ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  znegcld GIF version

Theorem znegcld 9323
Description: Closure law for negative integers. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
zred.1 (𝜑𝐴 ∈ ℤ)
Assertion
Ref Expression
znegcld (𝜑 → -𝐴 ∈ ℤ)

Proof of Theorem znegcld
StepHypRef Expression
1 zred.1 . 2 (𝜑𝐴 ∈ ℤ)
2 znegcl 9230 . 2 (𝐴 ∈ ℤ → -𝐴 ∈ ℤ)
31, 2syl 14 1 (𝜑 → -𝐴 ∈ ℤ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2141  -cneg 8078  cz 9199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-addcom 7861  ax-addass 7863  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-0id 7869  ax-rnegex 7870  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-ltadd 7877
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-br 3988  df-opab 4049  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-iota 5158  df-fun 5198  df-fv 5204  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-inn 8866  df-z 9200
This theorem is referenced by:  ceilqval  10249  ceiqcl  10250  exp3val  10465  expnegap0  10471  expaddzaplem  10506  seq3shft  10789  nn0abscl  11036  climshft2  11256  fsumshftm  11395  eftlub  11640  zdvdsdc  11761  dvdsadd2b  11789  divalglemex  11868  divalglemeuneg  11869  infssuzex  11891  zsupssdc  11896  gcdaddm  11926  modgcd  11933  pcneg  12265  gznegcl  12314  gzcjcl  12315  4sqlem10  12326  lgsval  13658  2sqlem4  13707
  Copyright terms: Public domain W3C validator