| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > znegcld | GIF version | ||
| Description: Closure law for negative integers. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| zred.1 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
| Ref | Expression |
|---|---|
| znegcld | ⊢ (𝜑 → -𝐴 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
| 2 | znegcl 9376 | . 2 ⊢ (𝐴 ∈ ℤ → -𝐴 ∈ ℤ) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → -𝐴 ∈ ℤ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 -cneg 8217 ℤcz 9345 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-addcom 7998 ax-addass 8000 ax-distr 8002 ax-i2m1 8003 ax-0lt1 8004 ax-0id 8006 ax-rnegex 8007 ax-cnre 8009 ax-pre-ltirr 8010 ax-pre-ltwlin 8011 ax-pre-lttrn 8012 ax-pre-ltadd 8014 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-sub 8218 df-neg 8219 df-inn 9010 df-z 9346 |
| This theorem is referenced by: infssuzex 10342 zsupssdc 10347 ceilqval 10417 ceiqcl 10418 exp3val 10652 expnegap0 10658 expaddzaplem 10693 seq3shft 11022 nn0abscl 11269 climshft2 11490 fsumshftm 11629 eftlub 11874 zdvdsdc 11996 dvdsadd2b 12024 divalglemex 12106 divalglemeuneg 12107 bitscmp 12142 gcdaddm 12178 modgcd 12185 pcneg 12521 gznegcl 12571 gzcjcl 12572 4sqlem10 12583 4sqexercise1 12594 4sqexercise2 12595 4sqlemsdc 12596 mulgfng 13332 mulgdirlem 13361 mulgdir 13362 mulgmodid 13369 subgmulg 13396 wilthlem1 15324 lgsval 15353 lgseisenlem2 15420 lgseisen 15423 2sqlem4 15467 |
| Copyright terms: Public domain | W3C validator |