 39ltmuldivd 9948 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( ( ( -u ( |_ `  ( N  /  ( 2 ^ m ) ) )  -  1 )  x.  ( 2 ^ m
) )  <  -u N  <->  (
-u ( |_ `  ( N  /  (
2 ^ m ) ) )  -  1 )  <  ( -u N  /  ( 2 ^ m ) ) ) )
4134, 40mpbird 167 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( ( -u ( |_ `  ( N  / 
( 2 ^ m
) ) )  - 
1 )  x.  (
2 ^ m ) )  <  -u N
)
428nnzd 9576 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( 2 ^ m
)  e.  ZZ )
4336, 42zmulcld 9583 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( ( -u ( |_ `  ( N  / 
( 2 ^ m
) ) )  - 
1 )  x.  (
2 ^ m ) )  e.  ZZ )
444znegcld 9579 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  ->  -u N  e.  ZZ )
45 zltlem1 9512 . . . . . . . . . . . . 13  |-  ( ( ( ( -u ( |_ `  ( N  / 
( 2 ^ m
) ) )  - 
1 )  x.  (
2 ^ m ) )  e.  ZZ  /\  -u N  e.  ZZ )  ->  ( ( (
-u ( |_ `  ( N  /  (
2 ^ m ) ) )  -  1 )  x.  ( 2 ^ m ) )  <  -u N  <->  ( ( -u ( |_ `  ( N  /  ( 2 ^ m ) ) )  -  1 )  x.  ( 2 ^ m
) )  <_  ( -u N  -  1 ) ) )
4643, 44, 45syl2anc 411 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( ( ( -u ( |_ `  ( N  /  ( 2 ^ m ) ) )  -  1 )  x.  ( 2 ^ m
) )  <  -u N  <->  ( ( -u ( |_
`  ( N  / 
( 2 ^ m
) ) )  - 
1 )  x.  (
2 ^ m ) )  <_  ( -u N  -  1 ) ) )
4741, 46mpbid 147 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( ( -u ( |_ `  ( N  / 
( 2 ^ m
) ) )  - 
1 )  x.  (
2 ^ m ) )  <_  ( -u N  -  1 ) )
4838, 23resubcld 8535 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( -u N  -  1 )  e.  RR )
4937, 48, 39lemuldivd 9950 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( ( ( -u ( |_ `  ( N  /  ( 2 ^ m ) ) )  -  1 )  x.  ( 2 ^ m
) )  <_  ( -u N  -  1 )  <-> 
( -u ( |_ `  ( N  /  (
2 ^ m ) ) )  -  1 )  <_  ( ( -u N  -  1 )  /  ( 2 ^ m ) ) ) )
5047, 49mpbid 147 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( -u ( |_ `  ( N  /  (
2 ^ m ) ) )  -  1 )  <_  ( ( -u N  -  1 )  /  ( 2 ^ m ) ) )
51 flqle 10506 . . . . . . . . . . . . . . . . 17  |-  ( ( N  /  ( 2 ^ m ) )  e.  QQ  ->  ( |_ `  ( N  / 
( 2 ^ m
) ) )  <_ 
( N  /  (
2 ^ m ) ) )
5210, 51syl 14 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( |_ `  ( N  /  ( 2 ^ m ) ) )  <_  ( N  / 
( 2 ^ m
) ) )
5322, 21lenegd 8679 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( ( |_ `  ( N  /  (
2 ^ m ) ) )  <_  ( N  /  ( 2 ^ m ) )  <->  -u ( N  /  ( 2 ^ m ) )  <_  -u ( |_ `  ( N  /  ( 2 ^ m ) ) ) ) )
5452, 53mpbid 147 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  ->  -u ( N  /  (
2 ^ m ) )  <_  -u ( |_
`  ( N  / 
( 2 ^ m
) ) ) )
5533, 54eqbrtrrd 4107 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( -u N  /  (
2 ^ m ) )  <_  -u ( |_
`  ( N  / 
( 2 ^ m
) ) ) )
5622renegcld 8534 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  ->  -u ( |_ `  ( N  /  ( 2 ^ m ) ) )  e.  RR )
5738, 56, 39ledivmuld 9954 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( ( -u N  /  ( 2 ^ m ) )  <_  -u ( |_ `  ( N  /  ( 2 ^ m ) ) )  <->  -u N  <_  ( ( 2 ^ m )  x.  -u ( |_ `  ( N  /  (
2 ^ m ) ) ) ) ) )
5855, 57mpbid 147 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  ->  -u N  <_  ( (
2 ^ m )  x.  -u ( |_ `  ( N  /  (
2 ^ m ) ) ) ) )
5942, 15zmulcld 9583 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( ( 2 ^ m )  x.  -u ( |_ `  ( N  / 
( 2 ^ m
) ) ) )  e.  ZZ )
60 zlem1lt 9511 . . . . . . . . . . . . . 14  |-  ( (
-u N  e.  ZZ  /\  ( ( 2 ^ m )  x.  -u ( |_ `  ( N  / 
( 2 ^ m
) ) ) )  e.  ZZ )  -> 
( -u N  <_  (
( 2 ^ m
)  x.  -u ( |_ `  ( N  / 
( 2 ^ m
) ) ) )  <-> 
( -u N  -  1 )  <  ( ( 2 ^ m )  x.  -u ( |_ `  ( N  /  (
2 ^ m ) ) ) ) ) )
6144, 59, 60syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( -u N  <_  (
( 2 ^ m
)  x.  -u ( |_ `  ( N  / 
( 2 ^ m
) ) ) )  <-> 
( -u N  -  1 )  <  ( ( 2 ^ m )  x.  -u ( |_ `  ( N  /  (
2 ^ m ) ) ) ) ) )
6258, 61mpbid 147 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( -u N  -  1 )  <  ( ( 2 ^ m )  x.  -u ( |_ `  ( N  /  (
2 ^ m ) ) ) ) )
6348, 56, 39ltdivmuld 9952 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( ( ( -u N  -  1 )  /  ( 2 ^ m ) )  <  -u ( |_ `  ( N  /  ( 2 ^ m ) ) )  <-> 
( -u N  -  1 )  <  ( ( 2 ^ m )  x.  -u ( |_ `  ( N  /  (
2 ^ m ) ) ) ) ) )
6462, 63mpbird 167 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( ( -u N  -  1 )  / 
( 2 ^ m
) )  <  -u ( |_ `  ( N  / 
( 2 ^ m
) ) ) )
6527negcld 8452 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  ->  -u ( |_ `  ( N  /  ( 2 ^ m ) ) )  e.  CC )
6665, 28npcand 8469 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( ( -u ( |_ `  ( N  / 
( 2 ^ m
) ) )  - 
1 )  +  1 )  =  -u ( |_ `  ( N  / 
( 2 ^ m
) ) ) )
6764, 66breqtrrd 4111 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( ( -u N  -  1 )  / 
( 2 ^ m
) )  <  (
( -u ( |_ `  ( N  /  (
2 ^ m ) ) )  -  1 )  +  1 ) )
6844, 35zsubcld 9582 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( -u N  -  1 )  e.  ZZ )
69 znq 9827 . . . . . . . . . . . 12  |-  ( ( ( -u N  - 
1 )  e.  ZZ  /\  ( 2 ^ m
)  e.  NN )  ->  ( ( -u N  -  1 )  /  ( 2 ^ m ) )  e.  QQ )
7068, 8, 69syl2anc 411 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( ( -u N  -  1 )  / 
( 2 ^ m
) )  e.  QQ )
71 flqbi 10518 . . . . . . . . . . 11  |-  ( ( ( ( -u N  -  1 )  / 
( 2 ^ m
) )  e.  QQ  /\  ( -u ( |_
`  ( N  / 
( 2 ^ m
) ) )  - 
1 )  e.  ZZ )  ->  ( ( |_
`  ( ( -u N  -  1 )  /  ( 2 ^ m ) ) )  =  ( -u ( |_ `  ( N  / 
( 2 ^ m
) ) )  - 
1 )  <->  ( ( -u ( |_ `  ( N  /  ( 2 ^ m ) ) )  -  1 )  <_ 
( ( -u N  -  1 )  / 
( 2 ^ m
) )  /\  (
( -u N  -  1 )  /  ( 2 ^ m ) )  <  ( ( -u ( |_ `  ( N  /  ( 2 ^ m ) ) )  -  1 )  +  1 ) ) ) )
7270, 36, 71syl2anc 411 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( ( |_ `  ( ( -u N  -  1 )  / 
( 2 ^ m
) ) )  =  ( -u ( |_
`  ( N  / 
( 2 ^ m
) ) )  - 
1 )  <->  ( ( -u ( |_ `  ( N  /  ( 2 ^ m ) ) )  -  1 )  <_ 
( ( -u N  -  1 )  / 
( 2 ^ m
) )  /\  (
( -u N  -  1 )  /  ( 2 ^ m ) )  <  ( ( -u ( |_ `  ( N  /  ( 2 ^ m ) ) )  -  1 )  +  1 ) ) ) )
7350, 67, 72mpbir2and 950 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( |_ `  (
( -u N  -  1 )  /  ( 2 ^ m ) ) )  =  ( -u ( |_ `  ( N  /  ( 2 ^ m ) ) )  -  1 ) )
7473breq2d 4095 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( 2  ||  ( |_ `  ( ( -u N  -  1 )  /  ( 2 ^ m ) ) )  <->  2  ||  ( -u ( |_ `  ( N  /  ( 2 ^ m ) ) )  -  1 ) ) )
7517, 74bitr4d 191 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( -.  2  ||  -u ( |_ `  ( N  /  ( 2 ^ m ) ) )  <->  2  ||  ( |_
`  ( ( -u N  -  1 )  /  ( 2 ^ m ) ) ) ) )
761, 14, 753bitrd 214 . . . . . 6  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( m  e.  (bits `  N )  <->  2  ||  ( |_ `  ( (
-u N  -  1 )  /  ( 2 ^ m ) ) ) ) )
7776notbid 671 . . . . 5  |-  ( ( N  e.  ZZ  /\  m  e.  NN0 )  -> 
( -.  m  e.  (bits `  N )  <->  -.  2  ||  ( |_
`  ( ( -u N  -  1 )  /  ( 2 ^ m ) ) ) ) )
7877pm5.32da 452 . . . 4  |-  ( N  e.  ZZ  ->  (
( m  e.  NN0  /\ 
-.  m  e.  (bits `  N ) )  <->  ( m  e.  NN0  /\  -.  2  ||  ( |_ `  (
( -u N  -  1 )  /  ( 2 ^ m ) ) ) ) ) )
79 znegcl 9485 . . . . . 6  |-  ( N  e.  ZZ  ->  -u N  e.  ZZ )
80 1zzd 9481 . . . . . 6  |-  ( N  e.  ZZ  ->  1  e.  ZZ )
8179, 80zsubcld 9582 . . . . 5  |-  ( N  e.  ZZ  ->  ( -u N  -  1 )  e.  ZZ )
8281biantrurd 305 . . . 4  |-  ( N  e.  ZZ  ->  (
( m  e.  NN0  /\ 
-.  2  ||  ( |_ `  ( ( -u N  -  1 )  /  ( 2 ^ m ) ) ) )  <->  ( ( -u N  -  1 )  e.  ZZ  /\  (
m  e.  NN0  /\  -.  2  ||  ( |_
`  ( ( -u N  -  1 )  /  ( 2 ^ m ) ) ) ) ) ) )
8378, 82bitrd 188 . . 3  |-  ( N  e.  ZZ  ->  (
( m  e.  NN0  /\ 
-.  m  e.  (bits `  N ) )  <->  ( ( -u N  -  1 )  e.  ZZ  /\  (
m  e.  NN0  /\  -.  2  ||  ( |_
`  ( ( -u N  -  1 )  /  ( 2 ^ m ) ) ) ) ) ) )
84 eldif 3206 . . 3  |-  ( m  e.  ( NN0  \  (bits `  N ) )  <->  ( m  e.  NN0  /\  -.  m  e.  (bits `  N )
) )
85 bitsval 12462 . . . 4  |-  ( m  e.  (bits `  ( -u N  -  1 ) )  <->  ( ( -u N  -  1 )  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_ `  (
( -u N  -  1 )  /  ( 2 ^ m ) ) ) ) )
86 3anass 1006 . . . 4  |-  ( ( ( -u N  - 
1 )  e.  ZZ  /\  m  e.  NN0  /\  -.  2  ||  ( |_
`  ( ( -u N  -  1 )  /  ( 2 ^ m ) ) ) )  <->  ( ( -u N  -  1 )  e.  ZZ  /\  (
m  e.  NN0  /\  -.  2  ||  ( |_
`  ( ( -u N  -  1 )  /  ( 2 ^ m ) ) ) ) ) )
8785, 86bitri 184 . . 3  |-  ( m  e.  (bits `  ( -u N  -  1 ) )  <->  ( ( -u N  -  1 )  e.  ZZ  /\  (
m  e.  NN0  /\  -.  2  ||  ( |_
`  ( ( -u N  -  1 )  /  ( 2 ^ m ) ) ) ) ) )
8883, 84, 873bitr4g 223 . 2  |-  ( N  e.  ZZ  ->  (
m  e.  ( NN0  \  (bits `  N )
)  <->  m  e.  (bits `  ( -u N  - 
1 ) ) ) )
8988eqrdv 2227 1  |-  ( N  e.  ZZ  ->  ( NN0  \  (bits `  N
) )  =  (bits `  ( -u N  - 
1 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200    \ cdif 3194   class class class wbr 4083   ` cfv 5318  (class class class)co 6007   1c1 8008    + caddc 8010    x. cmul 8012    < clt 8189    <_ cle 8190    - cmin 8325   -ucneg 8326    / cdiv 8827   NNcn 9118   2c2 9169   NN0cn0 9377   ZZcz 9454   QQcq 9822   |_cfl 10496   ^cexp 10768    || cdvds 12306  bitscbits 12459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-xor 1418  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-fl 10498  df-seqfrec 10678  df-exp 10769  df-dvds 12307  df-bits 12460
This theorem is referenced by:  m1bits  12479
  Copyright terms: Public domain W3C validator